
Propagating Ranking Functions on a Graph: Algorithms and Applications

Buyue Qian
IBM T. J. Watson Research

Yorktown Heights, NY 10598
bqian@us.ibm.com

Xiang Wang
IBM T. J. Watson Research

Yorktown Heights, NY 10598
wangxi@us.ibm.com

Ian Davidson
University of California
Davis, Davis, CA 95616

davidson@cs.ucdavis.edu

Abstract

Learning to rank is an emerging learning task that opens
up a diverse set of applications. However, most exist-
ing work focuses on learning a single ranking func-
tion whilst in many real world applications, there can
be many ranking functions to fulfill various retrieval
tasks on the same data set. How to train many rank-
ing functions is challenging due to the limited avail-
ability of training data which is further compounded
when plentiful training data is available for a small sub-
set of the ranking functions. This is particularly true in
settings, such as personalized ranking/retrieval, where
each person requires a unique ranking function accord-
ing to their preference, but only the functions of the per-
sons who provide sufficient ratings (of objects, such as
movies and music) can be well trained. To address this,
we propose to construct a graph where each node cor-
responds to a retrieval task, and then propagate rank-
ing functions on the graph. We illustrate the usefulness
of the idea of propagating ranking functions and our
method by exploring two real world applications.

Introduction
Any system that presents ordered results to users is perform-
ing ranking (Burges et al. 2005). This has led to extensive in-
terest in applying machine learning techniques to learn rank-
ing functions. Such techniques are called learning to rank,
whose goal is to automatically build a retrieval function from
training data, and has been successfully applied to various
information retrieval problems. In many real world appli-
cations, we often require many ranking functions to fulfill
various retrieval tasks on a single dataset. It is often the case
that the training data is limited and imbalanced hence, only
a few ranking functions can be trained adequately (deemed
as strong), while the majority ranking functions are com-
pletely unknown or learnt with little training data (deemed
as weak). Consider a personalized movie ranking problem,
each person has different taste of movies and thus requires
a unique ranking function. However, for a particular user, a
strong ranking function can be learned only if that user pro-
vides sufficient movie ratings, which is often not the case
in practice. In this study we consider using graph diffusion

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

methods to estimate the unknown or improve the weak rank-
ing functions by those strong ones. The purpose of this work
is to propagate linear ranking functions over the nodes on a
graph, where each node corresponds to a retrieval task/user.

Problem Setting. There are three key concepts in this
work, (i) linear ranking function, (ii) ordinal distribution fea-
tures, and (iii) ranking function propagation. We shall now
explain each briefly. A linear ranking function is a real-
valued vector, whose inner product with a data point is usu-
ally called a ranking score. In a retrieval task using a linear
ranking function, we first calculate ranking scores, the in-
ner product between the ranking function vector and all data
points, and then sort the data points based on the ranking
scores. Data points with higher ranking scores are more rele-
vant to the retrieval topic. Ordinal distribution features are a
powerful way of representing complex objects by the counts
of features that are ordinal, that is the features represent an
ordered set of values such as small, medium, large.
Consider our experiments on creating a ranking function for
each type of bird based on their song. The songs are repre-
sented using spectrograms which contains the counts of each
audio frequency and analogous to histograms. The spectro-
grams capture not only the counts of each frequency but also
that adjacent (in the spectrogram) frequencies are similar.
Propagation of ranking functions implies that in our study a
graph can be comprised of strong, weak, and unknown rank-
ing functions, and we allow the strong ranking functions be-
ing propagated to the weak or unknown functions. In partic-
ular we can calculate the ranking functions after an infinite
number of propagation steps on the network.

Proposal. To explore the graph propagation of linear
ranking functions on distribution data, there are three main
challenges that we address. (i) Since our ranking function
is of ordinal (order sensitive features) regular label prop-
agation methods will fare poorly with these ordinal distri-
bution features. We adopt the Hellinger distance metric to
calculate the similarity between two linear ranking func-
tions (distributions). (ii) Propagating distributed based rank-
ing functions requires a specialized objective function. We
generalize the objective functions of several classic diffu-
sion methods whose objectives have shown to be useful in
solving real problems. (iii) The construction of a similarity
graph to propagate the ranking functions will vary between
applications. For example, in a personalized movie ranking

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

1833

problem, the graph can be the user co-rating matrix or con-
structed using side information such as user profiles.

Though the goals look similar, our work differs from
multi-task learning (MTL) in two aspects. (i) MTL usually
assumes just a few tasks whilst our method performs prop-
agation on a large set of ranking functions (2000+ in one of
our experiments). (ii) While MTL tries to learn a set of coop-
erative tasks together, our method views the learning of the
initial set of ranking functions as a preprocessing step, and
only focuses on the inference of unknown ranking functions.

Contribution and Claims. Our work makes the fol-
lowing three technical contributions. (i) We explore a new
method to efficiently learn thousands of ranking functions
from insufficient and imbalanced training data. (ii) We pro-
pose a generic diffusion method to propagate linear rank-
ing functions modeled as distributions on a graph. Our ap-
proach allows for interactions between adjacent histogram
bins making propagation more useful. (iii) The proposed
method can be naturally deployed to network settings, such
as personalized ranking and social network advertising.

Related Work
Our work relates to two topics: label propagation and learn-
ing to rank. We briefly review related work in both areas.

Graph-based label propagation mainly aims to address
the issue of transduction. Blum and Chawla have proposed
label propagation methods on graphs as a mincut problem.
The Gaussian fields and harmonic function (GFHF) method
in (2003) is a continuous relaxation to the difficult dis-
crete Markov random fields. The local and global consis-
tency (LGC) method (Zhou et al. 2003) extends GFHF with
the normalized Laplacian. Another manifold regularization
framework (2006) employs two regularization terms, i.e., a
base kernel and a L2 regularizer. Lawrence and Jordan pro-
pose to learn with unlabeled data in the context of Gaussian
process. Comprehensive surveys on semi-supervised learn-
ing can be found in (Zhu 2005) and (Chapelle et al. 2006).

Learning to rank algorithms fall into three categories
which differ in the form of training data. (i) Pointwise meth-
ods approximate a ranking problem as ordinal regression
with large margin formulations (Shashua and Levin 2002)
(Crammer and Singer 2001), and subset ranking formula-
tions(Cossock and Zhang 2006). (ii) Pairwise methods learn
from pairs of instances ordered by their relevance to the
ranking problem (iii) Listwise use a fully ordered rank list
as an instance, e.g., ListNet (Cao et al. 2007), AdaRank (Xu
and Li 2007) and SVM Map (Yue et al. 2007). Learning to
rank approaches have shown to be useful in many informa-
tion retrieval applications. RankSVM was applied Joachims
to document retrieval, RankNet (Burges et al. 2005) has
shown to be useful on large scale web search. A brief sur-
vey of learning to rank approaches exists (Hang 2011).

The Importance of Propagating Distributions
Feature representations of data objects fall into two cate-
gories. (i) Independent features, where the ordering of fea-
tures is permutable without affecting the learning result. (ii)
Ordinal distribution/histogram features, where the ordering

of features matters to learning algorithms. The latter type
of ordinal distribution features is commonly used in learning
to rank problems and also covers a large portion of data rep-
resentations, such as the color histogram used in computer
vision, the spectrogram used in natural language process-
ing, and various transformations used in signal processing.
While on the data of independent features, ranking functions
can be readily propagated using typical label propagation
methods, there is no available method, to our knowledge, to
perform ranking function propagation on distribution data.
Existing graph diffusion methods perform propagation in a
bin-by-bin fashion and ignore the interactions between adja-
cent histogram bins. We shall in the following example show
that sometimes shifting and preserving shape are preferred.

(a) A graph with each node correspondes to a distribution/ranking

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

(b) Distirbution 1
(three bars on the left)

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

(c) Ideal propagation
(three bars in the mid)

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

(d) Distribution 2
(three bars on the right)

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(e) GFHF propagation

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(f) LGC propagation

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(g) Our propagation

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

(h) Our propagation
minus a constant

Figure 1: Distribution propagation using different methods.
Note that Figure 1(h) is equivalent to Figure 1(g), since each
distribution here is viewed as a linear ranking function

To illustrate the importance of distribution propagation,
let us consider a toy graph with only three nodes. Figure 1(a)
presents a simple graph with three nodes, each of which cor-
responds to a distribution (linear ranking function). We see
that in the given Distribution 1 (Figure 1(b)) there are three
bars on the left side of the 5-bin histogram with the middle
bar higher than the other two, and the Distribution 2 (Fig-
ure 1(d)) follows the same shape as Distribution 1 but lo-
cates on the right side of the 5-bin histogram. It is clear that
shifting Distribution 1 to the right by two bins is equivalent
to Distribution 2, and vice versa. Therefore, we can infer the
ideal propagation on distribution data as in Figure 1(c).

We next infer the missing distribution (in the middle) us-
ing different graph propagation methods. Figure 1(e) and
1(f) show the inferred distributions using two classic graph

1834

diffusion methods, GFHF and LGC, respectively. We ob-
serve that traditional methods do not work well on distri-
bution data, since their result is essentially a weighted aver-
age of the given distributions. Figure 1(g) shows the result
of our method, which captured the key structure of the two
given distributions (higher in the middle and lower on both
sides). Since our study concerns ranking function propaga-
tion, each distribution here can be viewed as a linear ranking
function. As adding a constant to a linear ranking function
on distribution data (nonnegative and sum-to-one) does not
change the ranking order, we can remove the redundant con-
stant and have an equivalent ranking function as shown in
Figure 1(h). The result is very close to the ideal propagation.

The Method
Preliminaries
Formally, the problem to address is described as follows.
In a retrieval problem, we are given a dataset containing
n instances X = {x1, x2, · · · , xn}, which are represented
as distributions in Rd space. Since ranking functions of
non-distribution data can be readily handled by traditional
graph propagation methods, this paper only concerns ordi-
nal distribution based feature representations, i.e., we as-
sume the features of data are (i) nonnegative, (ii) sum-
to-one, and (iii) the order of features is not permutable.
Such representations have been shown to be useful for rank-
ing problems of images (Datta et al. 2008). On the set of
instances X , there are m ranking tasks/categories T =
{t1, t2, · · · , tm}, which correspond to a set of ranking func-
tions W = {w1, w2, · · · , wm} respectively. Each ranking
function is defined with respect to an external ordering (re-
trieval task) that we are trying to learn from the data. Since
in our approach we adopt a linear ranking function, i.e. wi is
a real-valued vector with the same dimension as xi, the rank-
ing score of an instance xi w.r.t. a retrieval tasks tj is simply
calculated from the inner product between xi and wj .

γji = wTj xi (1)

We construct a graph over ranking functions using a mea-
sure of similarity that is application dependent and allow
the interactions amongst themselves. In particular, we as-
sume that among the m ranking functions, there are only a
small portion of ranking functions that are trained with suf-
ficient data (deemed as strong functions), and the majority
remaining ones are unknown or learned with little training
data (deemed as unknown or weak functions). In this paper
we present a general approach to propagate linear ranking
functions, and the input of our method is a set of ranking
functions. Any learning to rank methods that produce linear
ranking functions can be served as a preprocessing compo-
nent for our approach.

Objective Function
To perform ranking function propagation, we first construct
a graph of ranking functions, which is defined by a sym-
metric similarity/affinity matrix S, S ∈ Rm×m. Note that
the graph contains both strong and unknown/weak ranking
functions to enable the propagation of functions. An entry

Sij in the matrix S indicates the similarity between the re-
trieval tasks ti and tj , Sij = 1 if ti and tj are exactly the
same and Sij = 0 if ti and tj are completely irrelevant, and
we have Sij = Sji. Let D denote the degree matrix of S,
which is a diagonal matrix and Dii =

∑m
j=1 Sij . Before

propagating ranking functions on graph, we are given a ini-
tial set (possibly incomplete) of ranking functions obtained
from some learning to rank algorithm, which is denoted us-
ing Y , Y ∈ Rm×d, and Yi· (i-th row of Y) is the given
ranking function of retrieval task ti. We set Yi· to a vector
comprised of zeros if the ranking function for ti is missing.
The target value in our formulation is the propagation result
of ranking functions, which is denoted by W , W ∈ Rm×d,
and Wi· (i-th row of W) is the resulting (propagated) rank-
ing function for retrieval task ti.

We assume the initial set of ranking functions Y con-
sists of a small portion of strong (sufficiently trained) rank-
ing functions and a large portion of weak/unknown (insuf-
ficiently/not trained) ranking functions. Our goal is to fill
in the unknown or improve the weak ranking functions us-
ing the strong functions based on the similarity amongst re-
trieval tasks, i.e., to propagate the ranking functions in Y
via the similarity matrix S of the graph. We follow the clas-
sic consistency assumption of graph-based semi-supervised
learning, nearby ranking functions are likely to be similar,
and generalize the objective functions from previous studies.
Formally, the generalized objective is written as follows.

argmin
W

m∑
i,j=1

Sijd
2(Wi·,Wj·) +

m∑
i=1

µid
2(Wi·, Yi·) (2)

where d() denotes some distance metric, and d2() simply
denotes the square of a distance. The first term measures
the smoothness of graph, i.e., two similar ranking functions
should have small distance. The second term penalizes any
changes to the initial ranking functions, i.e., the given strong
ranking functions should not be overwritten significantly
since these functions are deemed as correct. µ is a tuning
parameter that balances the smoothness and penalty. In prac-
tice, µ can be a m-length vector, such that we can set a large
overwriting penalty to the locations of strong ranking func-
tions, and a zero/small penalty for the overwriting of un-
known/weak ranking functions respectively. We shall later in
this paper experimentally demonstrate that the performance
of our proposed approach is not sensitive to the scale of µ.

The generalized objective is closely related to several
classic graph-based semi-supervised learning methods. If
d(Wi·,Wj·) = |Wi· −Wj·| the objective reduces to GFHF
(graph Laplacian). If d(Wi·,Wj·) = | Wi·√

Dii
− Wj·√

Djj

| the ob-

jective reduces to LGC (normalized graph Laplacian).
With the objective function, the problem turns to selecting

an appropriate distance metric. Though propagation on non-
distribution data can be naturally handled by typical graph
diffusion approaches, the propagation of distributions is dif-
ficult to solve. Similar problems involving probability inter-
polation have been encountered in mathematical literatures
(McCann 1997; Agueh and Carlier 2011), topic modeling
(Cai, Wang, and He 2009), clustering problem (Applegate

1835

et al. 2011), and also graphics applications (Bonneel et al.
2011). To address this issue, our algorithm was designed
with a few criteria in mind. (1) The distance metric is pre-
ferred to be within the range from 0 to 1. (2) It allows inter-
actions between adjacent histogram bins. (3) From the dis-
tance metric, we should be able to derive a simple or closed-
form solution for the objective. A comparison of statistical
distances found the Hellinger distance metric satisfies all the
aforementioned criteria. The Hellinger distance, a type of f -
divergence, is used to quantify the similarity between two
probability distributions. Let a and b denote two distribu-
tions, the Hellinger metric in discrete format is defined as

H(a, b) =
1√
2

√∑
i

(√
ai −

√
bi

)2
(3)

In addition there are other benefits brought by the
Hellinger metric: (4) Unlike other statistical distances, the
Hellinger metric is applicable to any distributions without
pre-processing corrections, e.g., KL divergence prohibits ze-
ros on the same location of both distribution which is cor-
rected using the Laplace correction, (5) The Hellinger dis-
tance has shown to be robust to noise and skew-insensitive to
imbalanced data (Cieslak et al. 2012; Goldberg et al. 2009).
Substituting the Hellinger metric into the Eq.(2), our objec-
tive function is written as

argmin
W

1

2

m∑
i,j=1

Sij

d∑
k=1

(√
wik −

√
wjk
)2

+
1

2

m∑
i=1

µi

d∑
j=1

(√
wij −

√
yij
)2

(4)

From the definition of the Hellinger distance metric, we
see that it is required that all entries in a linear ranking func-
tion are (i) non-negative (wij ≥ 0,∀i, j) in order to keep the
metric valid, and the entries in a function are (ii) sum-to-one
(
∑d
j=1 wij = 1, ∀i) so as to preserve the nice properties of

the Hellinger metric. However, in practice these two require-
ments rarely hold in a linear ranking function learned by
some learn to rank algorithm. To address this issue, we adopt
a simple scheme to preprocess linear ranking functions: (1)
adding/subtracting a constant to make the entries range from
zero to a positive number, and then (2) multiplying/dividing
a constants so that the entries sum to one. Since our work
only deals with distribution data, the above two manipula-
tions do not affect the ranking orders. Recall that a ranking
score is calculated using rji = wTj xi. For adding/subtracting
a constant we have rji = (wj + c)Txi = wTj xi + c, since∑d
j=1 wij = 1. As for multiplying/dividing a constant, we

have rji = cwTj xi. We see that both the shifting and nor-
malization make an uniform change to all ranking scores,
therefore, the ranking orders remain exactly the same.

Closed-form Solution
In the proposed learning objective, the cost function involves
only one variable W to be optimized, which contains the

ranking functions to be inferred. To recover W in closed
form, we write the objective in Eq.(4) into matrix format.

Q(W) = tr{1
2
W ◦

1
2
T

(D − S)W ◦ 1
2

+
1

2
µ(W ◦

1
2 − Y ◦ 1

2)T (W ◦
1
2 − Y ◦ 1

2)} (5)

where tr{} denotes the trace operation, and ()◦
1
2 the denotes

element-wise square root of a matrix.
Since W ◦

1
2 and W have one-to-one correspondence, the

optimization of Q with respect to W is equivalent to min-
imizing Q with respect to W ◦

1
2 . Since W ◦

1
2 is continuous

and our objective function is convex, we recover the mini-
mum by simply setting the derivative w.r.t. W ◦

1
2 to zero.

∂Q
∂W ◦

1
2

= (D − S)W ◦ 1
2 + µ(W ◦

1
2 − Y ◦ 1

2) = 0 (6)

With simple linear algebra we have the global optimalW .

W =

((
1

µ
(D − S) + I

)−1
Y ◦

1
2

)◦2
(7)

where I denotes the identity matrix, and ()◦2 denotes the
element-wise square of a matrix. The propagation of ranking
functions is closely related to random walk on a graph, but
here the strong ranking functions are viewed as “absorbing
boundary” for the random walk. Our method differs from
typical random walk in two main aspects, (i) we penalize the
changes on the strong ranking functions, and (ii) our solution
is an equilibrium state in terms of hitting time.

Empirical Evaluation
We in this section attempt to understand the strengths and
relative performance of our distribution based ranking func-
tion propagation method, which we refer to in this section
as RFP (Ranking Function Propagation). It is important to
note that, to the best of our knowledge, our work is the
first on ranking function propagation on distribution data.
Therefore, we in our experiment can only compare with
non-distribution propagation methods. In particular we wish
to answer how well our method compares to the following
state-of-the-art baseline methods:

1. GFHF (2003): A state-of-the-art label propagation method
based on the harmonic function and the graph Laplacian.

2. LGC (2003): A label propagation method based on the
graph smoothness and the normalized graph Laplacian.
The result shows that our propagation method signifi-

cantly outperforms the two baseline methods. Given this, the
next question naturally raised would be “How good are the
inferred ranking functions comparing to the ranking func-
tions that are trained with sufficient data?”. To investigate
this we explore the following two extreme scenarios:

3. Lower Bound: performance of the initial ranking func-
tions without propagation. For unknown ranking func-
tions, we simply use a random vector. An inferred ranking
function should be at least better than a random guess.

1836

4. Upper Bound: performance of all the ranking functions
fully trained, which can be deemed as 1−training errors,
and is the upper bound for any propagation methods.

Learning to rank model. We use RankSVM (Chapelle
2007) to provide the initial ranking functions for the prop-
agation methods. The pairwise constraints used for training
in RankSVM are generated using labels (in the bird species
dataset) or the ratings (in the movie poster dataset). The pa-
rameters in RankSVM are set as follows: the penalty con-
stant C is set to 1, and the two options for Newton’s method,
i.e., the maximum number of linear conjugate gradients is
20, the stopping criterion for conjugate gradients is 10−3.

Parameters. GFHF is nonparametric. For LGC and RFP,
there is a parameter µ that balances the graph smoothness
and overwriting penalty. In LGC, µ is set using cross vali-
dation. In RFP, we set the vector µ with the following val-
ues, 10 at the locations corresponding to strong (trained with
abundant data) ranking functions, 0 at the locations corre-
sponding to unknown (no training data) ranking functions,
and 1 at the locations corresponding to weak (trained with
little data) functions. We will also experimentally show that
our propagation method is not sensitive to the scale of µ.

Evaluation measure. In our evaluation, ranking accuracy
was assessed using a standard measure - normalized dis-
counted cumulative gain (NDCG). We use binary ratings to
calculate NDCG, i.e., rating is 1 if relevant, and 0 otherwise.
To further investigate the properties of inferred ranking func-
tions, since a linear ranking function can be viewed as a vec-
tor in the space, we calculate the cosine similarity between
an inferred ranking function and the corresponding ranking
functions that is fully trained using all data (upper bound).

Experiment 1. Acoustic Retrieval of Bird Species

Figure 2: Song meter data collection locations in the H. J. Andrews Forest.

Datasets and Experimental Settings. The birds dataset
(Briggs et al. 2013) consists of 645 ten-second audio record-
ings collected from the Cascade mountain range of Ore-
gon (as shown in Figure 2). The raw audio signal is con-
verted into a spectrogram (an image representation of the
sound), by dividing it into frames, and applying the FFT to
each frame. To extract features, the spectrogram is divided
into 24 frequency bands, and we then summarize each band
with statistics, including the mean, variance, skewness, kur-
tosis, min, max, and median. Finally, each audio recoding
is represented using a 168-dimensional statistical spectro-
gram descriptor (SSD), which can be viewed as distribution
data. There are 19 species of bird presented in the audio

recordings, such as Brown Creeper, Pacific Wren. Each au-
dio recording is paired with a set of species that are present.
These species labels were obtained by listening to the audio
and looking at spectrograms. Our goal is to learn 19 ranking
functions to retrieve the 19 species of bird. We first construct
a graph of the 19 nodes (species). The affinity matrix S is
constructed by calculating the Hellinger similarity (i.e., one
minus the Hellinger distance) amongst the prototypes (aver-
aged audio spectrogram of a species) of the 19 bird species.
We then propagate ranking functions on the graph.

(a) Average NDCG at top 20 (b) Cosine similarity between inferred
ranking functions and the fully trained
(deemed as the ground truth) functions

(c) Average NDCG w.r.t. different µ

Figure 3: Evaluation on birds dataset (standard deviation is denoted by shade).

Result and discussion. In each trial we randomly select 5
species of birds, and train a strong ranking function for each
of them using adequate training data. The 5 strong ranking
functions are used as the initial set of ranking functions,
and then additional 150 (randomly selected) labeled audio
recordings are gradually added to the training set, which are
used to build new ranking functions, or improve the exist-
ing weak ones. At each step, we infer the unknown or weak
ranking functions using the five graph propagation methods.
The experiment is repeated for 100 times.

The mean (averaged over both the 19 retrieval tasks and
100 random trials) NDCG scores (at rank 20) are reported in
Figure 3(a). We see that both the GFHF and LGC achieve
significantly higher accuracy than Lower bound. This
confirms the motivation and usefulness of ranking function
propagation since it improves the retrieval performance with
no additional training data. It can be observed that our dis-
tribution propagation method significantly outperforms the
competing techniques, and approaches the Upper bound
as the training set increases. Figure 3(b) shows the cosine
similarity between the inferred ranking functions and the
ranking functions that are fully trained with all data (deemed
as the ground truth). The result also verifies the superior per-
formance of our method. This demonstrates the effective-

1837

ness and necessity of the proposed graph diffusion method
since the propagation of distributions differs from traditional
propagation methods that were derived to propagate vectors
of independent labels. By observing the performance com-
parison of our method w.r.t different values of µ shown in
Figure 3(c), we can conclude that our method is not sensi-
tive to the scale of parameter µ, since the ranking accuracy is
about the same even when µ is significantly different (setting
Our-mu=1 denotes µ = 1 for strong ranking functions and
µ = 0.1 for weak ones, Our-mu=10 is ten times bigger).

Experiment 2. Personalized Movie Ranking

Figure 4: Movie posters crawled from the web

Datasets and Experimental Settings. The dataset used
in this experiment is a collection of movie posters,
which are crawled from the web using the links pro-
vided in HetRec2011-MovieLens-2K dataset (Cantador,
Brusilovsky, and Kuflik 2011). Note that the goal of this ex-
periment is not to evaluate our method as a recommender
system, rather just to show the capability of our method in
content-based personalized ranking. The HetRec-2K dataset
contains 855,598 personal ratings on 10,197 movies from
2,113 users. On average, there are 404.921 ratings per user,
and 84.637 ratings per movie. We explore an interesting
scenario of personalized movie ranking – rank movies for
each user based on the movie posters. This is inspired by
a recent online article1, which suggests that movie posters,
as people’s first impression of a movie, are closely corre-
lated to people’s taste of movies. Using the picture URLs
provided in the dataset, we collected 9,893 movie posters
from IMDb website (we will make the movie poster dataset
publicly available soon). We calculate the color histogram
(4× 4× 4 bins), such that each movie poster is represented
by a 64-dimensional vector. According to the definition of
color histogram, a representation of the distribution of colors
in an image, the data can be viewed as distribution data. The
9,893 movie posters we crawled are associated with 835,189
ratings from 2,112 users. Our goal is to build a distinct rank-
ing function for each user. The user affinity matrix S is con-
structed by simply normalizing the co-rating matrix of users,
which consists of the counts that both users rated the same
movies. In our evaluation, the user ratings (ranged from 0.5
to 5) are used to calculate the NDCG scores.

Result and discussion. We select 100 users in each ran-
dom trial, and train a strong ranking function for each of
them using all available ratings. These strong functions are
used as the initial ranking functions to propagate, and then
additional 10,000 randomly selected user ratings are added
to the training data step by step, which are used either to train
unknown ranking functions, or to improve the weak ones. At

1http://www.boredpanda.com/movie-poster-cliches/

each step, we perform ranking functions propagation on the
user graph, and the experiment is repeated for 50 times.

(a) Average NDCG at top 200 (b) Cosine similarity between inferred
ranking functions and the fully trained
(deemed as the ground truth) functions

(c) Average NDCG w.r.t. different µ

Figure 5: Evaluation on movie posters (standard deviation is denoted by shade).

The mean NDCG scores at rank 200, averaged over the
2,112 users and 50 random trials, are reported in Figure 5(a).
It can be observed that the three propagation methods (i.e.,
RFP, GFHF, and LGC) significantly outperform the Lower
bound baseline. This confirms our motivation of ranking
function propagation, as it does increase the ranking ac-
curacy without extra training data. Among the three prop-
agation methods, we see that our distribution propagation
achieves the highest ranking accuracy. The cosine similarity
between the inferred ranking functions and the ground truth
is presented in Figure 5(b), which shows that the ranking
functions learned from our method are closer to the ground
truth than the two competitors. It implies that distribution
propagation differs from typical label propagation, which in
turn demonstrates the necessity of our method when counts
or frequencies are used as features. Figure 5(c) shows that
the ranking performance only changes slightly though µ dif-
fers significantly. This verifies one of our claims that the pro-
posed method is not sensitive to the scale of parameter µ.

Conclusion
In this paper we describe a method to propagate ranking
functions on a graph and present an algorithm to perform
distribution propagation. The method is used to address the
issue caused by limited and imbalanced training data to
propagate thousands of ranking functions on the same set of
data. The proposed propagation approach is centered around
distribution data and allows for the interactions between
neighboring histogram bins. We derive a closed-form solu-
tion for the optimization, which makes our algorithm easy to
implement. The experimental result on real world problems
demonstrates the usefulness of our propagation method.

1838

Acknowledgments
The authors gratefully acknowledge support of this research
from ONR grants N00014-09-1-0712, N00014-11-1-0108
and NSF Grant NSF IIS-0801528.

References
Agueh, M., and Carlier, G. 2011. Barycenters in the
wasserstein space. SIAM Journal on Mathematical Analy-
sis 43(2):904–924.
Applegate, D.; Dasu, T.; Krishnan, S.; and Urbanek, S. 2011.
Unsupervised clustering of multidimensional distributions
using earth mover distance. In Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD ’11, 636–644.
Belkin, M.; Niyogi, P.; and Sindhwani, V. 2006. Manifold
regularization: A geometric framework for learning from la-
beled and unlabeled examples. Journal of Machine Learning
Research 7:2399–2434.
Blum, A., and Chawla, S. 2001. Learning from labeled and
unlabeled data using graph mincuts. In Proceedings of the
Eighteenth International Conference on Machine Learning,
ICML ’01, 19–26.
Bonneel, N.; van de Panne, M.; Paris, S.; and Heidrich, W.
2011. Displacement interpolation using lagrangian mass
transport. ACM Trans. Graph. 30(6):158:1–158:12.
Briggs, F.; Huang, Y.; Raich, R.; Eftaxias, K.; Lei, Z.;
Cukierski, W.; Hadley, S. F.; Hadley, A.; Betts, M.; Fern,
X. Z.; et al. 2013. The 9th annual mlsp competition: New
methods for acoustic classification of multiple simultaneous
bird species in a noisy environment. In Machine Learn-
ing for Signal Processing (MLSP), 2013 IEEE International
Workshop on, 1–8. IEEE.
Burges, C. J. C.; Shaked, T.; Renshaw, E.; Lazier, A.; Deeds,
M.; Hamilton, N.; and Hullender, G. N. 2005. Learning to
rank using gradient descent. In ICML, 89–96.
Cai, D.; Wang, X.; and He, X. 2009. Probabilistic dyadic
data analysis with local and global consistency. In Proceed-
ings of the 26th Annual International Conference on Ma-
chine Learning, ICML ’09, 105–112.
Cantador, I.; Brusilovsky, P.; and Kuflik, T. 2011. 2nd
workshop on information heterogeneity and fusion in rec-
ommender systems (hetrec 2011). In Proceedings of the 5th
ACM conference on Recommender systems, RecSys 2011.
Cao, Z.; Qin, T.; Liu, T.-Y.; Tsai, M.-F.; and Li, H. 2007.
Learning to rank: from pairwise approach to listwise ap-
proach. In Proceedings of the 24th international conference
on Machine learning, ICML ’07, 129–136.
Chapelle, O.; Schölkopf, B.; Zien, A.; et al. 2006. Semi-
supervised learning, volume 2. MIT press Cambridge.
Chapelle, O. 2007. Training a support vector machine in the
primal. Neural Computation 19(5):1155–1178.
Cieslak, D. A.; Hoens, T. R.; Chawla, N. V.; and
Kegelmeyer, W. P. 2012. Hellinger distance decision trees
are robust and skew-insensitive. Data Min. Knowl. Discov.
24(1):136–158.

Cossock, D., and Zhang, T. 2006. Subset ranking using
regression. In COLT, 605–619.
Crammer, K., and Singer, Y. 2001. Pranking with ranking.
In NIPS, 641–647.
Datta, R.; Joshi, D.; Li, J.; and Wang, J. Z. 2008. Image
retrieval: Ideas, influences, and trends of the new age. ACM
Comput. Surv. 40(2):5:1–5:60.
Goldberg, A. B.; Zhu, X.; Singh, A.; Xu, Z.; and Nowak,
R. 2009. Multi-manifold semi-supervised learning. In AIS-
TATS, 169–176.
Hang, L. 2011. A short introduction to learning to
rank. IEICE TRANSACTIONS on Information and Systems
94(10):1854–1862.
Joachims, T. 2002. Optimizing search engines using click-
through data. In Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data
mining, KDD ’02, 133–142.
Lawrence, N. D., and Jordan, M. I. 2005. Semi-supervised
learning via gaussian processes. In Saul, L. K.; Weiss, Y.;
and Bottou, L., eds., Advances in Neural Information Pro-
cessing Systems 17. Cambridge, MA: MIT Press. 753–760.
McCann, R. J. 1997. A convexity principle for interacting
gases. advances in mathematics 128(1):153–179.
Shashua, A., and Levin, A. 2002. Ranking with large margin
principle: Two approaches. In NIPS, 937–944.
Xu, J., and Li, H. 2007. Adarank: a boosting algorithm for
information retrieval. In SIGIR ’07: Proceedings of the 30th
annual international ACM SIGIR conference on Research
and development in information retrieval, 391–398.
Yue, Y.; Finley, T.; Radlinski, F.; and Joachims, T. 2007. A
support vector method for optimizing average precision. In
ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), 271–278.
Zhou, D.; Bousquet, O.; Lal, T. N.; Weston, J.; and
Schölkopf, B. 2003. Learning with local and global con-
sistency. In NIPS.
Zhu, X.; Ghahramani, Z.; and Lafferty, J. D. 2003. Semi-
supervised learning using gaussian fields and harmonic
functions. In ICML, 912–919.
Zhu, X. 2005. Semi-supervised learning literature survey.
Technical Report 1530, Computer Sciences, University of
Wisconsin-Madison.

1839

