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Abstract

Stock movements are essentially driven by new infor-
mation. Market data, financial news, and social senti-
ment are believed to have impacts on stock markets.
To study the correlation between information and stock
movements, previous works typically concatenate the
features of different information sources into one su-
per feature vector. However, such concatenated vec-
tor approaches treat each information source separately
and ignore their interactions. In this article, we model
the multi-faceted investors’ information and their in-
trinsic links with tensors. To identify the nonlinear pat-
terns between stock movements and new information,
we propose a supervised tensor regression learning ap-
proach to investigate the joint impact of different infor-
mation sources on stock markets. Experiments on CSI
100 stocks in the year 2011 show that our approach out-
performs the state-of-the-art trading strategies.

Introduction

Essentially, stock movements are information-driven activi-
ties in which new information affects the beliefs of investors
and causes fluctuations of stock prices. Traditional finance
believes that stock prices are affected by new information
randomly. In particular, a stock price is always driven by
“unemotional” investors to equal the firm’s rational present
value of expected future cash flows (Fama 1965). Stock in-
vestors are constantly updating their beliefs on the future
business value, although they will disagree on the the di-
rection of the company’s business value with new informa-
tion. This will lead to a discrepancy between the actual price
and the intrinsic price which causes the stock to wander
randomly around its intrinsic value. However, in real finan-
cial markets, stock investors are emotional. Empirical stud-
ies have shown that stock prices do not completely follow
random walks (Lo and MacKinlay 1988). Modern behav-
ioral finance studies attribute non-randomness stock move-
ments to investors’ cognitive and emotional biases (DeL.ong
et al. 1990; Nofsinger 2005; Shleifer and Vishny 1997). In
spite of the fact that traditional finance and modern behav-
ioral finance are conflicted in the way of how information
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affects stock markets, they believe that information shapes
stock movements.

Financial information can be roughly categorized into
quantified data and qualitative descriptions of firms. Stock
analysts, whether the technician or the fundamentalist, rely
heavily on the quantified information. In traditional finance,
a number of literature examines the effect of quantified mar-
ket data like firm size, cash flow, book-to-market equity, past
return, on stock movements. For example, Dechow (1994)
shows that accounting earnings and cash flows help measure
the firm performance, as reflected in stock returns. Jegadeesh
and Titman (1993) find that stocks with higher returns in the
previous twelve months tend to have higher future returns.
Chen and Ng (1992) document that there is a stable relations
between stock price dynamics and firm size (ME, stock price
times number of shares) but the strengths of the relationships
change over time. Fama and French (1993) identify three
risk factors in the returns on stocks, i.e., overall market, firm
size, book-to-market equity (BE/ME, the ratio of the book
value of common equity to its market value).

However, the quantified data cannot entirely convey the
limitless variety of firms’ financial standings. Qualitative
information, hidden in the textual descriptions of conven-
tional news and social media, is complementary to quan-
tified data to enrich investors’ information environment,
especially in social media era. Social media including
blogs, tweets/micro-blogs, and discussion boards is updated
rapidly and spreads virally at an unprecedented speed, pro-
viding first-hand information to investors ahead of formal
statistical reports (Luo, Zhang, and Duan 2013). Meanwhile,
the adaption of user engagement in social media, such as
comments, ratings, votes, and so forth, enables vibrant in-
formation creation, sharing, and collaboration among in-
vestors. With such rapid information influx and user in-
teractions, decisions of investors tend to be influenced by
the emotion of peers and the public. It may well lead to
a herd behavior in investment. This is evidenced by the
recent behavior finance studies. For instance, Frank and
Antweiler (2004) extract the bullish and bearish sentiments
of Yahoo! Finance postings, concluding that the effect of
financial discussion boards on stocks is statistically sig-
nificant. Gilbert and Karahalios (2010) report that an in-
crease of anxiety, worry, and fear emotions produces down-



ward pressure on the S&P 500 index. Bollen, Pepe, and
Mao (2011) capture the public mood from tweets to fore-
cast stock movements. Yu, Duan, and Cao (2013) show that
social media has a stronger relationship with firm stock mar-
ket performance than conventional media. Luo, Zhang, and
Duan (2013) study the predictive relationship between social
media and firm equity value, and find that Web blogs and
consumer ratings are the two most significant leading indi-
cators of firm equity value in social media. Li et al. (2014a;
2014b) propose a media-aware quantitative trader capturing
public mood from interactive behaviors of investors in social
media, and study the impact of firm-specific news sentiment
on stocks along with this public mood.

Essentially, the information related with markets is multi-
faceted and multi-relational. The primary sources (modes)
include event-specific, firm-specific, and sentiment informa-
tion. Such complex information, referred to as a mosaic no-
tion of investors’ information environment (Francis, Dou-
glas Hanna, and Philbrick 1997), implies the joint influence
of different information sources on stock movements. The
way to explore such joint impact remains a great challenge
in computational investing, which is critical to understand
the invisible hand of stock markets. The challenge lies in ne-
gotiating the “semantic gap” while mingling these low-level
features with the high-level concepts.

The common strategy in previous studies (Lavrenko et al.
2000; Li et al. 2014a; Mittermayer and Knolmayer 2006;
Schumaker and Chen 2008; 2009b; Schumaker et al. 2012;
Wang, Huang, and Wang 2011; Xu and Zhang 2013; Yu,
Duan, and Cao 2013) is to concatenate features of differ-
ent information sources into one super feature vector, whose
high dimensionalities always cause the problem of “curse
of dimensionality” (Bellman and Dreyfus 1962). More im-
portantly, from “mosaic” perspective, different information
sources are interlaced and interacted to construct the com-
plex investors’ information space. With the concatenated
vector representation, each vector element is assumed to be
independently, and the contextual coocurrence relations be-
tween different information sources are somehow weakened,
even ignored. For example, two positive news articles about
a stock may be textually dissimilar, since nature language
is rich and diverse. Contrastingly, the quantified statistics of
profits, sales, debt levels, and dividends showing a good in-
vesting chance may strengthen the semantic similarities of
different words in these two articles. It is necessary to prop-
agate and reinforce these contextual coocurrence relations
among different information sources to capture the nonlin-
ear patterns between stock movements and new information.

In this article, we employ the algebra of higher-order ten-
sor to model the multi-faceted investors’ information and
their intrinsic links. It provides a generalizable and scalable
framework to analyze the complex investors’ information
on stock movements, in which the multi-faceted factors are
complementary to each other. To identify the nonlinear pat-
terns between stock movements and new information, we
propose a supervised tensor regression learning approach to
investigate the joint impact of different information sources
on stock markets. It provides a powerful methodology for
financial researchers to explore the impact of qualitative in-
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Figure 1: Design Scheme.

formation and quantified data on stock movements.

System Framework

In this study, we implement a tensor-based stock informa-
tion analyzer, dubbed TeSIA, to systematically study the
information impact on stocks. The framework of TeSIA is
sketched in Figure 1. It first represents three types of infor-
mation sources as tensors. Tucker decomposition is then ap-
plied to remove noise and capture intrinsic links of different
modes in these tensors. These transformed information ten-
sors are feed into the predictive model for predicting future
stock movements.

Investors’ Information Modeling

There are various of information factors on stock move-
ments which have been studied extensively before. Tra-
ditional finance mainly focuses on the long-term impact
of firm-specific factors (Cheung and Ng 1992; Dechow
1994; Fama and French 1993; Jegadeesh and Titman 1993),
whereas modern behavioral finance is interested in the short-
term shock of sentimental factors and event-specific fac-
tors (Bollen, Pepe, and Mao 2011; Frank and Antweiler
2004; Gilbert and Karahalios 2010; Schumaker and Chen
2009b; Tetlock, Saar-Tsechansky, and Macskassy 2008). It
is critical to model the complex investors’ information space
of different information sources, and study their joint im-
pact on stocks. In this study, we construct investors’ infor-
mation space in terms of three different types of information
sources, i.e., firm, event, and sentiment. In particular,

o Firm-specific Mode: The stock price reflects the intrin-
sic value of a firm. Investors generally have higher ex-
pectations on healthy companies. Here, we select six key
characteristics of a company to capture its future business
value, each of which shows a predictive ability to some
degree in previous literatures (Fama and French 1993;
Li et al. 2014a; 2014b). That is, stock price, trading
volume, turnover, price-to-earnings (P/E) ratio, price-to-
book (P/B) ratio, and industry category.

e FEvent-specific Mode: Stock investors are constantly up-
dating their beliefs about the direction of the market with
new information, which leads to fluctuations of stock
prices. Recent studies show that news articles play an im-
portant role in short-term stock movements (Fama and
French 1993; Li et al. 2014a). Therefore, we utilize news
articles as the event-specific information factor. Specifi-
cally, each news article is represented as a term vector,
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Figure 2: Investors’ Information via Tensor Representation.
A snapshot of information stream at time ¢ is 3rd-mode data
tensor A; which can be summarized by a core tensor and
three factor matrices via Tucker decomposition.

where each entry is a weighted noun and sentiment word
extracted from the article (Li et al. 2014b).

o Sentiment Mode: With the popularity of social media, it
provides an important platform to share opinions or feel-
ings among investors. In real financial market, irrational
investors tend to be influenced by peers, most likely lead-
ing to a herd behavior in investing (DeLong et al. 1990).
Previous studies put forward an effective way to cap-
ture social sentiment by tracking the changes of emo-
tion words in social media (Bollen, Pepe, and Mao 2011).
Here, we capture social sentiment in terms of the positive
and negative mood of investors as the way proposed by Li
et al. (2014b).

The multiple modes of investors’ information are comple-
mentary in essence, which could interact on each other. In
this article, the investors’ information environment is mod-
eled in the form of tensor streams, a snapshot of investors’
information at time ¢ is represented as order-3 tensor X;.
Essentially, a tensor is a mathematical representation of a
multi-way array. A first-order tensor is a vector, a second-
order tensor is a matrix, and tensors of order three is called
3rd-order tensors. More details of the tensor algebra can be
found in Kolda and Bader (2009). Note that we use x to de-
note a vector, X denote a matrix, and X’ a tensor.

Figure 2 illustrates an example 3rd-order tensor, X; €
RIx12xIs  representing the three-way relations of firm-
specific, event-specific, sentiment information at time t.
Here, I3, I5, and I3 are the dimensions of firm-specific fea-
tures, event-specific features, and sentiment features, respec-
tively. The element values a;, ;, i, of each information snap-
shot at time ¢ are defined as:

e a;, 1,1 denotes features of firm-specific information;
® as ;, o denotes features of event-specific information;
e as 3 ;, denotes features of sentiment information;

e other elements are set to zeros originally.

Thus, investors’ information can be represented by a tensor
stream instead of a vector stream in traditional approaches.
Each order of a tensor represents a subspace of one informa-
tion mode.

Tensor Decomposition & Reconstruction

Once represent investors’ information with tensors, a de-
composition technique is applied to derive latent relation-
ships between different information modes. CP and Tucker
decomposition are the two most popular tensor decompo-
sition methods (Kolda and Bader 2009). In this article, we
apply Tucker decomposition to derive latent relationships
inherent in a tensor. Essentially, Tucker decomposition is
a form of higher-order PCA. It decomposes a tensor into a
core tensor multiplied by a matrix along each mode.
Definition 1 (Tucker Decomposition) Tucker decomposition of
X e RIvXInm yields a core tensor C of specified size R1 X
-+ X Rar and factor matrices U |N_; € RI™*Fm such that
M
X=~C H XmUnm, oY)

m=1

i.e., the reconstruction error e = ||X — C H,Ale X UL || is
minimized. Here, x,,, denotes the mode-m product.

Figure 2 depicts the Tucker decomposition of the third-
order tensor. The third-order tensor X is decomposed as
C x1 Uy xo Uy x3 Us. Here, factor matrices, Uy, Uy, and
Us, describe one distinct facet of the investors’ information,
i.e., firm, event, and sentiment, respectively. The core tensor,
C, indicates the strength of relationships among three facets.
Each information mode is represented by an “order” in ten-
sor, which considers the difference of scale. During the ten-
sor decomposition, the hidden compensations and interac-
tions between different modes are emphasized and strength-
ened. It overcomes the weakness of the concatenated feature
vectors in previous studies which ignores not only the scale
difference of different modes but also their correlations and
interactions. R

After decomposition, we reconstruct a new tensor, X,
which is able to reveal the latent information relationship
of firms, events, sentiment in the form of new entries. The
reconstruction transformation is equivalent to the tensor op-
eration X = C x1 Uy X2 Uy x3 Us with the computational
cost O(N) where N = I; + I, + I5. Let A and A be the
set of tenor entires in X’ and X, respectively. The recon-
structed tensor X' consists of a set of triplets a(i, j, k) € A,
where A C A. Each a(i, j, k) indicates the intrinsic relations
among the information related with firm, event, and senti-
ment. Figure 3 shows a simplified example of this transfor-
mation, which obtains the enhanced knowledge to identify
the interactions and correlations between different informa-
tion modes. The original tensor X € R3*3%5 is decomposed
into one core tensor C € R2%2%2_and three factor matrices
of Uy € R3**2, Uy € R3*2, and Us € R®*2, when we
choose 2 as the reduction size. The reconstructed tensor X
is derived by multiplying the core tensor and three factor
matrices. It can be observed that tensor decomposition and
reconstruction has updated the value for each existing en-
tries indicating its importance and identify some new entries
showing the latent relationships.

Tensor-based Supervised Learning

Predicting stock movements is essentially a supervised
learning problem. In this study, investors’ information is
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Figure 3: Example of Tensor Transformation.

modeled with a tensor stream {X;, Xo,...,Xn}, and the
corresponding stock trend indicator such as stock earning,
index, and price at time 7 is denoted as y;. Our goal is to find
the hidden patterns between X and y;. It can be converted
to a high-dimensional regression problem. In particular, find
a tensor function f(X’) that has at most ¢ deviation from the
actually obtained targets y; for all the training data. That is,
we do not care about errors as long as they are less than ¢, but
will not accept any deviation larger than this. This definition
is analogous to the support vector regression (SVR) (Smola
and Scholkopf 2004). Essentially, SVR is a special case of
our study in which the input data is 1st-order tensor (vector).
In following part, we first explain the proposed supervised
learning algorithm in the form of 2nd-order tensor, and ex-
tended it to higher-order tensor.

Definition 2 (Learning problem) Given a set of training data
{(X1,91), (X2,92), ..., (Xn,yn)}, where 2nd-order tensor (ma-
trix) Xy € R %12 genotes the input, and y; € R is the out-
put associated with Xz, find a 2nd-order tensor mapping function
FX) =u"Xv + b, whereu € R, v € R™2, and b € R, that has
at most € deviation from the actually obtained targets y; for all the
training data, and at the same time the complexity of the model is
as low as possible.

Here, the model complexity is measured by
|lav”|| (Smola and Scholkopf 2004). Instead of limit-
ing the function f(X) actually exists that approximates all
pairs (X, y;) with € deviation, we introduce slack variables
&, & to allow mapping errors. Therefore, we can write this
problem as a convex optimization problem:

1 N
ST+ 03 (6 + €

min  J(u,v,b,&,&) =
Vb€ 6] ( $nti) =
yi— <X,uvl > —b<e+&,
subject to { < X,uv’ > +b—y; < e+ &, @

é-jyé-l > 07

where C'is a positive constant parameter used to control the
tradeoff between the model complexity and the amount up
to which deviations larger than ¢ are tolerated. To solve this
optimization, the key idea is to construct a Lagrange func-
tion from the objective function and the constraints by in-
troducing a dual set of variables. Therefore, we proceed as
follows:

i=1,---,N.
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1 N N N
L=g|w |+ CY (& +&) = D méi = Y &
=1 =1

=1
N
=Y (e + & -y +u"Xv 4 D)
i=1
N
- Z af(e+ & +y —ul'X;vb).
=1

3)
Here, L is the Lagrangian and o, o, 7;, 1 are Lagrange
multipliers. Note that: §|[uv”[|? = £ (v7'v)(u”u). Thus, L
is rewritten as

L*l T T C al * al
=5 (V) (") + Z(gﬁsi)—;mgi

=1
N N
> =D e+ &ty —uTXiv—b) 4)
=1 =1
N
- Zai(f +& -y +u Xy 4b).
=1

It follows from the saddle point condition that the partial
derivatives of L with respect to the variables (u, v, b, &;, &)
have to vanish for optimality. This gives the conditions:

2511 (i — af)Xpv

u= Ty i=1,---,N. )
N *\ gy L'
; i — o) X

V= Zzzl(auTu%)u i=1,---,N. (6

As shown in Equations (5) and (6), u and v are dependent
on each other, and can not be solved independently. There-
fore, we can apply the iterative approach to solve this prob-
lem. In particular, first, letu = (1,...,1)7, x; = XiTu, and
B1 = |[u||?, v can be computed by solving the following
optimization problem:

N
) . 1 *
Jmin J(v.0.6.60) = SAIMP + 0 Y (6 +&)
1058158, 1=1
yi—VTXi—bS5+§i7
subject to ¢ vI'x; + b —y; <e+ ¢,
2620, i=1---,N.

(7

Once v is obtained, let 3> = ||v||2, and X; = X;v. Thus, u
can be obtained by solving the following optimization prob-
lem:

. b g
L n J(u,b,&,&)

N
1 2 *
= 5 52llul +c;(&+&)
yi—uTﬁi—b§5+£iv
subjectto ¢ u’'X; + b —y; < e+ &,
:(75i207 i=1,---,N.

®)



Table 1: Tensor-based Learning Algorithm

Input:  Tensor stream X;|Y ;| € RIv<12xTs
Indicators y;|¥., € R.
Output:  The parameters in tensor function
f(X) =& x1 Wy xa Wy x3 W3 +b,
ie., Wi[3_, € R* and b, and corresponding
slack variables &[N ; € R, &7V, € R.
Step 1:  Set W [3_, equal to random unit vectors;
Step 2: Do steps 3-7 iteratively until convergence;
Step3: Fromm =1to3
Step 4: Set G Jktm = HWkH2
Xi1<i<N = X; H1<k<3 X Wi
Step 5: Obtain W,,, by optimizing
winin J(Wi,0,6,6%) =
1 y1k#m 2
3 12k Bil [ Wl +CZ(§Z+§ )
~Wix;—b < e+ &
s.t. WmXL +b— Yi <e+ €L
51’75120, i:L"',N
Step 6: End
Step 7:  Convergence Checking
Step8: End

Note that optimization problem (7) and (8) can be solved
by a standard SVR algorithm. Any computational method
for SVR can also be used here. This iterative procedure to
update u and v is carried on until the objective function con-
verges.

While Tucker decomposition, the relations of different in-
formation mode (firm, event, sentiment) of a tensor are re-
inforced (vertical compensation). During the iterative opti-
mization, the intrinsic links of different modes are strength-
ened across the timeline (horizontal interaction). This allows
us to study the joint impact of different information modes
on stock movements. With the solution of iterative optimiza-
tion, the learning algorithm in the form of 2nd-order tensor
can be straightly extended to 3rd-order tensor or even the
higher order tensor. The generalized tensor-based regression
learning algorithm is given in Table 1.

Experimental Evaluation

The ultimate goal of this study is to examine the effective-
ness of the proposed tensor-based learning approach to cap-
ture the joint impact of different information modes on stock
movements. In our experiments, we use the stock data gen-
erously provided by Li et al. (2014b). It consists of three
parts:

e Financial News: It contains 124,470 financial news arti-
cles related with 100 companies listed in China Securities
Index (CSI 100).

e Discussion Board: It contains the discussion threads of
CSI100 companies during Jan.1, 2011 and Dec.31, 2011
from two premier financial discussion boards in China,
i.e., Sina.com and EastMoney.com.
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Table 2: Comparison (Vector vs. Tensor)

Method RMSE Direction
SVR 0.6396  57.01%
PCA+SVR 0.6132  58.03%
ISOMAP+SVR 0.6054  58.74%
Our tensor-based approach  0.5818  61.78%

e Stock Data: It contains the high-frequency financial data
during Jan.1, 2011 and Dec.31, 2011. It provides intraday
transaction information including price, volume and time
in the second-level.

In our experiments, we used the data from the first 9
months of 2011 as a training corpus and the last 3 months
of 2011 for testing. We removed several companies from the
available 100 companies due to inconsistencies and abnor-
malities. In our testing period, the upward trend was 46.12%,
the downward trend was 49.53%, and the remaining percent-
age was still. The standard deviation of the stock prices in
this testing period was 27.12. Here, closeness and directional
accuracy are used as the evaluation metrics. Directional ac-
curacy measures the percentage of price forecast with right
directions in the total forecast. Root Mean Squared Error
(RMSE) between the predicted value and the real stock price
is used as the closeness metric.

Time Window of Prediction

There exists a time window to foreseen the direction of
a stock with the release of new information (Chan 2003;
Gidofalvi 2001). A “20-minute” theory shows that an op-
timal outlook time window to sense stock movement is
approximately 20 minutes after introducing new informa-
tion (Gidofalvi 2001; Li et al. 2014a; Schumaker and Chen
2009a). In our study, we also observe the “20-minute” phe-
nomena, and find that the best predictive performance is
achieved while predicting +26-minute future prices after
news releases. This finding indeed agrees with the previous
research that reported the existence of lag time between in-
formation introduction and stock market correction to equi-
librium (LeBaron, Arthur, and Palmer 1999).

Joint Impact of Investors’ Information

Comparing with previous concatenated vector approaches,
the advantage of the proposed tensor-based learning algo-
rithm is able to model the multi-faceted factors and their
intrinsic links of the complex investors’ information. To in-
vestigate the effect of the proposed approach, we compare
our tensor-based approach with the following vector-based
approaches:

e SVR: SVR s directly applied to the original concatenated
vector which consists of firm-specific, event-specific, and
sentiment information features.

e PCA+SVR: PCA is firstly applied to the original con-
catenated vector to reduce the vector dimension, and then
SVR is performed on the dimension-reduced vector.



Table 3: Vertical & Horizontal Compensation

Method RMSE  Direction
Without iterations 0.6111 58.33%
Without Tucker 0.5886  61.15%
Our tensor-based approach  0.5818  61.78%

o ISOMAP+SVR: ISOMAP is firstly applied to the original
concatenated vector to reduce the vector dimension, and
then SVR is performed on the dimension-reduced vector.

Table 2 shows the prediction results of these methods in
terms of RMSE and directional accuracy. The performance
of PCA+SVR is a little better than the classic SVR approach,
since a certain amount of noise has been removed by PCA.
PCA is a statistical procedure that uses an orthogonal trans-
formation to convert a set of observations of possibly corre-
lated variables into a set of values of linearly uncorrelated
variables. Comparing with PCA, ISOMAP targeted for non-
linear information data gains better result than PCA in our
test. It can be observed that our tensor-based approach out-
performs the other three vector-based approaches, with a di-
rectional accuracy improvement of 8.37% and RMSE im-
provement of 9.04% than the classic SVR approach. Such
gains come from the tensor decomposition and iterative op-
timization, which utilize the intrinsic links of different infor-
mation sources for predicting.

Vertical & Horizontal Compensation

To well understand how information of different modes in-
teracts, we explore the power of the vertical compensation
and the horizontal interaction in our proposed approach.
Specifically, Tucker decomposition and reconstruction ver-
tically capture the relations of different information modes
at time t. Whereas, the iterative optimization horizontally
diffuses the interconnections of different modes across the
timeline. Here, we study the variants of the proposed ap-
proach to understand the inner functions:

e Without iterations: the original tensor is decomposed and
reconstructed as a relation-reinforced tensor. Entries of
this new tensor are concatenated into a vector. SVR is ap-
plied for making predictions.

e Without Tucker: the original tensor steam is directly feed
into the tensor-based learning algorithm for prediction
without Tucker decomposition.

Table 3 shows that both vertical and horizontal compen-
sation procedures contribute to the relation enhancement of
different information modes. The horizontal compensation
plays a little more important role than the vertical compensa-
tion. That is, the relations of different investors’ information
modes are interlaced and mingled more efficiently across the
timeline than at a static time point.

Investment Experiments

In this study, we design and implement a tensor-based stock
information analyzer, TeSIA. We compare TeSIA with two
classic trading strategies, i.e., Top-N and simple moving av-
erage (SMA) (James 1968), and one state-of-the-art media-
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aware trader, AZFinText (Schumaker and Chen 2009b). We
set RMB10,000 (approximately USD1,630) as the invest-
ment budget and compare the daily earnings of these ap-
proaches in our 3-month evaluation period, during which the
CSI Index was down by 5.21% from 2,363 to 2,240.

In our experiments, even with the optimal top-30 combi-
nation, a small loss is still experienced for Top-N approach.
Different from the long-term strategy Top-IN, SMA focuses
on short-term transactions. The SMA strategy is triggered
when an actual market stock price crosses through the daily
moving average of the same stock. There is no positive earn-
ings with SMA within the 3-month assessment time. AZFin-
Text (Schumaker and Chen 2009b) is a media-aware trading
system as TeSIA. It applies SVR model to capture the corre-
lation between financial news and stock prices. Comparing
the change of -5.21% in CSI100 and the 103.23% return in
AZFinText, the proposed TeSIA yields a remarkable return
of 235.20% in three months.

Conclusion and Future Work

Fama’s “Efficient Market Hypothesis” (Fama 1965) reveals
that new information shapes stock markets, and paves the
way for his Nobel Prize in 2013. Following Fama’s ap-
proach, linear regression models are generally adopted to
examine the correlation between stocks and information.
With the advent of natural language processing and machine
learning techniques, it allows us to investigate the nonlinear
patterns between information and stock movements. A com-
mon strategy in these approaches is to concatenate the fea-
tures of different information sources into one super vector,
which breaks the intrinsic links between different informa-
tion sources. This work is a pilot study to model the multi-
faceted investors’ information and their intrinsic links to ex-
plore their joint impacts on stocks. The proposed tensor-
based modeling and learning approaches are generalizable
and scalable to incorporate any new information source. It
provides a powerful methodology for financial researchers
to understand the “invisible hand ” of stock markets.

The investment experiment on CSI 100 stocks shows a
promising earning return of the proposed approach in the
year of 2011. It is quite interesting to explore the predic-
tive power of TeSIA in other time windows to check its
robustness. In addition, as the popularity of social media,
the predictability of various kinds of social media including
micro-blogs, wikipedias, and blogs are of great necessity to
be investigated. With these extra information sources, it also
brings a scalability challenge to the proposed approach. The
paralleled SVR processing is a promising way to deal with
the scalability problem (Catanzaro, Sundaram, and Keutzer
2008). However, its effectiveness with the proposed tensor-
based framework is yet to be explored in our feature work.
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