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Abstract

Faced with the problem of characterizing systematic changes
in multivariate time series in an unsupervised manner, we
derive and test two methods of regularizing hidden Markov
models for this task. Regularization on state transitions pro-
vides smooth transitioning among states, such that the se-
quences are split into broad, contiguous segments. Our meth-
ods are compared with a recent hierarchical Dirichlet pro-
cess hidden Markov model (HDP-HMM) and a baseline stan-
dard hidden Markov model, of which the former suffers from
poor performance on moderate-dimensional data and sensi-
tivity to parameter settings, while the latter suffers from rapid
state transitioning, over-segmentation and poor performance
on a segmentation task involving human activity accelerom-
eter data from the UCI Repository. The regularized methods
developed here are able to perfectly characterize change of
behavior in the human activity data for roughly half of the
real-data test cases, with accuracy of 94% and low variation
of information. In contrast to the HDP-HMM, our meth-
ods provide simple, drop-in replacements for standard hidden
Markov model update rules, allowing standard expectation
maximization (EM) algorithms to be used for learning.

Introduction
“Some seek complex solutions to simple problems;
it is better to find simple solutions to complex

problems.” - Soramichi Akiyama

Time series data arise in different areas of science and
technology, describing the behavior of both natural and
man-made systems. These behaviors are often quite com-
plex with uncertainty, which in turn require us to incorpo-
rate sophisticated dynamics and stochastic representations
to model them. Furthermore, these complex behaviors can
change over time due to some external event and/or some
internal systematic change of dynamics/distribution. For ex-
ample, consider the case of monitoring one’s physical activ-
ity via an array of accelerometer body sensors over time. A
certain pattern emerges on the time series of the sensors’
readings while the person is walking; however, this pat-
tern quickly changes to a new one as she begins running.
From the data analysis perspective, it is important to first
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detect these change points as they are quite often indica-
tive of an “interesting” event or an anomaly in the system.
We are also interested in characterizing the new state of the
system (e.g. running vs. walking) which reflects its mode
of operation. Change point detection methods (Kawahara,
Yairi, and Machida 2007; Xie, Huang, and Willett 2013;
Liu et al. 2013; Ray and Tsay 2002) have been proposed
to address the first challenge while Hidden Markov Models
(HMMs) can address both.

One crucial observation in many real-world systems, nat-
ural and man-made, is that the behavioral changes are typ-
ically infrequent; that is, the system takes some (unknown)
time before it changes its behavior to a new modus operandi.
For instance, in our earlier example, it is unlikely for a per-
son to rapidly fluctuate between walking and running, mak-
ing the durations of different activities over time relatively
long and highly variable. We refer to this as the inertial
property, alluding to the physical property of matter such
that it continues along a fixed course unless acted upon by
an external force. Unfortunately, classical HMMs are not
equipped with sufficient mechanisms to capture this prop-
erty and often produce high rates of state transitioning with
subsequent false positives when detecting change points.

Few solutions exist in the literature to address this prob-
lem. In the context of Markov models, Fox et al. (Fox et al.
2011; Willsky et al. 2009) have recently proposed the sticky
hierarchical Dirichlet process hidden Markov model (HDP-
HMM) which uses a Bayesian non-parametric approach with
appropriate priors to promote self-transitioning (or sticki-
ness) for HMMs. Despite its elegant theoretical foundation,
the sticky HDP-HMM is not a practical solution in many
real-world situations. In particular, the performance of the
HDP-HMM tends to degrade as the dimensionality of the
problem increases beyond ten dimensions. Moreover, due
to iterative Gibbs sampling for its learning, the sticky HDP-
HMM can become computationally prohibitive. In practice,
the most significant drawback of the sticky HDP-HMM orig-
inates with its non-parametric Bayesian nature: due to the
existence of many hyperparameters, the search space for ini-
tial tuning is exponentially large and significantly affects the
learning quality for a given task.

In this paper, we propose a regularization-based frame-
work for HMMs, called Inertial hidden Markov models (In-
ertial HMMs), which are biased towards the inertial state-
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transition property. Similar to the sticky HDP-HMM, our
framework is based on theoretically sound foundations, yet
is much simpler and more intuitive than the HDP-HMM.
In particular, our framework has only two parameters for
which we have developed intuitive initialization techniques
that significantly minimize the effort needed for parameter
tuning. Furthermore, as we show later, our proposed meth-
ods in practice boil down to augmented update rules for
standard HMMs. This allows one to easily upgrade exist-
ing HMM libraries to take advantage of our methods, while
still preserving the computational efficiency of the standard
HMM approach. By performing rigorous experiments on
both synthetic and moderate dimensional real datasets, we
show that Inertial HMMs are not only much faster than
the sticky HDP-HMM, but also produce significantly bet-
ter detection, suggesting Inertial HMMs as a more practical
choice in comparison to the current state-of-the-art.

Problem Statement
Let X = {x1, . . . ,xT } denote a d-dimensional multivari-
ate time series, where xt ∈ Rd. Given such a time se-
ries, we seek to segment X along the time axis into seg-
ments, where each segment corresponds to a subsequence
Xi...i+m = {xi, . . . ,xi+m} and maps to a predictive (la-
tent) state z, represented as a one-of-K vector, where |z| =
K and

∑K
i=1 zt,i = 1. For simplicity of notation, let zt = k

denote zt,k = 1 and let Z = {z1, . . . , zT } denote the se-
quence of latent states. Then for all xt mapping to state k,
we require that

Pr(xt+1|X1...t, zt = k) = Pr(xt+1|zt = k)

= Pr(xt′+1|zt′ = k)

= Pr(xt′+1|X1...t′ , zt′ = k).

Thus, the conditional distribution over futures at time t con-
ditioned on being in state k is equal to the distribution over
futures at time t′ conditioned on being in the same state.
Thus, we assume conditional independence given state, and
stationarity of the generative process.

We impose two additional criteria on our models. First,
we seek models with a small number of latent states, K �
T , and second, we desire state transition sequences with the
inertial property, as defined previously, where the transition-
ing of states does not occur too rapidly.

The above desiderata must be externally imposed on our
model, since simply maximizing the likelihood of the data
will result inK = T (i.e., each sample corresponds a unique
state/distribution), and in general we may have rapid transi-
tions among states. For the first desideratum, we choose the
number of states in advance as is typically done for hidden
Markov models (Rabiner 1989). For the second, we directly
alter the probabilistic form of our model to include a param-
eterized regularization that reduces the likelihood of transi-
tioning between different latent states.

Inertial Hidden Markov Models
Hidden Markov models (HMMs) are a class of long-studied
probabilistic models well-suited for sequential data (Rabiner

1989). As a starting point for developing our inertial HMMs,
we consider a standard K-state HMM with Gaussian emis-
sion densities. HMMs trained by expectation maximization
(locally) maximize the likelihood of the data, but typically
do not guarantee slow inertial transitioning among states.
The number of states must be specified in advance, but no
other parameters need to be given, as the remaining param-
eters are all estimated directly from the data.

To accommodate the inertial transition requirement, we
derive two different methods for enforcing state-persistence
in HMMs. Both methods alter the probabilistic form of
the complete data joint likelihood, which results in altered
transition matrix update equations. The resulting update
equations share a related mathematical structure and, as is
shown in the Experiments section, have similar performance
in practice.

We will next describe both methods and provide outlines
of their derivations.

Maximum A Posteriori (MAP) Regularized HMM
Following (Gauvain and Lee 1994), we alter the standard
HMM to include a Dirichlet prior on the transition probabil-
ity matrix, such that transitions out-of-state are penalized by
some regularization factor. A Dirichlet prior on the transi-
tion matrix A, for the jth row, has the form

p(Aj ; η) ∝
K∏
k=1

A
ηjk−1
jk

where the ηjk are free parameters and Ajk is the transition
probability from state j to state k. The posterior joint density
over X and Z becomes

P (X,Z; θ, η) ∝

 K∏
j=1

K∏
k=1

A
ηjk−1
jk

P (X,Z | A; θ)

and the log-likelihood is

`(X,Z; θ, η) ∝
K∑
j=1

K∑
k=1

(ηjk − 1) logAjk + logP (z1; θ)

+
T∑
t=1

logP (xt|zt; θ) +
T∑
t=2

logP (zt|zt−1; θ).

MAP estimation is then used in the M-step of the expecta-
tion maximization (EM) algorithm to update the transition
probability matrix. Maximizing, with appropriate Lagrange
multiplier constraints, we obtain the update equation for the
transition matrix,

Ajk =
(ηjk − 1) +

∑T
t=2 ξ(z(t−1)j , ztk)∑K

i=1(ηji − 1) +
∑K
i=1

∑T
t=2 ξ(z(t−1)j , zti)

(1)

where ξ(z(t−1)j , ztk) = E[z(t−1)jztk].
Given our prior, we can control the probability of self-

transitions among states, but this method requires that we
choose a set of K2 parameters for the Dirichlet prior. Since
we are solely concerned about increasing the probability of
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self-transitions, we can reduce these parameters to a sin-
gle parameter, λ, that governs the amplification of self-
transitions. We therefore define ηjk = 1 when j 6= k and
ηkk = λ ≥ 1 otherwise, and the transition update equation
becomes

Ajk =
(λ− 1)1(j = k) +

∑T
t=2 ξ(z(t−1)j , ztk)

(λ− 1) +
∑K
i=1

∑T
t=2 ξ(z(t−1)j , zti)

(2)

where 1(·) denotes the indicator function.

Inertial Regularization via Pseudo-observations
Alternatively, we can alter the HMM likelihood function to
include a latent binary random variable, V , indicating that
a self-transition was chosen at random from among all tran-
sitions, according to some distribution. Thus, we view the
transitions as being partitioned into two sets, self-transitions
and non-self-transitions, and we draw a member of the self-
transition set according to a Bernoulli distribution governed
by some parameter p. Given a latent state sequence Z, with
transitions chosen according to transition matrix A, we de-
fine p as a function of both Z and A. We would like p to
have two properties: 1) it should increase with increasing∑
k Akk (probability of self-transitions) and 2) it should in-

crease as the number of self-transitions in Z increases. This
will allow us to encourage self-transitions as a simple con-
sequence of maximizing the likelihood of our observations.

We begin with a version of p based on a penalization con-
stant 0 < ε < 1 that scales appropriately with the number
of self-transitions. If we raise ε to a large positive power,
the resulting p will decrease. Thus, we define p as ε raised
to the number of non-self-transitions, M , in the state tran-
sition sequence, so that the probability of selecting a self-
transition increases as M decreases. Using the fact that
M = (T − 1)−

∑T
t=2

∑K
k=1 z(t−1)kztk, we obtain

p = εM = ε
∑T

t=2 1−
∑T

t=2

∑K
k=1 z(t−1)kztk

= ε
∑T

t=2

∑K
k=1 z(t−1)k−

∑T
t=2

∑K
k=1 z(t−1)kztk

=

T∏
t=2

K∏
k=1

εz(t−1)k−z(t−1)kztk . (3)

Since ε is arbitrary, we choose ε = Akk, to allow p to scale
appropriately with increasing probability of self-transition.
We therefore arrive at

p =
T∏
t=2

K∏
k=1

A
z(t−1)k−z(t−1)kztk
kk .

Thus, we define p as a computable function of Z and A.
Defining p in this deterministic manner is equivalent to
choosing the parameter value from a degenerate probabil-
ity distribution that places a single point mass at the value
computed, allowing us to easily obtain a posterior distribu-
tion on V . Furthermore, we see that the function increases
as the number of self-transitions increases, since Akk ≤ 1
for all k, and p will generally increase as

∑
k Akk increases.

Thus, we obtain a parameter p ∈ (0, 1] that satisfies all our

desiderata. With p in hand, we say that V is drawn accord-
ing to the Bernoulli distribution, Bern(p), and we observe
V = 1 (i.e., a member of the self-transition set was chosen).

To gain greater control over the strength of regularization,
let λ be a positive integer and V be an λ-length sequence
of pseudo-observations, drawn i.i.d. according to Bern(p).
Since P (V = 1|Z;A) = p, we have

P (V = 1|Z;A) =

[
T∏
t=2

K∏
k=1

A
z(t−1)k−z(t−1)kztk
kk

]λ
where 1 denotes the all-ones sequence of length λ.

Noting that V is conditionally independent of X given
the latent state sequence Z, we maximize (with respect to
Ajk) the expected (with respect to Z) joint log-density over
X, V, and Z parameterized by θ = {π,A, φ}, which are
the start-state probabilities, state transition matrix and emis-
sion parameters, respectively. Using appropriate Lagrange
multipliers, we obtain the regularized maximum likelihood
estimate for Ajk:

Ajk =
Bj,k,T + 1(j = k)Cj,k,T∑K

i=1Bj,i,T + Cj,j,T
(4)

where 1(·) denotes the indicator function, γ(ztk) = E[ztk]
and

Bj,k,T =

T∑
t=2

ξ(z(t−1)j , ztk),

Cj,k,T = λ

[
T∑
t=2

[γ(z(t−1)k)− ξ(z(t−1)j , ztk)]

]
. (5)

The forward-backward algorithm can then be used for ef-
ficient computation of the γ and ξ values, as in standard
HMMs (Bishop 2007).

Ignoring normalization, we see that

Ajk ∝
{
Bj,k,T + Cj,j,T if j = k

Bj,k,T otherwise.

Examining the Cj,j,T term (i.e., Equation (5)), we see that
λ is a multiplier of additional mass contributions for self-
transitions, where the contributions are the difference be-
tween γ(z(t−1)j) and ξ(z(t−1)j , ztj). These two quantities
represent, respectively, the expectation of being in a state j
at time t − 1 and the expectation of remaining there in the
next time step. The larger λ or the larger the difference be-
tween arriving at a state and remaining there, the greater the
additional mass given to self-transition.

Parameter Modifications
Scale-Free Regularization In Equation 2, the strength
of the regularization diminishes with growing T , so that
asymptotically the regularized estimate and unregularized
estimate become equivalent. While this is desirable in many
contexts, maintaining a consistent strength of inertial regu-
larization becomes important with time series of increasing
length, as is the case with online learning methods. Figure 1
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shows a regularized segmentation of human accelerometer
data (discussed later in the Experiments section), where the
regularization is strong enough to provide good segmenta-
tion. If we then increase the number of data points in each
section by a factor of ten while keeping the same regulariza-
tion parameter setting, we see that the regularization is no
longer strong enough, as is shown in Figure 2. Thus, the λ
parameter is sensitive to the size of the time series.

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

hidden state 1
hidden state 2
hidden state 3

Figure 1: Human activities accelerometer data, short sequence.
Vertical partitions correspond to changes of state.

Figure 2: The long sequence human activities accelerometer data
using regularization parameter from short sequence.

We desire models where the regularization strength is
scale-free, having roughly the same strength regardless of
how the time series grows. To achieve this, we define the
λ parameter to scale with the number of transitions, namely
λ = (T − 1)ζ , and our scale-free update equation becomes

Ajk =
((T − 1)ζ − 1)1(j = k) +

∑T
t=2 ξ(z(t−1)j , ztk)

((T − 1)ζ − 1) +
∑K
i=1

∑T
t=2 ξ(z(t−1)j , zti)

.

(6)

This preserves the effect of regularization as T increases,
and ζ becomes our new regularization parameter, controlling
the strength of the regularization. For consistency, we also
re-parameterize Equation (5) using λ = (T − 1)ζ .

Towards Parameter-Free Regularization Although our
methods require specifying the strength of regularization in
advance, we can often avoid this requirement. For example,
cross-validation provides a robust method for automated pa-
rameter selection when labeled data is available. Further-
more, even in the absence of labeled data all hope is not
lost; if one can make the assumption that most of the seg-
ment lengths are of roughly the same order-of-magnitude
scale then automatic tuning of the regularization parameter
remains possible, as follows.

We first define a range of possible regularization param-
eter values (such as λ ∈ [0, 75]), and perform a search

on this interval for a value that gives sufficient regulariza-
tion. Sufficient regularization is defined with respect to the
Gini ratio (Gini 1936; Wikipedia 2014), which is a mea-
sure of statistical dispersion often used to quantify income
inequality. For a collection of observed segment lengths
L = {l1, . . . , lm}, given in ascending order, the Gini ratio is
estimated by

G(L) = 1− 2

m− 1

(
m−

∑m
i=1 ili∑m
i=1 li

)
.

We assume that the true segmentation has a Gini ratio less
than one-half, which corresponds to having more equality
among segment lengths than not. One can perform a binary
search on the search interval to find the smallest ζ parameter
for which the Gini ratio is at least one-half. This increases
the time complexity by a factor of O(log2(R/ε)), where R
is the range of the parameter space and ε is the stopping
precision for the binary search.

Experiments
We perform two segmentation tasks on synthetic and real
multivariate time series data, using our scale- and parameter-
free regularized inertial HMMs. For comparison, we present
the results of applying a standard K-state hidden Markov
model as well as the sticky HDP-HMM of (Fox et al. 2011).
We performed all tasks in an unsupervised manner, with
state labels being used only for evaluation.

Datasets
The first (synthetic) multivariate dataset was generated using
a two-state HMM with 3D Gaussian emissions, with transi-
tion matrix

A =

(
0.9995 0.0005
0.0005 0.9995

)
,

equal start probabilities and emission parameters µ1 =
(−1,−1,−1)>, µ2 = (1, 1, 1)>, Σ1 = Σ2 = diag(3). Us-
ing this model, we generated one hundred time series con-
sisting of ten-thousand time points each. Figure 3 shows an
example time series from this synthetic dataset.

The second dataset was generated from real-world forty-
five dimensional human accelerometer data, recorded for
users performing five different activities, namely, playing
basketball, rowing, jumping, ascending stairs and walking
in a parking lot (Altun, Barshan, and Tunçel 2010). The
data were recorded from a single subject using five Xsens
MTx™ units attached to the torso, arms and legs. Each unit
had nine sensors, which recorded accelerometer (X,Y, Z)
data, gyroscope (X,Y, Z) data and magnetometer (X,Y, Z)
data, for a total of forty-five signals at each time point.

We generated one hundred multivariate time series from
the underlying dataset, with varying activities (latent states)
and varying number of segments. To generate these sets,
we first uniformly chose the number of segments, between
two and twenty. Then, for each segment, we chose an ac-
tivity uniformly at random from among the five possible,
and selected a uniformly random segment length proportion.
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The selected number of corresponding time points were ex-
tracted from the activity, rescaled to zero mean and unit vari-
ance, and appended to the output sequence. The final output
sequence was truncated to ten thousand time points, or dis-
carded if the sequence contained fewer than ten thousand
points or fewer than two distinct activities. Additionally,
prospective time series were rejected if they caused numer-
ical instability issues for the algorithms tested. The process
was repeated to generate one hundred such multivariate time
series of ten thousand time ticks each, with varying number
of segments, activities and segment lengths. An example
data sequence is shown in Figure 4 and the distribution of
the time series according to number of activities and seg-
ments is shown in Figure 5.
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Figure 3: Synthetic data example. Generated from two-state
HMM with 3D Gaussian emissions and strong self-transitions.
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Figure 4: Human activities accelerometer data. Three state, 45-
dimensional.
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Figure 5: Distribution of Accelerometer Time Series Data.

Experimental Methodology
We compared performance of four methods on the two
datasets described in the previous section: a standard K-
state hidden Markov model, the sticky HDP-HMM and both
inertial HMM variants. All HMMs were equipped with
Gaussian emission models with full covariance matrices.
The task was treated as a multi-class classification prob-
lem, measuring the minimum zero-one loss under all possi-
ble permutations of output labels, to accommodate permuted

mappings of the true labels. We measured the normalized
variation of information (VOI) (Meilă 2003) between the
predicted state sequence and true state sequence, which is
an information metric capturing the distance between two
partitionings of a sequence. We also considered the ratio of
predicted number of segments to true number of segments
(SNR), which gives a sense of whether a method over- or
under-segments data, and the absolute segment number ra-
tio (ASNR), which is defined as

ASNR = max(St, Sp)/min(St, Sp),

where St is the true number of segments in the sequence and
Sp is the predicted number of segments, and quantifies how
much a segmentation method diverges from the ground truth
in terms of relative factor of segments. Lastly, we tracked
the number of segments difference (SND) between the pre-
dicted segmentation and true segmentation and how many
segmentations we done perfectly (Per.), giving the correct
states at all correct positions.

Parameter selection for the inertial HMM methods was
done using the automated parameter selection procedure de-
scribed in the Parameter Modifications section. For faster
evaluation, we ran the automated parameter selection pro-
cess on ten randomly drawn examples, averaged the final ζ
parameter value, and used the fixed value for all trials. The
final ζ parameters are shown in Tables 1 and 2.

To evaluate the sticky HDP-HMM, we used the publicly
available HDP-HMM toolbox for MATLAB, with default
settings for the priors (Fox and Sudderth 2009). The Gaus-
sian emission model with normal inverse Wishart (NIW)
prior was used, and the truncation level L for each example
was set to the true number of states, in fairness for compar-
ing with the HMM methods developed here, which are also
given the true number of states. The “stickiness” κ parame-
ter was chosen in a data-driven manner by testing values of
κ = 0.001, 0.01, 0.1, 1, 5, 10, 50, 100, 250, 500, 750 and
1000 for best performance over ten randomly selected exam-
ples each. The mean performance of the 500th Gibbs sample
of ten trials was then taken for each parameter setting, and
the best κ was empirically chosen. For the synthetic dataset,
a final value of κ = 10 was chosen by this method. For the
real human accelerometer data, a value of κ = 100 provided
the best accuracy and relatively strong variation of informa-
tion performance. These values were used for evaluation on
each entire dataset, respectively.

To evaluate the HDP-HMM, we performed five trials on
each example in the test dataset, measuring performance of
the 1000th Gibbs sample for each trial. The mean perfor-
mance was then computed for the trials, and the average of
all one hundred test examples was recorded.

Synthetic Data Results
As seen in Table 1, the MAP regularized HMM had the
strongest performance, with top scores on all metrics. The
inertial pseudo-observation HMM also had strong perfor-
mance, with extremely high accuracy and low variation
of information. The standard HMM suffered from over-
segmentation of the data (as reflected in the high SNR,
ASNR, and SND scores), while the sticky HDP-HMM
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Figure 6: Example segmentation of human activities accelerome-
ter data using inertial (MAP) HMM. Only first dimension shown.

Table 1: Results from quantitative evaluation on 3D synthetic data.
Statistical significance is computed with respect to MAP results.

Method Acc. SNR ASNR SND VOI Per.
HDP-HMM (κ = 10) 0.85* 0.59* 3.50* 2.79* 0.56* 0/100
Standard HMM 0.87* 172.20* 172.20* 765.91* 0.62* 0/100
MAP HMM (ζ = 2.3) 0.99 0.96 1.13 0.51 0.07 2/100
PsO HMM (ζ = 8.2) 0.99 0.87‡ 1.43‡ 1.15* 0.14† 1/100
Acc. = Average Accuracy (value of 1.0 is best)
SNR = Average Segment Number Ratio (value of 1.0 is best)
ASNR = Average Absolute Segment Number Ratio (value of 1.0 is best)
SND = Average Segment Number Difference (value of 0.0 is best)
VOI = Average Normalized Variation of Information (value of 0.0 is best)
Per. = Total number of perfect/correct segmentations

paired t-test: † < α = .05, ‡ < α = .01, * < α = .001

tended to under-segment the data. All methods were able
to achieve fairly high accuracy.

Human Activities Accelerometer Data Results

Table 2: Results from real 45D human accelerometer data.
Method Acc. SNR ASNR SND VOI Per.
HDP-HMM (κ = 100) 0.60* 0.75‡ 4.68* 5.03‡ 0.95* 0/100*
Standard HMM 0.79* 134.59* 134.59* 584.16* 0.38* 9/100*
MAP HMM (ζ = 33.5) 0.94 1.28 1.43 2.62 0.14 48/100
PsO HMM (ζ = 49.0) 0.94 1.03† 1.29 1.29 0.15 48/100

paired t-test: † < α = .05, ‡ < α = .01, * < α = .001

Results from the human accelerometer dataset are shown
in Table 2. Both the MAP HMM and inertial pseudo-
observation HMM achieved large gains in performance over
the standard HMM model, with average accuracy of 94%.
Furthermore, the number of segments was close to cor-
rect on average, with a value near one in both the absolute
(ASNR) and simple (SNR) ratio case. The average normal-
ized variation of information (VOI) was low for both the
MAP and pseudo-observation methods. Figure 6 shows an
example segmentation for the MAP HMM, displaying a sin-
gle dimension of the multivariate time series for clarity.

In comparison, the standard hidden Markov model per-
formed poorly, strongly over-segmenting the sequences in
many cases. Even more striking was the improvement over
the sticky HDP-HMM, which had an average normalized
variation of information near 1 (i.e., no correlation between
the predicted and the true segment labels). The method
tended to under-segment the data, often collapsing to a sin-
gle uniform output state, reflected in the SNR having a value
below one, and may struggle with moderate dimensional

data, as related by Fox and Sudderth through private corre-
spondence. Moreover, the poor performance on this dataset
likely results from a strong dependence on Bayesian tuning
parameters. The sticky HDP-HMM suffers from slow mix-
ing rates as the dimensionality increases, and computation
time explodes, being roughly cubic in the dimension. As a
result, the one hundred test examples took several days of
computation time to complete, whereas the inertial HMM
methods took a few hours.

Discussion
Our results demonstrate the effectiveness of inertial regular-
ization on HMMs for behavior change modeling in multi-
variate time series. Although derived in two independent
ways, the MAP regularized and pseudo-observation inertial
regularized HMM converge on a similar maximum likeli-
hood update equation, and thus, had similar performance.

The human activity task highlighted an issue with using
standard HMMs for segmentation of time series with infre-
quent state changes, namely, over-segmentation. Incorpo-
rating regularization for state transitions provides a simple
solution to this problem. Since our methods rely on chang-
ing a single update equation for a standard HMM learning
method, they can be easily incorporated into HMM learning
libraries with minimal effort. This ease-of-implementation
gives a strong advantage over existing persistent-state HMM
methods, such as the sticky HDP-HMM framework.

While the sticky HDP-HMM performed moderately well
on the low-dimensional synthetic dataset, the default pa-
rameters produced poor performance on the real-world ac-
celerometer data. It remains possible that different set-
tings of hyperparameters may improve performance, but
the cost of a combinatorial search through hyperparameter
space combined with lengthy computation time prohibits an
exhaustive exploration. The results, at minimum, show a
strong dependence on hyperparameter settings for accept-
able performance. In contrast, the inertial HMM methods
make use of a simple heuristic for automatically selecting
the strength parameter ζ, which resulted in excellent per-
formance on both datasets without the need for hand-tuning
several hyperparameters. Although the sticky HDP-HMM
has poor performance on the two segmentation tasks, there
exist tasks for which it may be a better choice (e.g., when
the correct number of states is unknown).

Related Work
Hidden Markov models for sequential data have enjoyed a
long history, gaining popularity as a result of the widely
influential tutorial by Rabiner (Rabiner 1989). Specific to
the work presented here, the mechanics of applying regular-
ization priors to HMMs was detailed in (Gauvain and Lee
1994), for both transition and emission parameters, with the
goal of solving estimation issues arising from sparse data.
Our work introduces the use of regularization for enforcing
state persistence, an application not considered in the orig-
inal. Neukirchen and Rigoll (Neukirchen and Rigoll 1999)
studied the use of regularization in HMMs for reducing pa-
rameter overfitting of emission distributions due to insuffi-
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cient training data, again without an emphasis on inertial
transitioning between states. Similarly, Johnson (Johnson
2007) proposed using Dirichlet priors on multinomial hid-
den Markov models as a means of enforcing sparse emission
distributions.

Fox et al. (Fox et al. 2011) developed a Bayesian sticky
HMM to provide inertial state persistence. They presented a
method capable of learning a hidden Markov model without
specifying the number of states or regularization-strength
beforehand, using a hierarchical Dirichlet process and trun-
cated Gibbs sampling. As discussed, their method requires
a more complex approach to learning the model and spec-
ification of several hyperparameters for the Bayesian pri-
ors along with a truncation limit. In contrast, our models
only require the specification of two parameters, K and ζ,
whereas the sticky HDP-HMM requires analogous trunca-
tion level L and κ parameters to be chosen, in addition to
the hyperparameters on the model priors.

Conclusions
For modeling changes in multivariate time series data, we in-
troduce two modified forms of hidden Markov models that
effectively enforce state persistence. Although the derived
methods are simple, they perform well and are computa-
tionally tractable. We have shown that inertial models are
easily implemented, add almost no additional computation
cost, run efficiently, and work well on data with moderate
dimensions. Their simplicity is thus a feature and not a bug.

Furthermore, a simple method was developed for auto-
mated selection of each regularization parameter. Our exper-
iments on synthetic and real-world data show the effective-
ness of inertial HMMs, giving large improvements in per-
formance over standard HMMs and the sticky HDP-HMM.

The simplicity of our models pave the way for natural ex-
tensions, such as incremental parameter learning and chang-
ing the form of the class conditional emission distributions
to incorporate internal dynamics. Such extensions are the
focus of future work.
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study on classifying human activities with miniature inertial
and magnetic sensors. Pattern Recogn. 43(10):3605–3620.
Bishop, C. M. 2007. Pattern Recognition and Machine
Learning. Springer. 616–625.

Fox, E. B., and Sudderth, E. B. 2009. HDP-
HMM Toolbox. https://www.stat.washington.edu/∼ebfox/
software.html. [Online; accessed 20-July-2014].
Fox, E. B.; Sudderth, E. B.; Jordan, M. I.; Willsky, A. S.;
et al. 2011. A sticky HDP-HMM with application to speaker
diarization. The Annals of Applied Statistics 5(2A):1020–
1056.
Gauvain, J.-l., and Lee, C.-h. 1994. Maximum A Posteriori
Estimation for Multivariate Gaussian Mixture Observations
of Markov Chains. IEEE Transactions on Speech and Audio
Processing 2:291–298.
Gini, C. 1936. On the measure of concentration with spe-
cial reference to income and statistics. In Colorado College
Publication, number 208 in General Series, 73–79.
Johnson, M. 2007. Why doesn’t EM find good HMM POS-
taggers. In EMNLP, 296–305.
Kawahara, Y.; Yairi, T.; and Machida, K. 2007. Change-
point detection in time-series data based on subspace identi-
fication. In Data Mining, 2007. ICDM 2007. Seventh IEEE
International Conference on, 559–564. IEEE.
Liu, S.; Yamada, M.; Collier, N.; and Sugiyama, M.
2013. Change-point detection in time-series data by relative
density-ratio estimation. Neural Networks 43:72–83.
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