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Abstract

Matching and merging data from conflicting sources is the
bread and butter of data integration, which drives search ver-
ticals, e-commerce comparison sites and cyber intelligence.
Schema matching lifts data integration—traditionally focused
on well-structured data—to highly heterogeneous sources.
While schema matching has enjoyed significant success in
matching data attributes, inconsistencies can exist at a deeper
level, making full integration difficult or impossible. We pro-
pose a more fine-grained approach that focuses on correspon-
dences between the values of attributes across data sources.
Since the semantics of attribute values derive from their use
and co-occurrence, we argue for the suitability of canoni-
cal correlation analysis (CCA) and its variants. We demon-
strate the superior statistical and computational performance
of multiple sparse CCA compared to a suite of baseline algo-
rithms, on two datasets which we are releasing to stimulate
further research. Our crowd-annotated data covers both cases
that are relatively easy for humans to supply ground-truth,
and that are inherently difficult for human computation.

Introduction
Data integration has enjoyed a remarkable level of attention
from the academic communities in databases (entity reso-
lution, noisy joins), IR (information extraction), machine
learning & statistics (record linkage), NLP (co-reference
resolution), that is matched only by its real-world impact.
Starting mid-20th century in statistics, the earliest literature
in the area sought to integrate official statistics in health
and census data (Dunn 1946). While early database ap-
plications helped combine customer records, data integra-
tion has seen renewed focus thanks to routine crawls of
the deep web, sharing of data by businesses, and open-data
initiatives. These modern applications have placed new re-
quirements on data integration, such as scalability to large
sources (both in number of records and attributes), to many
sources, to sources with heterogeneous schemas, and data
that is semi-structured or unstructured altogether. Schema
matching (Rahm and Bernstein 2001; Bernstein, Madhavan,
and Rahm 2011) was born out of the need to align source
schemas—the set of attributes of a dataset. Where schema
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Figure 1: Depictions of how attribute-value matching fits
within (a) data integration and (b) data cleaning.

matching proposes to normalize source structure at the at-
tribute level, say identifying course duration and time in
the Stanford and Berkeley catalogs, sub-attribute level dif-
ferences can remain, e.g., not matching Autumn quarter
and Fall semester. It is data cleaning at this important
attribute-value level that we address in this paper.

Attribute-value matching fits naturally as a stage within
two common scenarios shown in Figure 1. In data inte-
gration the stage can make use of partial-matchings of
records (Köpcke, Thor, and Rahm 2010; Köpcke and Rahm
2010; Winkler 2006), and provides the normalization re-
quired to complete record merging (Zhao et al. 2012). It
can also run subsequent to instance-based schema match-
ing (Rahm and Bernstein 2001; Bernstein, Madhavan, and
Rahm 2011), as a fellow instance-based method. In both
settings, attribute-value matching can improve integration
quality. It also endows immediate benefit: we may wish to
surface for example genres when browsing movies in an
integrated catalog (e.g., streaming on the Xbox); or enable
faceted search over many sellers (e.g., Amazon.com), or a
product comparison website (e.g., Google Shopping).

We explore a suite of IR- and statistics-based approaches
on real-world data, concluding multiple sparse canonical
correlation analysis (multiple sparse CCA) to be superior
both in terms of matching quality and (surprisingly) run-
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time. Machine learning has previously enjoyed applications
in many of the stages of data integration, most significantly
in combining attribute-level scores when comparing records
in record matching (Köpcke and Rahm 2010), and in com-
bining individual schema matchers (Rahm and Bernstein
2001; Bernstein, Madhavan, and Rahm 2011). Matching ap-
proaches are typically combinatorial in nature and can make
heavy use of linguistic similarities. By contrast multiple
sparse CCA directly optimizes what we view as key to good
attribute-value mappings based on instance frequencies.

Contributions This paper makes four main contributions

• We demonstrate that multiple sparse CCA effectively
solves a variation of schema matching or ontology match-
ing for merging unnormalized attributes: extensive experi-
ments show the superiority of CCA over standard IR tech-
niques; the improvement is most striking under multiple
sources, where CCA has better quality and runtime;

• We explore the difficulty of crowd-based matching: while
problems exist that are crowd-sourceable, human compu-
tation is inappropriate for cases where attribute semantics
come from subtle term usage not linguistic similarity;

• To the best of our knowledge, ours is the first application
of CCA in database research; and due to the application’s
importance and the fact that precursor stages in the inte-
gration pipeline readily yield parallel datasets, we propose
that this problem become a primary application for ongo-
ing research into CCA-type algorithms; and

• To foster further research on this problem, we are releas-
ing with this paper two new manually-labeled datasets1,
constructed by multiple web crawls and crowd-sourced
annotation.

Related Work
Our problem resembles schema matching (Rahm and Bern-
stein 2001; Bernstein, Madhavan, and Rahm 2011) and
closely-related ontology matching (Shvaiko and Euzenat
2013), which focus on aligning columns or attributes of
data sources but not typically the values within. Like our
attribute-value matching, schema matching can be instance-
based so that attributes with substantially overlapping values
are matched. We discuss as future work, how our approach
could be used for schema matching by aligning columns
(and simultaneously their values).

The data integration pipeline often ends with record
matching (Köpcke and Rahm 2010), also known as record
linkage in statistics (Winkler 2006) which can be across
multiple sources (Sadinle, Hall, and Fienberg 2011). Partial
record-matches seed our approaches with parallel datasets
from which to mine attribute-value correspondences. Record
merging or truth discovery follows record matching. In our
recent VLDB work, Zhao et al. (2012) proposed a Bayesian-
statistics merging process that runs after record matching
and assumes attribute-values have been somehow normal-
ized. This paper addresses their assumption, filling in an im-
portant piece of the data integration puzzle.

1Datasets at http://people.eng.unimelb.edu.au/brubinstein/data

Our main approach is based on canonical correlation anal-
ysis (CCA) which was first proposed by Hotelling (1936) for
two sources. Later in their dissertation, Kettenring (1971)
proposed a generalization to multiple sources. While CCA
is defined for linear maps from parallel feature spaces to la-
tent semantic space, non-linear transformations are possible
via kernel CCA (Lai and Fyfe 2000). See (Hardoon, Szed-
mak, and Shawe-Taylor 2004) for a good overview. Sparse
CCA was first proposed (Hardoon and Shawe-Taylor 2011)
then refined (Witten, Tibshirani, and Hastie 2009) for effi-
cient implementation. We make use of many of these im-
provements to CCA here.

Supervised classifiers have enjoyed huge successes in
data integration (particularly scoring & merging cf. Fig-
ure 1.a) and schema matching (cf. Figure 1.b) for com-
bining hybrid matchers. To the best of our knowledge
ours is the first application CCA in databases. And while
CCA applies to machine translation (Vinokourov, Cristian-
ini, and Shawe-Taylor 2002), multi-modal content-based re-
trieval (Hardoon, Szedmak, and Shawe-Taylor 2004) and
music IR (Torres et al. 2007), this paper shows a particu-
larly compelling application of CCA with natural sources of
parallel datasets.

The Attribute-Value Matching Problem
Attribute-value matching exists naturally within data pro-
cessing pipelines (cf. Figure 1; details below). Its role is to
normalize columns beyond the traditional focus of schema
matching which is to match columns. Going deeper, we wish
to match the values expressed within columns.

Definition 1. Consider sources 1, . . . , k which could be
databases, tables, crawled datasets, etc., each with a cor-
responding attribute or column. If the domains of these
columns are denoted D1, . . . , Dk respectively then the goal
of attribute-value matching is to discover a relation R ⊂∏k

i=1 2
Di that represents a correspondence between sets of

values. Properties of ideal matchings are given below.

Example 1. In integrating IMDB and Yahoo! Movies we
discover that both sources have genre columns that clearly
correspond: their domains share many elements. Despite
this their domains are not identical in size or in elements.
The output of attribute-value matching would identify corre-
spondences including

IMDB Yahoo! Movies
{Action, Adventure} {ActionAdventure}
{Documentary} {Special Interest}
. . . . . .

In most data integration (cf. Figure 1.a) applications some
attributes are not used for matching records, due to inconsis-
tencies (Köpcke and Rahm 2010). For example, after match-
ing movie records on movie title and release year, Zhao et
al. (2012) merge directors across matched movie records by
taking a consensus of weighted votes. This assumes incon-
sistent directors for individual matching movies, but funda-
mentally corresponding director across domains. This is of-
ten not the case with genres which can vary in how the genre
concept is expressed in each source’s genre domain (see
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above example, and results below). Attribute-value match-
ing after the record matching stage would lead to successful
merging of records on an attribute like genre.

Attribute-value matching can be of benefit outside a full
data integration pipeline. When normalizing source struc-
ture (cf. Figure 1.b), schema matching is first run to align at-
tributes/columns. Since this stage works well with instance-
based methods (Rahm and Bernstein 2001) which use po-
tentially matching records to inform similarity of columns,
it is natural to consider also an instance-based approach to
matching the domains within columns.

These two use cases motivate matching attribute values
via an instance-based approach.

Main Assumption. A partial matching of records between
sources is available, based on columns/attributes that have
substantially overlapping domains.

An example is title and release year in movies, which
have closely-matching domains. After matching on these,
we may wish to merge director, genre and others. Both
pipelines of Figure 1 indicate readily-available sources of
matched records. An ideal attribute-value matching has:

• Co-occurence. A good matching R is one supported by
significant co-occurrence in matched records.

• Multi-valued. While in some applications a 1-to-1 con-
straint may apply, in general we are interested in matching
multiple values from one source to another at-a-time.

• Sparsity. Correspondences in the matching R should be
sparse: small sets of values should be mapped, since we
expect key properties of an entity to be expressed by few
terms, no matter the form of expression. A soft limit exists
on the multiplicity of the previous property.

• Transitivity. In the event that R matches values A1, B1

in sources A,B then A1, C1 in sources A,C, it follows
that B1, C1 also match, and it is preferable that the triplet
is matched altogether. This is a consistency constraint.

Approach
Definition 1 and our ideal properties suggest an instance-
based approach. After building up to a variant of CCA for
this problem, we discuss adaptations to the approach for ap-
plications in practice.

Canonical Correlation Analysis (CCA)
The key property of co-occurrence states that attribute-
values should be matched if they are used by many matched
records. Restricting to the two-source case, a natural sta-
tistical quantification is correlation. Given the sources have
unique views on the attribute, we must transform these views
into one space in which correlations can be made.

We take linear transformations of the data before comput-
ing correlations as follows. Let X1,X2 be n×|D1|, n×|D2|
dimensional matrices representing n matched record pairs
in rows, and the attribute values embedded in columns—
known as a paired dataset. Then we seek projection di-
rections w1 ∈ R|D1|,w2 ∈ R|D2| such that projected on

w1,w2 respectively, X1,X2 have high correlation:

max
w1,w2

cov (X1w1,X2w2)√
var (X1w1) var (X2w2)

. (1)

Example 2. If two genre attributes are to be mapped, these
would be embedded by bag-of-words. Each movie embeds
into a row of zeros, with ones only where a genre describes
the movie. A projection direction wi stores a mixture of syn-
tactic genres appearing in source i that together represent
a semantically-meaningful genre. For example (0.3, 0.2, 0)
might mean romantic (0.3) and comedy (0.2) but not hor-
ror (0.0). The projection Xiwi is a vector in Rn reflect-
ing to what extent each movie is described by the semantic
genre/mixture of source-specific genre tags. If w1,w2 reflect
the same concepts, then records should match these concepts
in both sources simultaneously, and not match simultane-
ously, leading to high correlation.

We can pose the simultaneous optimization for all p =
min{rank(X1), rank(X2)} projection vectors, by rewrit-
ing CCA in terms of the distance between projected data
matrices as measured by the Frobenius norm. If the data ma-
trices are first column centered, with Cij denoting the co-
variance matrices between Xi,Xj , we arrive at (Kettenring
1971; Gifi 1990)

min
W1,W2

‖X1W1 −X2W2‖F (2)

s.t. W′
mCmmWm = I (3)

w
′i
mCmlw

j
l = 0 ,

where m 6= l = 1, . . . , 2 and i 6= j = 1, . . . , p, the objec-
tive penalizes distance between the data projected into latent
semantic space, with a constraint for orthogonality of solu-
tions, and a constraint fixing denominators after noting that
the quotient in (1) is invariant to scaling of the projection
vectors. This convex program can be solved efficiently as
a generalized eigenvalue problem, can be regularized, dual-
ized and kernelized (Shawe-Taylor and Cristianini 2004).

Multiple CCA
To generalize CCA to multiple sources, it is not enough to
run CCA on each pair of sources individually, as the result-
ing matchings are likely to violate the transitivity property. It
is a simple matter to generalize the distance form of CCA (3)
to k > 2 sources—see (Hardoon, Szedmak, and Shawe-
Taylor 2004) for details:

min
W1,...,Wk

k∑
l,m=1

‖XlWl −XmWm‖F

s.t. W′
mCmmWm = I

w
′i
mCmlw

j
l = 0

where m 6= l = 1, . . . , k and i 6= j = 1, . . . , p. This is
a form of transfer or multi-task learning: matching one pair
constrains the matching of others, and will often lead to im-
proved accuracy over sequential bisource approaches.
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Algorithm 1 OneVsAll CCA post-processing
Require: unmatched value v from source i?

1: Phase 1:
2: for record r = 1 to n do
3: if Xrv

i? 6= 1 then set Xru
i? = 1 for all u 6= v;

4: Run CCA;
5: if high eigenvalue matches identified then return;
6: Phase 2:
7: for record r = 1 to n do
8: if Xrv

i? 6= 1 then set Xru
i? = 1 for all u 6= v;

9: if Xrv
i? = 1 then set Xru

i? = 0 for all u 6= v;
10: Run CCA;
11: if high eigenvalue matches identified then return;
12: return no match found;

Sparse CCA
Multiple CCA does not yield sparse solutions. Indeed if the
attribute is not multi-valued but rather single-valued—each
movie is only ever tagged with one genre—the CCA solution
can be degenerate. Direction (λ, . . . , λ) produces projection
λ for every record no matter the active genre, and maximizes
correlation. Standard IR baselines explored below are only
natural fits for extreme sparsity: relations on singletons.

Instead our sparsity property leads us to employ sparsity-
yielding techniques related to the lasso. We follow the ap-
proach of Witten, Tibshirani, and Hastie (2009) which is to
introduce L1 penalties on the projection directions and to
treat the self-covariance matrices as identity matrices (Du-
doit, Fridlyand, and Speed 2002). Solution is again via an
efficient iterative method; please see references for details.

Practical considerations
Regularization Coefficients We perform binary search to
set L1 penalties for a desired level of sparsity, and cross-
validation to model select regularization terms (Witten, Tib-
shirani, and Hastie 2009).

Stopping Short An important task is to determine the
number of principal components. A natural approach is via
the scree plot: eigenvalues by rank. The retained components
can be set by thresholding the eigenvalues—which corre-
spond to correlations under discovered components—or by
identifying a ‘knee’ in the curve.

OneVsAll Algorithm CCA is limited to a maximum p =
mini |Di| projection directions. However the number of true
attribute values could be larger if some are unique to a
source, or if only some sources represent a value. To find
values common to some sources, not identified by a first run
of CCA, we propose Algorithm 1. Phase 1 introduces co-
occurrence, forcing down correlations with values irrelevant
to v; while phase 2’s zeroing makes sparsity more achiev-
able.The approach also works for multi-source CCA.

Experiments
Datasets
We constructed datasets in the movie and restaurant domains
(cf. Table 1). For both, we matched records across sources

Movie Dataset Restaurant Dataset
(n = 7,852) (n = 3,120)

Source #Genres Source #Cuisines
Yahoo! Movies 15 Factual 120
IMDB 26 Google 182
Rotten Tomatoes 22 Yelp 151
The Movie DB 34 Foursquare 136

Table 1: The sources for our movies and restaurants datasets.

into a single parallel dataset available online.1

Movie Dataset We obtained movie data from four online
sources—Yahoo! Movies, IMDB, Rotten Tomatoes & The
Movie Database—through a combination of official data
dumps and API access. The intersection of these sources
includes 7,852 movies (cf. entity resolution below). The
attribute-values we wish to normalize are for genre.

As expected for databases that have been curated sepa-
rately over many years, a different number of movie genres
is used by each source. Yahoo! Movies uses only 15 genres
which is the least amongst the four, while The Movie DB has
the most genres at 34. The difference stems from how genres
are grouped and their granularity. For example, IMDB has
separate Action and Adventure genres but Yahoo! Movies
groups these two genres under Action / Adventure.

Restaurant Dataset Our restaurant dataset collects 3,120
restaurants in London represented in each of four online
sources—Factual, Google Places, Yelp and Foursquare. In
each source, each restaurant is associated with one or more
types of cuisine.

The dataset was generated in two steps. First, we queried
Factual’s API to find a list of London restaurants. Next, we
searched for each restaurant in the list by utilizing the re-
spective search APIs of the remaining three data sources.
To focus the search, we queried the APIs using not just the
restaurant’s name but also ancillary information such as the
restaurant’s longitude, latitude and postal code. We addition-
ally crawled the Google+ page of each restaurant to supple-
ment the Google Places API results which omit the cuisine
type.

We aim to find relations between the different sets of cui-
sine types used by each data source. While the list of restau-
rants is less than the list of movies, there are substantially
more types of cuisines in each set than the genres of movies.
This results in less support for each cuisine. The expanded
set of attribute-values also motivates the use of an algorith-
mic approach to finding relations as it becomes more chal-
lenging for humans to accomplish.

Human Annotations To augment the two datasets, we
used Amazon Mechanical Turk (AMT) to crowd-source
matches.We use these annotations (a) as a basis of compar-
ison for CCA generated matches (particularly in the case of
movies) and (b) to evaluate the accuracy of human matches
when there are a large number of attribute-values (i.e., in
restaurants). The crowd-sourcing campaign was run in a
multiple choice question format, whereby for each value
u ∈ Di in each source i, a Mechanical Turk worker is asked
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to select another value v ∈ Dj from another source j that
best matches u. We collect 10 answers for each u and used
the majority vote as the consensus answer.

Entity Resolution
Here we describe the data cleaning and record matching that
were performed to generate the parallel movie and restau-
rant datasets. When matching records, we optimize for cor-
rectness over completeness to achieve our goal of producing
high-quality parallel datasets that can be used for subsequent
CCA research. This means that we err on the conservative
side and only match two records if they are highly likely to
represent the same entity.

Movie Dataset We cleaned the raw movie data by remov-
ing (a) movie records with missing genre or release year (b)
non-movie records such as TV episodes and (c) outlier gen-
res with fewer than 5 movies.

We then matched movie records by title, disambiguating
movies of the same title by release year. We treat release
years that differ by at most one as the same to account for
varying release schedules worldwide.

Restaurant Dataset Restaurant matching was more in-
volved. We query each source search API with <name,
longitude, latitude, postal code> to obtain
a list of potential matches. Direct name matching is often
too restrictive, since many restaurants are listed with slightly
different names (cf. Table 2). To overcome such ambigu-
ity, we took advantage of a convenient property of the UK
postal code system which is granular down to the level of a
few buildings. From the search results, we selected the result
with a matching postal code and phone number.

Restaurant Name Postal Code
Maze by Gordon Ramsay W1K 6JP
Maze Grill W1K 6JP
The White Swan Pub & Dining Room EC4A 1ES
The White Swan EC4A 1ES
Il Convivio SW1W 9QN
Convivio SW1W 9QN

Table 2: Examples of matching restaurant records.

Baselines For Two Sources
Text Similarity Baselines We evaluated a wide selection
of text similarity methods (exact match, match any word, n-
gram, edit distance) that match two attribute values based
only on their linguistic similarity. This reflects how humans
judge matching tasks (Lee, Pincombe, and Welsh 2005).

Probabilistic Baselines We also looked at baselines that
ignore the actual attribute value and instead focus on their
underlying occurrences. These are:

• Frequency rank Assign a rank to attribute values based
on occurrence frequency in sources. Values with the same
rank in two sources are regarded as the same.

Algorithm
Accuracy (%) by

Judgment Consensus
All 0.9 0.8

Exact Match 61 75 46
Match Any Word 85 95 88
Unigram 76 87 71
Bigram 80 91 78
Edit Distance 70 81 61
Frequency Rank 46 55 41
Frequency Distribution 32 38 29
Most Frequent Class 75 86 75
Cosine Similarity 84 93 85
CCA 87 97 85

Table 3: Attribute-value matching accuracy over All anno-
tated movie data; 0.9 consensus; 0.8 consensus.

• Frequency distribution Count occurrences as above but
instead of assigning each attribute value to a rank, cal-
culate the % of each value occurring in its source. The
attribute value with the closest % in the other source is
regarded as the same. This allows gaps/insertions.

• Most frequent class For each attribute value, pick an at-
tribute value from another source that it co-occurs with
the most.

• Cosine similarity: The standard u′v/‖u‖‖v‖ similarity
applies to comparing two attribute values: first embedding
each as a vector of Boolean values indicating support by
each record (a column in our data matrices X1,X2).

Remark 1. It is notable that cosine similarity is deeply re-
lated to CCA: if the column vectors used in cosine similar-
ity were mean-centered, then the cosine similarity exactly
corresponds to correlation. In other words, while CCA first
projects data onto sparse directions made up of possibly sev-
eral attribute-values then evaluates correlation, cosine sim-
ilarity also computes correlation but only for projection di-
rections that involve single attribute-values. We thus expect
CCA to be superior whenever multi-valued matchings are
desired, but that cosine similarity will often be similar.

Performance Metrics Under two sources, we compare
CCA’s accuracy against the baselines using human ground
truth. For multiple sources, we use precision, recall and run-
time to compare multiple sparse CCA and multi-source ex-
tensions of two of the best baseline methods.

Results
Unambiguous Setting: Accuracy to Judgments
We compare CCA and baseline results using the crowd-
sourced answers as ground truth, results shown in Table 3.
CCA outperforms all methods when judgment consensus is
high. The best text similarity method is MATCHANYWORD
while the best probabilistic method is COSINESIMILARITY.

When text similarity results are being compared to crowd-
sourced answers, we expect them to perform well as they
reflect how judges measure similarity (Lee, Pincombe, and
Welsh 2005). Conversely crowd-sourced answers with low
judgment consensus correspond to attribute values where
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linguistic similarity is low. COSINESIMILARITY performed
in line with CCA as expected (cf. Remark 1).

Manually inspecting the matches, the following matches
were easily made by most methods including CCA and the
text similarities. This is not surprising, but confirms that
CCA discovers matches with high linguistic similarity.

Comedy ↔ Comedy
Music ↔ Musical / Performing Arts

Musical ↔ Musical / Performing Arts

By contrast, CCA triumphs over text-based similarities
when attribute values are linguistically dissimilar. It discov-
ers, e.g., two matches that are difficult for some judges:

Documentary ↔ Special Interest
Thriller ↔ Mystery & Suspense

Ambiguous Setting: Accuracy to CCA
For the restaurant domain, we have more than a hundred
cuisines per source, many of them without clear bound-
aries (e.g., Chinese vs Cantonese). A non-expert human
can no longer perform the matching task effectively. For
example, Bangladeshi cuisine in Factual actually corre-
sponds to Indian cuisine in Google Places, while many
AMT judges when asked for a single matching cuisine will
select Bangladeshi in Google Places even though it is
rarely used in restaurant records. In this case, semantics are
defined by co-occurrences rather than linguistic similarity.
We therefore compare the baselines and human annotated
answers to CCA, with results shown in Table 4. As expected
COSINESIMILARITY highly agrees with CCA, while judges
and text-based similarities achieve similar performance.

Algorithm Accuracy
Exact Match 28
Match Any Word 51
Unigram 52
Bigram 66
Edit Distance 57
Human Annotators 69
Most Frequent Class 74
Cosine Similarity 98

Table 4: Comparison against CCA on restaurants.

Scaling to Multiple Sources
CCA is easily generalized to multiple sources. However, the
same is not true for standard bisource approaches.

Accuracy Baseline methods considered, are naturally de-
fined on two sources; searching globally (e.g., to encour-
age transitivity and higher accuracy) can be achieved gener-
ically, with time exponential in the number of sources k. We
simply consider all combinations of attribute-values across
D1, . . . , Dk, scoring by summing

(
k
2

)
pairwise similarities.

Figure 2 shows precision-recall curves on the two datasets
for all four sources, measured against CCA since manual
matching across sources is infeasible.

Figure 2: Precision-recall of the best text-based and proba-
bilistic matchers on multiple sources against CCA.

Computational Efficiency We measure runtime on a PC
with a 2.3GHz Intel Core i7 processor & 8GB of memory.
For each algorithm, we compare the time required in Table 5
to compute baseline and CCA over (a) all pairwise sources
and (b) multiple sources. The runtime differences were neg-
ligible for movies due to there being few attribute values.
The combinatorial explosion becomes apparent for the ex-
tended baselines on restaurants where 120 × 182 × 151 ×
136 = 450m combinations are examined. In this case, mul-
tiple CCA is faster by a factor of 10 or more.

Method Movie Restaurant
Local Global Local Global

Bigrams 0.14 4.36 4.17 8582
Cosine Similarity 8.16 15.0 235 13419
CCA 7.00 8.50 61.0 785

Table 5: Runtimes in seconds when algorithms match pair-
wise (locally) all on 4-tuples (globally).

Conclusion
We address the normalization of attribute values across
data sources by canonical correlation analysis (CCA). We
demonstrate on two crowd-annotated multi-source datasets,
that multiple sparse CCA achieves high quality matches
with fast runtime, beating baseline text and probabilistic ap-
proaches. The performance of CCA is most striking when
scaling to multiple sources and attributes with larger do-
mains. We consider practical issues such as picking the num-
ber of CCA components. Finally we demonstrate crowd-
based annotations that find ground truth, and a case where
human computation is infeasible. To the best of our knowl-
edge, ours is the first application of CCA to databases, which
highlights an excellent source of data for future CCA re-
search. We are releasing our datasets to foster research.1

For future work we will explore schema matching by
CCA: aligning columns by CCA on attribute-values, accept-
ing alignments with scree plot support. We will also ex-
plore whether a Bayesian interpretation of CCA (Bach and
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Jordan 2005) enables simultaneous attribute-value matching
and Bayesian record merging (Zhao et al. 2012).
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