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Abstract

Real life data often includes information from differ-
ent channels. For example, in computer vision, we can
describe an image using different image features, such
as pixel intensity, color, HOG, GIST feature, SIFT fea-
tures, etc.. These different aspects of the same objects
are often called multi-view (or multi-modal) data. Low-
rank regression model has been proved to be an effective
learning mechanism by exploring the low-rank struc-
ture of real life data. But previous low-rank regression
model only works on single view data. In this paper,
we propose a multi-view low-rank regression model by
imposing low-rank constraints on multi-view regression
model. Most importantly, we provide a closed-form so-
lution to the multi-view low-rank regression model. Ex-
tensive experiments on 4 multi-view datasets show that
the multi-view low-rank regression model outperforms
single-view regression model and reveals that multi-
view low-rank structure is very helpful.

Introduction
In many tasks, a single object can be described using infor-
mation from different channels (or views). For example, a
3-D object can be described using pictures from different
angles; a website can be described using the words it con-
tains, and the hyperlinks it contains; an image can be de-
scribed using different features, such as SIFT feature, and
HOG feature; in daily life, a person can be characterized us-
ing age, height, weight and so on. These data all comes from
different aspects and channels. Multi-view problems aim to
improve existing single view model by learning a model uti-
lizing data collected from multiple channels (Rüping and
Scheffer 2005) (de Sa 2005) (Zhou and Burges 2007).

Low-rank regression model has been proved to be an ef-
fective learning mechanism by exploring the low-rank struc-
ture of real life data (Xiang et al. 2012) (Evgeniou and Pon-
til 2007) (Cai et al. 2013). Existing regression models only
work on single view data. To be specific, linear regression
finds a linear model with respect to the single view feature
data to fit target class data (Seber and Lee 2012). Let matrix
B ∈ <p×c be the parameter of the linear model. Linear re-
gression solves a problem of minB ||Y − XTB||2F , where
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X = [x1,x2, ...,xn] ∈ <p×n is the single view feature
data matrix and Y ∈ <n×c is the target class indicator ma-
trix. Ridge regression can achieve better results by adding
a Frobenius norm based regularization on linear regression
loss objective (Hoerl and Kennard 1970) (Marquaridt 1970).
Ridge regression solves the problem minB ||Y −XTB||2F +
λ||B||2F , where λ is the regularization weight parameter. Cai
(Cai et al. 2013) showed that whenB is low-rank, regression
is equivalent to linear discriminant analysis based regres-
sions. However, all these work only works for single-view
problems.

In this paper, we propose a multi-view low-rank regres-
sion model by imposing low-rank constraints on regression
model. This model can be solved using closed-form solu-
tion directly. In linear regression, low rank parameter ma-
trix Bν is dependent on view ν. Through theoretical analy-
sis, we show that multi-view low-rank regression model is
equivalent to do regression in the subspace of each view. In
other words, let Bν = AνB, and it is equivalent to find the
shared regression parameter matrix B under the subspace
transformation Aν with respect to view ν. Extensive experi-
ments performed on 4 multi-view datasets show that the pro-
posed model outperforms single-view regression model and
reveals that low-rank structure can improve the classification
result of a full-rank model.

Notations. In this paper, matrices are written in uppercase
letters, such as X, Y . Vectors are written in bold lower case
letters, such as x, y. Tr(X) means the trace operation for
matrix X .

Multi-view Low Rank Regression

Assume that there are v views and c classes, pν is the di-
mension of view ν, nj is the sample size of the j-th class,
and n is the total sample size. Let Xν = [xν1 , ...,x

ν
n] ∈

<pν×n be the data matrix of view ν, ν = 1, 2, ..., v, and
Y = [y1, ...,yc] ∈ <n×c is the normalized class indicator
matrix, i.e. Yij = 1/

√
nj if the i-th data point belongs to the

j-th class and Yij = 0 otherwise.

We try to minimize the residual of low rank regression
model in each class and in each view. Loss function of multi-
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view low rank ridge regression can be proposed as in Eq.(1):

J0 =
v∑
ν=1

c∑
k=1

{‖yk − (XT
ν β

ν
k + fνk e)‖22 + λν‖βνk‖22}

=
v∑
ν=1

{‖Y − (XT
ν B

ν + EF ν)‖2F + λν‖Bν‖2F } (1)

where projection matrix Bν = [βν1 , ..., β
ν
c ] ∈ <pν×c, bias

F ν = diag(fν1 , ..., f
ν
c ), E = [e, ..., e] ∈ <n×c. e is a n-

dimensional column vector with all elements equal to 1. λν
is the regularization parameter of view ν. Let’s introduce
low rank projection Bν with rank s, s < min(pν , c),

βνk = Aνbk, or Bν = AνB, (2)

where Aν ∈ <pν×s, and B = (b1, ...,bc) ∈ <s×c. There-
fore, the objective function Eq.(1) can be written as:

J1 =

v∑
ν=1

{‖Y − (XT
ν AνB + EF ν)‖2F + λν‖AνB‖2F } (3)

It is noteworthy that from Eq.(3), we can see that multi-view
low-rank regression model is equivalent to do regression in
the subspace of each view. Matrix Aν is the subspace ma-
trix of view ν. Matrix B is the shared regression parameter
matrix of all views.

Closed form solution
We now present the closed form solution of the Multi-view
Low Rank Regression. Before we talk about the closed form
solution, we present Lemma 1 to simplify Eq.(3).
Lemma 1. The bias fνk can be solved and eliminated from
J1, which is thus simplified into

J1 =

v∑
ν=1

{‖Y c −XcT
ν AνB‖2F + λν‖AνB‖2F } (4)

where bias fνk relates to B as

fν∗k = ȳk − x̄Tν Aνb
ν
k (5)

and Xc
ν = Xν − x̄eT is centered data matrix of view ν and

Y c = Y − (ȳ1, ..., ȳc)e is centered class indicator matrix.

Proof. Taking derivative of Eq.(3) w.r.t. fνk and setting it to
zero, the optimal solution of fνk is given as in Eq.(5), where
ȳk is a real number, ȳk =

∑n
i=1 yki/n, x̄ν =

∑n
i=1 x

ν
i /n ∈

<pν×1. Substituting Eq.(5) into Eq.(3), we have Eq.(4).

In the rest of this paper, we focus on solving Eq.(4). For
simplicity of notations, we drop c in Xc

ν and use Xν to de-
note the centered Xν . Similarly, we drop c in Y c and use Y
to denote the centered Y .

Now we present Theorem 1 to give the closed form solu-
tion of multi-view low-rank regression model.
Theorem 1. The optimal solution of J1({Aν}, B) is the fol-
lowing:

1. {Aν} is given by the optimal solution of the following
problem:

max
{Aν}

Tr(G−1HY Y THT ) (6)

where

G = G({Aν}) ,
∑
ν

ATν (XνX
T
ν + λνI)Aν , (7)

H = H({Aν}) ,
∑
ν

ATνXν (8)

2. B is given by

B∗ = G−1H. (9)

Proof. Taking derivative of Eq.(4) w.r.t. B, we have

∂J

∂B
= −2

∑
ν

ATνXνY + 2
∑
ν

ATνXνX
T
ν AνB

+2λν
∑
ν

ATν AνB. (10)

Setting Eq.(10) to zero, we have Eq.(9).
Substituting Eq.(9) in Eq.(4), we have

J = − min
{Aν}

Tr(G−1HY Y THT ) (11)

where G = G({Aν}) ,
∑
ν A

T
ν (XνX

T
ν + λνI)Aν ,

H = H({Aν}) ,
∑
ν A

T
νXν . Eq.(11) is equivalent to

Eq.(6).

Furthermore, we present Theorem 2 to give the closed
form solution for Eq.(6). Let

A =

A1

A2

...
Av

 , X =

X1

X2

...
Xv

 , (12)

Sb =XY Y TXT , (13)

St =diag(X1X
T
1 + λ1I, ..., XvX

T
v + λvI), (14)

Theorem 2. Eq.(6) is equivalent to

max
A

Tr[(ATStA)−1ATSbA], (15)

where the optimal solution A∗ is given by eigenvectors of
S−1t Sb that correspond to the s largest eigenvalues.

Algorithm
We present Algorithm 1 to summarize the steps of multi-
view low-rank regression model. One of the advantages of
our model is that it can be solved using closed-form solu-
tion directly. The input of this algorithm is (1) centered and
normalized data matrix Xν ∈ <pν×n from view ν, where
ν = 1, 2, ..., v , v is view number, pν is the dimension of
view ν and n is sample number, (2) class indicator matrix
Y ∈ <n×c, (3) regularization weight parameter λν , (4) rank
s, which is less than the class number c. The output of this
algorithm is matrix Aν ∈ <pν×s and B ∈ <s×c. We can
compute Sb and St using Eq.(13) and Eq.(14). In step 2, we
compute A, which is those eigenvectors of S−1t Sb that cor-
respond to the s largest eigenvalues. We should use Eq.(12)
to restore Aν from A. Finally, we compute B using Eq.(9).
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Algorithm 1 Multi-view low-rank regression

Input: Data matrix Xν ∈ <pν×n, class indicator matrix Y ∈
<n×c, regularization weight parameter λν , rank s < c, ν =
1, 2, ..., v

Output: Matrix Aν ∈ <pν×s and B ∈ <s×c, ν = 1, 2, ..., v
1: Compute Sb and St using Eq.(13) and Eq.(14)
2: Compute Aν using the optimal solution of Eq.(15)
3: Compute B using Eq.(9)

Table 1: Multi-view datasets attributes.

Data n c v pν
MSRC 210 7 4 1302, 512, 100, 256
Caltech 1230 20 4 1302, 512, 100, 256
Cornell 195 5 3 107, 20, 15

Cora 2708 7 3 101, 180, 75

Multi-view Full Rank Regression
Low-rank regression model has been proved to be an effec-
tive learning mechanism by exploring the low-rank struc-
ture of real life data. Will the multi-view low-rank regression
model be able to capture the low-rank structure and improve
the performance of a full-rank model? We will compare the
performance of multi-view low-rank regression model with
a full-rank model in experiment section.

In the case of multi-view full-rank regression, rank s = c,
there is no constraint on Bν in Eq.(1) and we will not use
Eq.(2). To be specific, we will minimize the objective Eq.(4):

J1 =

v∑
ν=1

{‖Y −XT
ν B

ν‖2F + λν‖Bν‖2F } (16)

Eq.(16) can be solved using close form solution. Taking
derivative of Eq.(16) w.r.t. Bν and setting it to zero, the op-
timal solution of Bν is given as

Bν = (XνX
T
ν + λνI)−1XνY, (17)

where I ∈ <pν×pν is an identity matrix.

Connections to other Multi-view work
Various multi-view learning models have been studied and
all multi-view models are expected to have better perfor-
mance than single view models. Existing multi-view ap-
proaches mainly are inspired from spectral clustering and
subspace learning. de Sa (de Sa 2005) developed a spectral
clustering algorithm for only two views by creating a bi-
partite graph based on the “minimizing-disagreement” idea.
Zhou (Zhou and Burges 2007) developed a multi-view spec-
tral clustering model via generalizing the single view nor-
malized cut to the multi-view case. They try to find a cut
which is close to be optimal on each single-view graph
by exploiting a mixture of Markov chains associated with
graphs of different views. Kumar (Kumar and Daumé 2011)
proposed a co-training flavour spectral clustering algorithm
and use spectral embedding from one view to constrain the
similarity graph used for the other view. Kumar (Kumar, Rai,
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Figure 1: Effect of regression bias in Eq.(1) or Eq.(3).

and Daume 2011) used the philosophy of co-regularization,
which has been used in the past for semi-supervised learning
problems, to make the clusterings in different views agree
with each other.

Multi-view learning models from the point of view of sub-
space learning mainly try to find a subspace for each view
and then develop a learning model across views in their sub-
spaces. Canonical-Correlation Analysis (CCA) (Hotelling
1936) was first used to study the correlation of two views
in their respective subspaces. Hardoon (Hardoon, Szedmak,
and Shawe-Taylor 2004) (Hardoon and Shawe-Taylor 2009)
designed an Kernel Canonical-Correlation Analysis to ex-
tract patterns from two views. Chaudhuri (Chaudhuri et al.
2009) proposed a CCA-based subspace multi-view learning
approach to find a subspace such that the objects of different
classes are well-separated and within-class distance is mini-
mized. Greene (Greene and Cunningham 2009) developed a
Non-negative Matrix Factorization (NMF) (Lee and Seung
1999) approach to effectively identify common patterns and
reconcile between-view disagreements by combining data
from multiple views.

The proposed multi-view low-rank regression model
should be categorized into the class of subspace learning
multi-view. The important contribution of this paper is that
we developed low-rank regression model to study multi-
view problems. Surprisingly, there exists closed form solu-
tion to multi-view low-rank regression model.

Experiments
In this section, we perform extensive experiments on 4
multiple-view datasets. Through model learning, we system-
atically explore the best settings of regression bias, regular-
ization weight parameter λν and how to do classification us-
ing multi-view regression. We compare the classification ac-
curacy of multi-view low-rank ridge regression with single-
view regression, linear regression and full rank ridge regres-
sion.
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Figure 2: Classification using different voting or sum meth-
ods.

Datasets
Various multi-view datasets are used. These datasets include
image datasets MSRC (Lee and Grauman 2009) and Caltech
(Fei-Fei, Fergus, and Perona 2007), website dataset Cornell
(Craven et al. 2000) and scientific publication dataset Cora
(McCallum et al. 1999). Cornell and Cora are downloaded
from (Grimal 2014). Summary of the datasets attributes are
presented in Table 1, where n is sample number, c is class
number, v is view number and pν lists the dimensions of
different views.

MSRC is an image scene data, including trees, buildings,
planes, cows, faces, cars and so on. It has 210 images from
7 classes. We extract different features from this data. The
4 views we used in this paper are CENTRIST(1302 dimen-
sions), GIST (512 dimensions), HOG (100 dimensions) and
LBP (256 dimensions).

Caltech is a subset of Caltech 101 image data. It has
images from 20 classes, including Faces, Leopards, Motor-
bikes, binocular, Brain, Camera, etc.. This data has 1230
images and 4 features are extracted from this data, includ-
ing CENTRIST(1302 dimensions), GIST (512 dimensions),
HOG (100 dimensions) and LBP (256 dimensions).

Cornell contains 195 documents over the 5 types (stu-
dent, project, course, staff, faculty). There exists referral
links among these documents. We use 3 views to describe
the same document, including content view (107 dimen-
sions), inbound-link view (20 dimensions) and outbound-
link view (15 dimensions).

Cora consists of 2708 scientific publications classified
into one of seven classes (Neural Networks, Rule Learn-
ing, Reinforcement Learning, Probabilistic Methods, The-
ory, Genetic Algorithms, Case Based). The citation network
consists of links among those publications. The 3 views
used in our experiments include content view (101 dimen-
sions), inbound-link view (180 dimensions) and outbound-
link view (75 dimensions).
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Figure 3: Regularization weight parameter λν .

Model learning
Through model learning, we systematically explore the best
settings of regression bias, regularization weight parameter
λν and how to do classification using multi-view regression.

Effect of regression bias To validate that adding bias to
regression will reduce fitting residual, Figure 1 compares the
residual of class indicator matrix Y using two fνk values: (1).
using Eq.(5), denoted by “With bias” line (red circle line),
(2)fνk = 0, denoted by “No bias” line (blue dot line). Resid-
ual r is defined as

r =

v∑
ν=1

‖Y −XT
ν AνB‖2F . (18)

r is the summation of label matrix residuals over all views.
Theoretically, adding biasF ν could produce a more accurate
fitting model, which means a model has smaller residual r.
We examine this property by using rank s = 1, ..., c− 1. As
we can see from Figure 1, for all the 4 datasets, the residual
using bias is always smaller than the residual without bias
using all different ranks. In Figure 1a, 1c, and 1d, the resid-
ual with bias (“With bias” line) is smaller than the residual
without bias (“No bias” line). For MSRC data, the residual
with bias is about 3 less than the residual without bias; for
Caltech data, Figure 1b shows that the residual with bias is
less than residual without bias; for Cornell data, the residual
with bias is about 2 less on all rank numbers; for Cora data,
the residual with bias is about 2 less on all rank numbers.
In all, our results show that multi-view regression using bias
could produce more accurate fitting models with less model
residuals. In the following experiments, the default setting
of all experiments is using bias.

Classification using regression In multi-view regression,
there are different ways to do classification. For single-view
low-rank regression (Cai et al. 2013),

min
A,B
‖Y −XTAB‖2F + λ‖AB‖2F , (19)
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Figure 4: Classification results of multi-view vs. single view
data.

where A ∈ <p×s, B ∈ <s×c and AB is the low-rank re-
gression parameter matrix, the following decision function
is applied to classify a testing point x ∈ <p×1 into one of
the c classes,

arg max
1≤j≤c

(y)j , (20)

where vector y = xTAB ∈ <1×c, class j corresponds to
the index of the maximum value in vector y.

In multi-view case, we predict a class using each view and
then use majority voting to decide the final class. For exam-
ple, for view ν, we use the following decision function to
classify a testing point xν ∈ <p×1 into one of the c classes,

arg max
1≤j≤c

(yν)j , (21)

where vector yν = xTν AνB ∈ <1×c, xν is the data vector
of view ν, ν = 1, 2, ..., v. Thus we predict a class label using
every view. We have v predicted classes and apply majority
voting on v results. The class with most votes is assigned to
this data point. If the top two classes get same number of
votes, we assign them with 0.5 probability, etc.. We call this
majority voting as “Voting” in Figure 2.

In this regression prediction problem, however, we can
theoretically derive another voting method denoted as
“Sum”. Since our starting point is Eqs.(1-3), after obtaining
Aν and B through training, for a testing point x, we learn
y that minimizes the difference between label vector y and
projected data of each views xTν AνB:

min
y

v∑
ν=1

‖y − xTν AνB‖2F . (22)

It is obvious that the solution of Eq.(22) is given as

y = (
v∑
ν=1

xTAνB)/v. (23)

Once y is computed, we use Eq.(20) to obtain the class.
The classification accuracy using the two methods, Sum

and Voting, is shown in Figure 2. As we can see from the
results, for data Caltech, Cornell and Cora, Sum method
has better results than Voting method obviously. Overall, the
Sum voting method is better for regression based classifi-
cation approach for multi-view regression. In the following
experiments, the default setting of every experiment is using
Sum method.

Regularization weight parameter λν Regularization
weight parameter λν affects the regression model and clas-
sification accuracy directly. Many researchers tune this reg-
ularization weight parameter exponentially within a specific
domain, such as from 10−5 to 105. It is very time consuming
and misleading. In fact, regularization weight parameter λν
has direct contribution to the eigenvalues of (XνX

T
ν +λνI),

as shown in Eq.(7). A large λν could change the distribution
of eigenvalues of (XνX

T
ν +λνI) significantly. While a small

λν preserves the original eigenvalues distribution ofXνX
T
ν .

Thus, we constrain λν to be the following 3 cases:
1. The summation for all the eigenvalues of XνX

T
ν . This

will change the distribution of eigenvalues of (XνX
T
ν +

λνI) more significantly. Since Xν is normalized row-
wisely, λν = Tr(XνX

T
ν ) = pν , where pν is dimension

of view ν. In Figure 3, result using this method is denoted
as “p”.

2. The average of all the eigenvalues of XνX
T
ν . So λν =

Tr(XνX
T
ν )/pν = 1, where pν is dimension of view ν. In

Figure 3, result using this method is denoted as “1”.
3. The 90%th largest eigenvalue. For example, ifXνX

T
ν has

200 non-zero eigenvalues sorted from large to small, we
let λν be the 90% × 200 = 180th eigenvalue. This will
change the distribution of eigenvalues of (XνX

T
ν + λνI)

slightly and still preserve the original eigenvalue distribu-
tion of XνX

T
ν . In Figure 3, result using this method is

denoted as “p90”.
Figure 3a shows that, for MSRC data, λν = 1 and “p90”
performs better than using the summation of all eigenvalues
(λν = pν). In Figure 3b, λν = 1 can beat “p90” and λν =
pν . In Figure 3c, λν = 1 also has the best accuracy for rank
s = 2, 3, 4. For data Cora, using different λν does not affect
accuracy too much. Over all, we choose λν as the average of
all eigenvalues of XνX

T
ν , which is λν = 1. In the following

experiments, the default setting of every experiment is using
λν = 1.

Comparison with single view
Multi-view regression uses data or information from mul-
tiple channels, such as different image features, both web-
page citations view and contents view. Generally, we expect
that multi-view regression can produce better results by ex-
ploiting information from multiple views. In this part, we
compare multi-view low-rank regression with single-view
low-rank regression (see (Cai et al. 2013)). Figure 4 shows
that multi-view low-rank regression produces better classi-
fication accuracy than single-view regression for different
ranks (rank s is from 1 to c − 1). “MV” denotes multi-
view accuracy, “V1”, “V2”, ..., denote the accuracy using
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Figure 5: Comparison of ridge regression and linear regres-
sion.

different single view. For example, Figure 4a shows that,
for data MSRC, multi-view regression has much higher ac-
curacy than all single-view low-rank regression when rank
s = 2, 3, 4, 5, 6. Figure 4b shows that, when rank s > 4,
multi-view regression has much higher accuracy than all the
four single views. In Figure 4c, view “V1” has very good
accuracy, but multi-view regression has better results than
view “V1” when s = 1, 3. In Figure 4d, multi-view outper-
forms single-view when s = 4, 5, 6.

Comparison of ridge regression and linear
regression
Linear regression (when λν = 0) and ridge regression (when
λν 6= 0) are closely related. Previous research (Hoerl and
Kennard 1970) (Cai et al. 2013) shows that ridge regression
will have better performance than linear regression. How-
ever, all existing work is based on single view. Does multi-
view ridge regression produce better results than multi-
view linear regression? We will examine the performance
of multi-view linear regression and ridge regression on the
4 multi-view data with respect to different ranks. We can
get linear regression by simply setting λν = 0 in our exist-
ing multi-view ridge regression model. Figure 5 shows that
multi-view low-rank ridge regression (“Ridge” line in the
figure) produces better classification accuracy than multi-
view low-rank linear regression (when λν = 0, “Linear”
line in the figure) in datasets MSRC, Caltech and Cornell.
For dataset Cora, ridge regression get slightly better results
than linear regression when rank s = 3, 4, 5, 6.

Comparison of low-rank and full-rank
In real life, low-rank reveals the underlying structure of
datasets and removes the noise and redundant information
in the datasets. Low-rank regression model has been proved
to be an effective learning mechanism by exploring the low-
rank structure of real life data (Xiang et al. 2012) (Evgeniou
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Figure 6: Comparison of low-rank and full-rank.

and Pontil 2007) (Cai et al. 2013). For full-rank regression,
there is no constraint on Bν in Eq.(1). We minimize the ob-
jective function of full-rank regression Eq. (16) and use the
closed-form optimal solution given by Eq.(17) to solve the
full-rank objective.

Figure 6 compares classification accuracy using low-rank
multi-view regression and full-rank multi-view regression.
The blue dot line is the low-rank classification accuracy for
rank s = 1, ..., c− 1, where c is class number. The red dash
line is full-rank classification accuracy with rank s = c. The
horizontal axis denotes rank of regression and the vertical
axis denotes classification accuracy. As we can see, for all
the 4 datasets, low-rank regression model can always beat
full-rank regression model. For example, in Figure 6a, low-
rank results with s = 5 and s = 6 have higher accuracy
than full-rank with s = 7 (red dash line). In Figure 6b, low-
rank results with s = 11 to s = 19 have higher accuracy
than full-rank with s = 20. Figure 6c shows low-rank results
with s = 2, 3, 4 have higher accuracy than full-rank with
s = 5. Figure 6d shows low-rank results with s = 4, 5, 6
have higher accuracy than full-rank with s = 7.

Conclusion

In this paper, we proposed a multi-view low-rank regres-
sion model. We provide a closed-form solution to multi-
view low-rank regression model. Extensive experiments
conducted on 4 multi-view datasets show that multi-view
low rank regression outperforms full-rank regression coun-
terpart and single-view counterpart in terms of classification
accuracy.
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