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Abstract

Quantile regression deals with the problem of comput-
ing robust estimators when the conditional mean and
standard deviation of the predicted function are inad-
equate to capture its variability. The technique has an
extensive list of applications, including health sciences,
ecology and finance. In this work we present a non-
parametric method of inferring quantiles and derive a
novel Variational Bayesian (VB) approximation to the
marginal likelihood, leading to an elegant Expectation
Maximisation algorithm for learning the model. Our
method is nonparametric, has strong convergence guar-
antees, and can deal with nonsymmetric quantiles seam-
lessly. We compare the method to other parametric and
non-parametric Bayesian techniques, and alternative ap-
proximations based on expectation propagation demon-
strating the benefits of our framework in toy problems
and real datasets.

1 Introduction
Most regression techniques revolve around predicting an av-
erage value for a query point given a training set and, in cer-
tain cases, the predicted variance around this mean. Quan-
tile regression was introduced as a method of modelling the
variation in functions, where the mean along with standard
deviation are not adequate. In this sense quantile regression
provides a better statistical view of the predicted function.
Quantiles are important tools in medical data, for instance
in measuring a normal weight range for a particular age
group or, in modelling train arrival times where (for argu-
ments sake) 90% of trains would arrive before the allocated
time and 10% late. Other areas of application are in financial
data where it is important to measure what the daily worst
case scenarios would be so that analysts could hedge their
risks.

There are two main approaches used in inferring quan-
tiles. The first is building a Cumulative Distribution Func-
tion (CDF) over the set of observations. Taddy and Kot-
tas; Chen and Müller employ this approach to model the
quantiles. However, the drawback of this approach is that it
requires MCMC methods for inference which can be com-
putationally intensive and prohibitive for large datasets.
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The second approach uses a loss function that penalises
predictive quantiles at wrong locations. Koenker and Bas-
sett Jr introduced the tilt (pinball) loss function over the er-
rors ξi for a specified quantile α ∈ (0, 1) (equation 1). The
errors mentioned in this context are the errors between the
observation yi and the inferred quantile fi;

L(ξi, α) =

{
αξi if ξi ≥ 0,

(α− 1)ξi if ξi < 0.
(1)

However, as with many other regression techniques, regu-
larisation is necessary to prevent overfitting. Thus, the prob-
lem can be transformed to minimising over f (the quantile
function) for L(α,y, f) + λ||f || for some specified norm
||·|| where, L(α,y, f) =

∑N
i=1 L(yi − fi, α). This could

be solved as an optimisation problem using quadratic pro-
gramming as shown in (Takeuchi et al. 2006). However, it
requires finding an appropriate regularisation term λ.

In this work, we adopt the second approach where a loss
is minimised but within a Bayesian framework. In addition
to naturally encoding the Occam’s razor principle (simpler
models are preferable) therefore avoiding the manual speci-
fication of the regularisation term, the Bayesian formulation
also provides posterior estimates for the predictions and the
associated uncertainty.

Inspired by the ability of the l1 norm to consistently en-
force sparsity, Koenker and Bassett Jr modified this loss
function to create the pinball loss function (equation 1)
where, ξi = yi − fi. The l1 norm can be thought of as a
proxy to cardinality, which is exploited in Lasso regression,
(Tibshirani 1996). As stated in (Takeuchi et al. 2006) the
minimiser f of this loss has the property of having at most
αN and (1−α)N observations for ξ < 0 and ξ > 0 respec-
tively. Finally, for large number of observations, the propor-
tion |ξ < 0|/|ξ > 0| converges to α. In a probabilistic set-
ting, instead of minimising this loss the goal is to maximise
the exponential of the negative loss.

In this work we derive a nonparametric approach to mod-
elling the quantile function. Similarly, (Quadrianto et al.
2009), (Takeuchi et al. 2006) and (Boukouvalas, Barillec,
and Cornford 2012) use kernels as a nonparametric method
of inferring quantile functions. (Quadrianto et al. 2009) min-
imises the expected loss function under a Gaussian Process
(GP) (Rasmussen 2006) prior which is placed over the data.
(Boukouvalas, Barillec, and Cornford 2012) takes a more
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(a) Expectation propagation (b) Variational Bayesian (c) Both methods superimposed

Figure 1: Comparison of bone density quantiles as a function of age. The first two images show the quantiles 0.05 to 0.95 with
increments of 0.05 for EP and VB methods. The last image shows quantiles 0.01, 0.1, 0.5, 0.9 and 0.99 with both EP and VB
inferences superimposed.

direct Bayesian approach by having an Asymmetric Laplace
likelihood over the data and a Gaussian Process prior over
the space of quantile functions. The same approach is taken
in this work however we derive a Variational Bayesian (VB)
inference method which possesses theoretical advantages
over the Expectations Propagation (EP) approximation.

The above mentioned methods have a series of weak-
nesses which we overcome with the VB formulation. Firstly,
the quantiles inferred in (Takeuchi et al. 2006) are point esti-
mates and do not have uncertainty estimates associated with
it. Conversely, if the data is modelled as a GP (or its het-
eroskedastic extensions), it is possible to infer quantiles us-
ing the inverse Cumulative Distribution Function (CDF) of
a Gaussian. The method of construction of quantiles taken
by (Quadrianto et al. 2009) which strongly resembles a het-
eroskedastic GP, implies that the median is the mean and the
quantiles are symmetric about the median (mean). The sym-
metric assumption of quantiles is a weakness when inspect-
ing datasets as those in figure 1. In fact, the authors report
that this heteroskedastic GP framework performs poorly in
conditions of non-Gaussian errors. (Boukouvalas, Barillec,
and Cornford 2012) use Expectation Propagation (EP) as a
tool to approximate Bayesian inference, overcoming some
of these limitations. Our VB formulation has the same prop-
erties but with the following additional advantages over EP:
1. A guaranteed lower bound on the marginal log likelihood
is provided. 2. An explicit formulation of the family of func-
tions used in the approximation do not need to be speci-
fied. 3. It is guaranteed to converge (Bishop and others 2006,
p. 510).

In other works, Yu and Moyeed; Kozumi and Kobayashi
use Bayesian formulations for quantile regression but, in
a parametric setting. Both settings use asymmetric likeli-
hoods of which the log likelihood is the pinball loss func-
tion. (Yu and Moyeed 2001) uses a uniform prior over the
parameters whereas (Kozumi and Kobayashi 2011) uses a
Gaussian prior with MCMC inference to learn the model.
Also, the asymmetric Laplacian distribution can be shown
to be a scalar mixture of Gaussians as pointed out in
(Kotz, Kozubowski, and Podgorski 2001) and (Kozumi and
Kobayashi 2011) with interesting properties for quantile re-
gression.

One of the defining features of our framework is that there

are no assumptions on the type of the distribution used for
the generative function. Instead, the prior lies over the quan-
tile in question. The advantage of this is that the required
quantile can be inferred over non-symmetric and even multi-
modal functions. The advantages of this are summarised in
table 1.

VB EP MCMC GP
Nonparametric X X X
Fast inference X X X
Convergence guarantees X X X
Non-symmetric quantiles X X X

Table 1: Main properties of different approaches for quantile
regression.

The remainder of the paper is structured as follows. We
define the hierarchical Bayesian model in section 2 and show
how to find the posterior using approximate Bayesian infer-
ence in section 3. In order to learn the model over kernel
hyper-parameters, we present and analyse the data likeli-
hood term in section 4. We devise the inference equations in
section 5 and present experiments and comparisons in sec-
tion 6.

2 Bayesian Quantile Regression
In a Bayesian setting the aim is to derive the posterior
p(f?|y,x?,x) where f? is a prediction for some input x? and
y,x is the set of observations. This is done by marginalising
out all latent variables. We assume that the function is lo-
cally smooth which leads to Gaussian Process prior (which
employs a stationary kernel) on the space of functions, and
use an Inverse Gamma prior (IG(10−6, 10−6)) for the uncer-
tainty estimate σ (equation 4). Finally, the data likelihood is
an exponentiation of the Pinball loss (equation 1) function.

p(yi|fi, α, σ,xi) =
α(1− α)

σ
exp

(
−ξi(α− I(ξi < 0))

σ

)
(2)

p(f |x) = N (m(x),K(x)) (3)

p(σ) = IG(10−6, 10−6) (4)
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where, ξi = yi− fi
1, I is the indicator function and K is the

covariance matrix whose elements are Ki,j = k(xi,xj) for
some kernel function k(·, ·) and mean function m(·) which
is assumed to be zero without loss of generality. This likeli-
hood function is an Asymmetric Laplace distribution (Kotz,
Kozubowski, and Podgorski 2001). The σ parameter is a
dispersion measurement of the observations about the latent
quantile function f . An important property of the likelihood
function is that p(yi < fi) = α. Specifically, 100α% of the
observations are below the quantile function.

Alternatively, the likelihood p(yi|fi, α) can be written as
a scalar mixture of Gaussians (Kotz, Kozubowski, and Pod-
gorski 2001; Kozumi and Kobayashi 2011) such that,

p(yi|fi,xi, σ, α) =

∫
N (yi|µyi , σyi) exp(−wi) dw (5)

where, µyi
= fi(xi) + 1−2α

α(1−α)σwi and σyi
= 2

α(1−α)σ
2wi.

Thus the likelihood can be represented as a joint distribution
with w (which will be marginalised out) where, the prior on
w is

∏N
i=1 exp(−wi). This extra latent variable w will be

useful in a Variational Bayesian setting which is shown in
section 3.

3 Variational Bayesian Inference
The marginal likelihood p(y|x, θ, α) as well as the poste-
rior on the latent variables p(f ,w, σ|y, θ, α) are not analyt-
ically tractable (where, θ are the hyper-parameters and are
discussed in section 4). VB aims to approximate this in-
tractable posterior distribution with an approximate poste-
rior q(f ,w, σ).

The data likelihood, log p(y|x, α, θ) can al-
ternatively be expressed as: L(q(f ,w, σ), θ|α) +
KL(q(f ,w, σ)||p(f ,w, σ|y, θ, α)) where, L =∫ ∫

q(f ,w, σ) log p(f ,w,σ,y|θ,α)
q(f ,w,σ) dfdwdσ and, KL is the

Kullback-Leibler divergence between the proposal distri-
bution on the latent variables and the posterior distribution
of the latent variables. The Expectation Maximisation
(EM) algorithm maximises the likelihood by initially
minimizing the KL divergence for a given set of hyper
parameters (i.e. finding an appropriate q(·)). Ideally, this
is usually done by setting p(f ,w, σ|y) = q(f ,w, σ)
in which case log p(y|θ) = L(q(f ,w, σ), θ).
However, in this case an analytic distribution for
p(f ,w, σ|y) cannot be found. Instead, the approxima-
tion, q(f ,w, σ) = q(f)q(w)q(σ) ≈ p(f ,w, σ|y) is
used (Tzikas, Likas, and Galatsanos 2008). Under this
assumption the closed form solution for the approximate
distribution q(zi) = exp(E(log p(z,y))/Z where, {zi} is
the set of latent variables, Z is the normalising constant and
the expectation, E is taken w.r.t. to approximate distribu-
tions q(z) with the exception of zi itself. In the approximate
distributions that follow, 〈·〉 indicates the expectation with
respect to all the latent variables except, the variable being
investigated.

1Notation: Bold lower case letters represent vectors, and sub-
scripts indicate the i-th element. Bold upper case represent matri-
ces.

The approximate posterior on the function space is
N (µ,Σ) 2 where,

Σ =
(〈

D−1
〉

+ K−1
)−1

(6)

µ =Σ

(〈
D−1

〉
y − 1− 2α

2

〈
1

σ

〉
1

)
(7)

where, D = 2
α(1−α)σ

2diag(w). The expectations, 〈f〉 = µ

and
〈
ffT
〉

= Σ +µµT will be required for the computation
of subsequent approximate distributions.

The approximate posterior on wi is a Generalised Inverse
Gaussian GIG( 1

2 , αi, βi) where,

αi =

(
(1− 2α)2

2α(1− α)
+ 2

)
(8)

βi =
α(1− α)

2

〈
1

σ2

〉(
y2
i − 2yi 〈fi〉+

〈
f2i
〉)

(9)

The expectations,
〈

1
wi

〉
=
√

αi

βi
and 〈wi〉 =

√
βi

αi
+ 1
αi

are

used in the computation of other approximate distributions.
The VB approximate posterior on q(σ) suffers from nu-

merical problems due to calculations of the parabolic cylin-
drical function (Abramowitz and Stegun 1972, p. 687).
Hence, we shall restrict q(σ) = IG(a, b), an In-
verse Gamma distribution with parameters a, b. VB max-
imises the lower bound Lσ which can be expressed
as −KL(qj ||p̃) −

∑
i6=j
∫
qi log qidz where log p̃ =∫

log p(y, z)
∏
i6=j(qidzi). Thus we are required to max-

imise,

Lσ =− (N + 1 + 10−6) 〈log σ〉 − γ
〈

1

σ

〉
− δ

〈
1

σ2

〉
−
∫
q(σ) log q(σ) dσ

∴ Lσ =(a−N − 10−6)(log b− ψ(a)) + (b− γ)
a

b

− δ a(a+ 1)

b2
− a log b+ log Γ(a) (10)

∂Lσ
∂a

=(N − a+ 10−6)ψ(1)(a)− γ

b
− δ(2a+ 1)

b2
+ 1

(11)
∂Lσ
∂b

=− N

b
+
γa

b2
+

2δa(a+ 1)

b3
(12)

where, Γ(·) is the gamma function, γ =

− 1−2α
2

∑N
i=1(yi − 〈fi〉) + 10−6, δ =

α(1−α)
4

∑N
i=1

〈
1
wi

〉 (
y2
i − 2yi 〈fi〉+

〈
f2i
〉)

and as be-

fore the expectations,
〈
1
σ

〉
= a

b ,
〈

1
σ2

〉
= a(a+1)

b2 and
〈log σ〉 = log b − ψ(a) (where ψ(·) is the digamma
function) are required. Lσ is maximised using a numerical
optimiser which employs the given derivatives.

2 Derivation shown in section A.
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4 Hyper-parameter Optimisation
The only hyper-parameters in this formulation are the kernel
hyper-parameters θK. In this framework the lower bound,
L(q(f ,w, σ), θK) is maximised. In the formulations that
follow, 〈·〉 indicates the expectation with respect to all the
latent variables, unlike what was used in the VB approxi-
mate distributions.

In order to use the lower bound it is convenient to
represent p(y|f ,w, σ,x) =

∏N
i=1 p(yi|fi,wi, σ,xi) from

equation 5 asN
(
y|f + 1−2α

α(1−α)σw, 2
α(1−α)σ

2diag(w)
)

, its
multivariate format. Due to the symmetricity of the Nor-
mal distribution with respect to its mean we may depict this
distribution as, N

(
f |y − 1−2α

α(1−α)σw, 2
α(1−α)σ

2diag(w)
)

.

Hence, substituting u = f −
(
y − 1−2α

α(1−α)σw
)

, v =〈
D−1(y − 1−2α

α(1−α)σw)
〉

=
〈
D−1

〉
y − 1−2α

2

〈
1
σ

〉
1 and

ignoring terms that do not contain θK we obtain the lower
bound,

L =

∫
q(f |θK)q(w)q(σ) log p(y|f ,w, σ)p(f |θK) dσdwdf

−
∫
q(f |θK) log q(f |θK) df

=− 1

2

〈
uTD−1u + fTK−1f + log|K|

〉
+

1

2

〈
(f − µ)

T
Σ−1 (f − µ) + log|Σ|

〉
=− 1

2

〈
fT (D−1 + K−1)f − 2fTv

− fTΣ−1f + µTΣ−1µ

〉
+

1

2
(log|Σ|− log|K|)

Noting the three identities, Σ =
〈
D−1 + K−1

〉−1
=〈

D−1
〉−1 (〈

D−1
〉−1

+ K
)−1

K, Σ−1µ = v and finally〈
fTAf

〉
= Tr(ΣA) + µTAµ and ignoring terms without

θK the following expression is obtained,

L =
1

2

(
µTΣ−1µ− log

∣∣∣〈D−1〉−1 + K
∣∣∣)

=
1

2

(
vTΣv − log

∣∣∣〈D−1〉−1 + K
∣∣∣) (13)

In this setting K and thus Σ are the only terms that depends
on the hyper-parameters θK. Equation 13 was optimised us-
ing a numerical optimiser.

5 Prediction
For a query point x?, the output y? that minimises equation
1 is f?. Thus unlike most Bayesian formulations where
the objective is to learn p(y?|x?,y,x) in this particular
formulation the objective is to learn the latent function
p(f?|x?,y,x). To obtain the posterior, p(f?|x?,y,x)
we are required to marginalise out all latent variables,∫
p(f?|f , σ,w,x?,y,x, α)p(f , σ,w|x, α) df dw dσ.

This marginalisation can be approximated to∫
p(f?|f ,x?,y,x)q(f)q(σ)q(w) df dw dσ. Thus we obtain

a Gaussian distribution for p(f?|x?,y,x) ≈ N (µ?,Σ?) for
the approximate posterior where,

µ? = Kx?,xK−1x,xµ (14)

Σ? = σ2
GP + Kx?,xK−1x,xΣK−1x,xKT

x?,x (15)

and, σ2
GP = Kx?,x? − Kx?,xK−1x,xKT

x?,x. Note in equa-
tion 15 that the variance is slightly different to that of a
usual GP. This follows from using the result that E(f?f

T
? ) =∫ ∫

f?f
T
? p(f?|f)q(f) df?df and V ar(f?) = E(f?f

T
? ) −

E(f?)E(f?)
T .

6 Experiments
Following the examples set out in (Quadrianto et al. 2009)
two toy problems are conducted which are constructed as
follows:

Toy Problem 1 (Heteroscedastic Gaussian Noise): 100
samples are generated from the following process. x ∼
U(−1, 1) and y = µ(x)+σ(x)ξ where µ = sinc(x), σ(x) =
0.1 exp(1− x) and ξ ∼ N (0, 1).

Toy Problem 2 (Heteroscedastic Chi-squared noise): 200
samples are generated from x ∼ U(0, 2) and y = µ(x) +

σ(x)ξ where µ = sin(2πx), σ(x) =
√

2.1−x
4 and ξ ∼

χ2
(1) − 2.
Our algorithm is also tested in four real world examples.

In the motorcycle dataset, acceleration experienced by a hel-
met in a crash is measured over time with the goal of inter-
polating between existing measurements. This is a popular
dataset to assess heteroscedastic inference methods. In the
bone density dataset, the goal is to predict the bone density
of individuals as a function of age. The birth weight dataset
aims to predict infants weight as a function of the mothers
age and weight. Finally, the snow fall dataset, attempts to
predict snow fall at Fort Collins in January, as a function of
snow fall in September-December. We have used 80% of the
data as training and the rest as testing and iterated over 20
times for each experiment. The cases were randomly per-
muted in each iteration.

The proposed method is compared against its near-
est competitor, the EP approach, Heteroscedastic Quantile
Gaussian Processes (HQGP) as well as, against a linear
method (Lin) which attempts to find the quantile as a poly-
nomial function of the inputs (polynomial basis function, in
this case having fα = β0 + β1x+ β1x

2 + ...+ β7x
7). The

square exponential kernel was used in evaluating the VB, EP
and HQGP methods. In the case of the real world datasets,
the output is standardised to have zero mean and unit vari-
ance so that comparisons could be made across datasets.
Note that this standardisation has not been applied to the
toy data sets. Since the exact quantiles can be found for the
toy datasets the Mean Absolute Deviation (MAD) and Root
Mean Squared Error (RMSE) metrics have been used and
are presented in table 2. The true quantiles for the real world
datasets are not known a priori. Therefore, the average pin-
ball loss is used as a proxy for a function that penalises in-
correct quantile inference. These results are presented in ta-
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ble 3. Finally an empirical observed quantile error (OQE)

defined as
∣∣∣∑N

i=1 I(yi<µ?(i))

N − α
∣∣∣ is used where I is the in-

dicator function and the results are shown in table 3. This
metric gives an estimate as to what proportion of observa-
tions are below the inferred quantile and how far this is from
the intended quantile, α. This metric was provided in order
to illustrate that a bias was not introduced by using the pin-
ball loss as a metric. Different metrics were used for toy and
real world problems as the true quantiles were not known
for real world examples. Note that there was no code freely
available for HQGP inference. Thus, the results portrayed in
(Quadrianto et al. 2009) was used. 3.

The toy problem 1 was specifically designed for HQGP
and therefore is not surprising that it outperforms the VB
method. However, as shown in problem 2 for non-Gaussian
problems the HQGP is not able to model the underlying
quantiles. The HQGP inherently assumes that the quantiles
lie symmetrically about the inferred mean on the dataset.
This weakness is highlighted in toy problem 2.

One of the strengths of using the VB framework is its
ability to infer quantiles even where observations are sparse.
This is evident in its ability to infer the quantiles more ac-
curately for the extreme quantile of 0.99 in toy problem 2
as well quantiles 0.01 and 0.99 in the real world examples.
This strength is also evident when inspecting the tails of the
motor cycle dataset in figure 2. The variations in accelera-
tions experienced at the start and end of the experiment are
expected to be low. This detail is better captured using VB
than the EP framework as is evident in the plot. The dif-
ference in the inferred quantiles could be attributed to the
fact that the posterior is better approximated by exploiting
the scalar mixture of Gaussians than forcefully applying a
Gaussian to the posterior (which is done in the EP method).

One of the biggest weaknesses of the HGQP is that it im-
plies that the mean is the median, and that the quantiles are
symmetrical about the mean (median). These two require-
ments are seemingly satisfied in the motor cycle dataset.
However, in the bone density dataset there is a clear devia-
tion from the symmetric assumption when inspecting figure
1.

The linear method, despite giving competitive error esti-
mates, is a parametric method. This suggests that in order
to get good estimates the user must manually tune the in-
puts and generate features. In fact, for the Fort Collins Snow
dataset, instead of having a polynomial of 7th power, a cu-
bic polynomial provided much better results. This was due
to the fact that non-sensible errors (probably due to overfit-
ting) were observed when using a polynomial of 7th power
as the basis function.

7 Discussion and Future Work
In this work we have presented a Variational Bayesian ap-
proach to estimating quantiles exploiting the Gaussian scale
mixture properties of Laplacian distributions. Results show
that our method is able to outperform other frameworks.

3Code and data are available at http://www.bitbucket.org/
sachinruk/gpquantile

Figure 2: Comparison of the quantiles obtained with (a)
Variational Bayesian and (b) Expectation Propagation ap-
proaches for the motorcycle dataset. The quantiles 0.01, 0.1,
0.5, 0.9 and 0.99 are shown.

The methodology presented here can be trivially extended
to parametric models by setting f = Φ(x)w where, Φ(x)
is a suitable basis for the problem, resulting in p(f) =
N (0,Φ(x)TΦ(x)) instead. The computational cost of infer-
ence is O(n3), that of a GP. The underlying GP prior allows
other GP frameworks such as those for large datasets ex-
ploiting low rank approximations and sparsity of the kernel
matrices to be employed here.

One of the weaknesses of our particular setting is that
quantiles are not non-crossing. Future area of research
would be to impose this restriction when certain quantiles
are found in previous iterations of the given algorithm. It
should however be noted that in the presence of enough data,
this constraint seems to be self imposing as seen in figure 1b.

A Approximate Distribution Calculations

This section will render the detailed calculations used in ob-
taining the approximate distributions in section 3. Recall that
log q(zi) ∝ 〈log p(y|z)p(z)〉∏

j 6=i q(zj)
. In fact any term that

does not contain zi can be omitted from this expression as it
will form part of the normalising constant.

In order to calculate q(f) let, u = f −(
y − 1−2α

α(1−α)σw
)

, v =
〈
D−1(y − 1−2α

α(1−α)σw)
〉

and D = 2
α(1−α)σ

2diag(w). As shown in section 4,
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MAD RMSE
Dataset α VB EP Lin HQGP VB EP Lin
(1) 0.01 0.808±0.173 0.233±0.145 0.246±0.054 0.883±0.188 0.303±0.161 0.331±0.077

0.10 0.109±0.089 0.110±0.088 0.121±0.035 0.062 0.142±0.105 0.146±0.104 0.177±0.074
0.50 0.077±0.057 0.077±0.057 0.092±0.021 0.031 0.100±0.069 0.100±0.069 0.135±0.037
0.90 0.096±0.063 0.093±0.059 0.125±0.035 0.056 0.128±0.094 0.124±0.087 0.184±0.061
0.99 0.364±0.066 0.199±0.093 0.241±0.068 0.514±0.090 0.257±0.132 0.337±0.102

(2) 0.01 1.114±0.055 0.016±0.003 0.042±0.004 1.281±0.051 0.018±0.003 0.066±0.011
0.10 0.010±0.003 0.012±0.004 0.035±0.003 0.099 0.016±0.008 0.018±0.007 0.053±0.010
0.50 0.101±0.104 0.102±0.104 0.080±0.021 0.509 0.137±0.129 0.138±0.128 0.115±0.045
0.90 0.400±0.143 0.511±0.154 0.363±0.109 0.804 0.526±0.210 0.663±0.209 0.478±0.167
0.99 1.120±0.208 1.938±0.629 1.027±0.261 1.356±0.253 2.164±0.641 1.295±0.303

Table 2: MAD and RMSE metric for the toy problems. (1) and (2) represents the respective toy problem.

Pin-Ball OQE
Dataset α VB EP Lin HQGP VB EP Lin
(1) 0.01 0.025±0.018 0.030±0.020 0.020± 0.016 0.042±0.042 0.066±0.046 0.044±0.035

0.10 0.076±0.020 0.082±0.020 0.099± 0.025 0.079±0.019 0.051±0.047 0.050±0.038 0.046±0.036
0.50 0.168±0.031 0.171±0.030 0.255± 0.046 0.187±0.020 0.078±0.052 0.080±0.054 0.091±0.042
0.90 0.070±0.016 0.073±0.014 0.115± 0.061 0.070±0.016 0.062±0.049 0.067±0.067 0.050±0.045
0.99 0.015±0.012 0.016±0.013 0.050± 0.080 0.055±0.049 0.055±0.057 0.072±0.045

(2) 0.01 0.017±0.002 0.025±0.007 0.021± 0.006 0.009±0.008 0.043±0.023 0.013±0.016
0.10 0.119±0.010 0.119±0.009 0.120± 0.010 0.123±0.017 0.031±0.019 0.031±0.018 0.036±0.022
0.50 0.303±0.025 0.303±0.025 0.304± 0.025 0.309±0.045 0.051±0.045 0.055±0.044 0.048±0.045
0.90 0.153±0.014 0.153±0.014 0.153± 0.014 0.153±0.027 0.026±0.024 0.025±0.020 0.033±0.022
0.99 0.024±0.004 0.038±0.021 0.025± 0.004 0.011±0.006 0.042±0.035 0.014±0.008

(3) 0.01 0.063±0.039 0.370±0.078 0.246± 0.475 0.057±0.048 0.420±0.085 0.077±0.050
0.10 0.210±0.032 0.382±0.060 0.319± 0.274 0.061±0.048 0.323±0.098 0.050±0.050
0.50 0.404±0.024 0.411±0.024 0.590± 0.322 0.039±0.043 0.033±0.023 0.060±0.055
0.90 0.177±0.029 0.369±0.062 0.272± 0.178 0.053±0.050 0.333±0.080 0.060±0.039
0.99 0.040±0.018 0.355±0.078 0.145± 0.226 0.049±0.036 0.428±0.078 0.080±0.036

(4) 0.01 0.029±0.011 0.148±0.106 0.136±0.165 0.033±0.035 0.216±0.134 0.061±0.040
0.10 0.214±0.053 0.235±0.075 0.187±0.023 0.094±0.099 0.116±0.121 0.041±0.035
0.50 0.421±0.026 0.437±0.020 0.483±0.075 0.060±0.042 0.059±0.042 0.066±0.048
0.90 0.237±0.041 0.279±0.072 0.370±0.248 0.086±0.058 0.133±0.115 0.074±0.076
0.99 0.049±0.052 0.229±0.136 0.220±0.334 0.059±0.067 0.255±0.155 0.096±0.089

Table 3: Pin-Ball loss and Observed Quantile Error (OQE) for real world datasets. (1): Motor Cylce, (2): Bone Density, (3):
Birth Weight, (4): ftCollins Snowfall. The numbers represent the average loss for the 20 iterations and the standard deviation
associated with them.

p(y|f ,w, σ) = N
(
f |y − 1−2α

α(1−α)σw,D
)

log q(f) = 〈log p(y|f ,w, σ)〉q(w)q(σ) + log p(f) + const

log q(f) ∝ −1

2

(〈
uTD−1u

〉
q(w)q(σ)

+ fTK−1f
)

∝ −1

2

[
fT
(〈
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〉
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)
f − 2vT f

]
(16)

Simplifying v such that v =
〈
D−1

〉
y− 1−2α

2

〈
1
σ

〉
1 and

comparing equation 16 with the log of a normal distribution,
− 1

2 (fTΣ−1f−µTΣ−1f)+constwe obtain equations 6 and
7.

Similarly, in order to obtain q(wi),

log q(wi) = 〈log p(y|f ,w, σ)〉q(f)q(σ)∏j 6=i q(wj)

+ log p(wi) + const

log(q(wi)) =−wi −
1

2
log(wi)−

1

2

〈
α(1− α)
2σ2wi

u2
i

〉
q(f)q(σ)

For the term
〈
α(1−α)
2σ2wi

u2
i

〉
q(f)q(σ)

ignoring the terms that

do not contain wi we obtain the expression (1−2α)2
2α(1−α)wi +

α(1−α)
2

〈
1
σ2

〉 (
y2
i − 2yi 〈fi〉+

〈
f2i
〉)

1
wi

. Thus,

log q(wi) =− 1

2

(
log(wi) +

(
(1− 2α)2

2α(1− α)
+ 2

)
wi+

α(1− α)

2

〈
1

σ2
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y2
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〉) 1
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)
(17)

Comparing the above to the log of a GIG distribution, (p −
1) log wi − 1

2

(
αwi + β

wi

)
+ const we obtain equations 8

and 9 where p = 1/2.
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