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Abstract

Linear Dynamical System (LDS) is an elegant math-
ematical framework for modeling and learning Multi-
variate Time Series (MTS). However, in general, it is
difficult to set the dimension of an LDS’s hidden state
space. A small number of hidden states may not be able
to model the complexities of a MTS, while a large num-
ber of hidden states can lead to overfitting. In this paper,
we study learning methods that impose various regu-
larization penalties on the transition matrix of the LDS
model and propose a regularized LDS learning frame-
work (rLDS) which aims to (1) automatically shut down
LDSs’ spurious and unnecessary dimensions, and con-
sequently, address the problem of choosing the opti-
mal number of hidden states; (2) prevent the overfitting
problem given a small amount of MTS data; and (3)
support accurate MTS forecasting. To learn the regular-
ized LDS from data we incorporate a second order cone
program and a generalized gradient descent method into
the Maximum a Posteriori framework and use Expecta-
tion Maximization to obtain a low-rank transition ma-
trix of the LDS model. We propose two priors for mod-
eling the matrix which lead to two instances of our
rLDS. We show that our rLDS is able to recover well
the intrinsic dimensionality of the time series dynam-
ics and it improves the predictive performance when
compared to baselines on both synthetic and real-world
MTS datasets.

Introduction
Multivariate time series (MTS) analysis is an important sta-
tistical tool to study the behavior of time dependent data and
to forecast its future values depending on the history of vari-
ations in the data (Reinsel 2003). MTS modeling takes into
account the sequences of values of several contemporane-
ous variables changing with time. By analyzing the influ-
ence of other observable variables known or suspected to
be related to the time series of interest, better understanding
and forecasting are usually obtained. For example, in eco-
nomics, forecasting consumer price index usually depends
on the time series of money supply, the index of industrial
production and treasury bill rates (Kling and Bessler 1985).

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In clinical domain, in order to get accurate sequential pre-
dictions of the patients’ parameters, such as platelets counts,
time series of hemoglobin, hematocrit and red blood cell
measurements should be considered (Batal et al. 2013). De-
veloping and learning accurate models of MTS are critical
for their successful applications in outcome prediction, de-
cision support, and optimal control.

A large spectrum of models have been developed and
successfully applied in MTS modeling and forecasting
(Du Preez and Witt 2003; Ljung and Glad 1994). However,
MTS modeling of real-world data poses numerous chal-
lenges. First, a large number of MTS collected in the real-
world problems have a relatively short span (Bence 1995).
For example, in biology, more than 80% of all time se-
ries in gene expression datasets are short (less than 80 data
points) (Ernst, Nau, and Bar-Joseph 2005). In economics,
econometric MTS, such as gross domestic product, con-
sumer price index, etc, are measured quarterly or yearly
which leads to MTS’ lengths of less than 200 (Data 2014). In
the clinical domain, patients’ clinical MTS are usually less
than 50 due to the fact that the majority of patients’ hospi-
talizations is less than two weeks (Liu, Wu, and Hauskrecht
2013). A short-span complex MTS undoubtedly poses a hard
modeling problem since the existing well-developed models
and algorithms may easily overfit the data when they are
applied to such time series. Second, while in some cases
the problem of short-span MTS may be alleviated by learn-
ing the models from multiple short-span MTS instances, the
number of MTS instances available in the datasets is often
limited and for many problems it is restricted to just one time
series we want to learn from (e.g. various time series in eco-
nomics or business) and the model overfitting remains a big
concern.

In this paper we study and develop solutions that are ap-
plicable and can learn models from short-span MTS. Our
work focuses on the refinements of a popular model for MTS
analysis: the Linear Dynamical System (LDS) (a.k.a Kalman
filter) (Kalman 1960) and its application to MTS forecast-
ing. We aim to develop an algorithm to automatically learn
an LDS that performs better forecasting when learned from
a small amount of complex MTS data.

Briefly, the LDS is a classical and widely used model
for real-valued sequence analysis, that is applicable to
many real-world domains, such as engineering, astronau-
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tics, bioinformatics, economics, etc (Lunze 1994; Liu and
Hauskrecht 2013). This is due to its relative simplicity, math-
ematically predictable behavior, and the fact that exact infer-
ence and predictions for the model can be done efficiently.
The LDS is Markovian and assumes the dynamic behavior
of the system is captured well using a small set of real-
valued hidden-state variables and linear state transitions cor-
rupted by a Gaussian noise. The LDS can be learned from
observation data. Standard LDS learning approaches use the
Expectation-Maximization (EM) (Ghahramani and Hinton
1996) or spectral learning (Katayama 2005; Van Overschee
and De Moor 1996) algorithms. However, learning an LDS
model from short-span low-sample MTS datasets gives rise
to numerous important questions: (1) Since the observa-
tional sequences in MTS data may exhibit strong interac-
tions and co-movements, given the MTS sequences, how
many hidden states are needed to represent the system dy-
namics well?; (2) Due to the fact that the number of parame-
ters representing transitions among hidden state components
(a.k.a transition matrix) is quadratic in the dimensionality of
the hidden space, how do we prevent the overfit of the model
parameters when the training size is small?

In this work we address the above issues by presenting a
regularized LDS framework (rLDS) which
1. recovers the intrinsic dimensionality of MTS by minimiz-

ing the rank of the transition matrix rather than the state
space size.

2. prevents model overfitting given short MTS datasets.
3. supports accurate MTS forecasting.

Our framework builds upon the probabilistic formula-
tion of the LDS model, and casts its parameters optimiza-
tion as a maximum a posteriori (MAP) problem, where the
choice of parameter priors biases the model towards a low-
rank solution. We propose two strategies for choosing the
parameter priors that lead to two instances of our rLDS.
The first strategy, rLDSG , assumes a multivariate Laplacian
prior over each row of the LDS’s transition matrix. This
enforces a row-level sparsity on the transition matrix (Gar-
rigues and Olshausen 2010; Raman et al. 2009). The second
strategy, rLDSR, relies on a nuclear norm prior on the en-
tire transition matrix to induce the low-rank matrix property
(Alquier et al. 2014). Experiments show that our regularized
framework can recover very well the underlying dynamical
model in a variety of synthetic domains. We also show that
rLDS gives a better accuracy than alternative methods when
predicting future time series values on several real-world
datasets.

The reminder of the paper is organized as follows: the
Background and Related Work section introduces the LDS
and provides a detailed review of existing regularized meth-
ods related to LDSs. In the The Regularized LDS Framework
section, we describe the inference and learning procedures
for rLDS and the two regularization strategies with their cor-
responding optimizations. The Experiment section focuses
on two problems: (1) recovery of the intrinsic MTS dimen-
sionality, and (2) MTS forecasting on a variety of synthetic
and real-world datasets and comparison of the proposed ap-
proach to alternatives. We summarize our work and outline

potential future extensions in the Conclusion section.

Background and Related Work
Linear Dynamical System
The Linear Dynamical System (LDS) models real-valued
MTS {yt ∈ Rn}Tt=1 using hidden states {zt ∈ Rd}Tt=1:

zt = Azt−1 + εt; yt = Czt + ζt (1)

Briefly, {zt} is generated via the transition matrix A ∈
Rd×d. Observations {yt} are generated from zt via the
emission matrix C ∈ Rn×d (see eq.(1)). {εt}Tt=1 and
{ζt}Tt=1 are i.i.d. multivariate normal distributions with
mean 0 and covariance matrices Q and R respectively. The
initial state (z1) distribution is also multivariate normal with
mean ξ and covariance matrix Ψ. The complete set of the
LDS parameters is Ω = {A,C,Q,R, ξ,Ψ}. While in some
LDS applications the model parameters are known a priori,
in the majority of real-world applications the model parame-
ters are unknown, and we need to learn them from MTS data.
This can be done using standard LDS learning approaches
such as the Expectation-Maximization (EM) (Ghahramani
and Hinton 1996) or spectral learning (Katayama 2005;
Van Overschee and De Moor 1996) algorithms.

Related Work
Recently, various regularization methods have been incorpo-
rated into LDSs for both time series modeling and prediction
tasks. These can be divided into five categories: C1: state
regularization; C2: innovation regularization; C3: combina-
tion regularization; C4: parameter regularization; and C5:
regularization on other related models.

C1: State Regularization In the state regularization ap-
proach (Carmi, Gurfil, and Kanevsky 2010; Angelosante,
Roumeliotis, and Giannakis 2009; Charles et al. 2011) the
hidden states {zt}Tt=1 are sparsified during the Kalman fil-
ter inference step. (Charles et al. 2011) formulates the tradi-
tional Kalman filter as a one-step update optimization pro-
cedure and incorporates sparsity constraints to achieve a
sparse state estimate ẑt at each time stamp t. (Angelosante,
Roumeliotis, and Giannakis 2009) treats all the state esti-
mates {zt}Tt=1 as a state estimate matrix and enforces a row-
level group lasso on the state estimate matrix.

C2: Innovation Regularization In signal processing, “in-
novation” is referred to as the error of state estimation, i.e.,
‖ẑt − Aẑt−1‖. Both (Asif et al. 2011) and (Charles et al.
2011) incorporate `1 regularization on innovation during the
state estimation procedures to balance fidelity to the mea-
surements against the sparsity of the innovations.

C3: Combination Regularization The basic idea under-
lying the combination regularization is to find a represen-
tation of the LDS which is sparse in terms of a given dic-
tionary of LDSs. Given multiple MTS sequences, (Ghanem
and Ahuja 2010) trains an LDS for each MTS and obtains
the final LDS by using a weighted combination of the indi-
vidual LDSs such that each weight is regularized by an `1
penalty.
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C4: Parameter Regularization (F) Parameter regular-
ization introduces regularization penalties on the parameters
of an LDS during the learning process. (Boots, Gordon, and
Siddiqi 2007) develops a spectral algorithm that is able to
learn a stable LDS by limiting the largest eigenvalue of tran-
sition matrix A to be less than 1. Our rLDS also belongs to
this category due to the fact that we develop a Maximum
a Posteriori learning framework and apply low-rank priors
on the A to implicitly shut down spurious and unnecessary
dimensions and prevent overfitting problem simultaneously.

C5: Regularization on Other Related Models There
are various approaches that incorporate regularizations into
MTS models that are alternatives to LDSs. For example,
(Chiuso and Pillonetto 2010) introduces a Bayesian non-
parametric approach to the identification of observation-
only linear systems. (Städler and Mukherjee 2013) considers
a hidden Markov model with d multivariate normal emis-
sion matrices and applies an `1-penalization on the inverse
covariance matrix of every state-specific emission matrix.

Our rLDS is different from C1 and C2 methods since both
of them try to learn a sparse representation for the hidden-
state estimation problem by assuming that all parameters of
the LDS are known a priori. Hence they are not directly ap-
plicable to the problem of learning MTS models from data.
The combination approach in C3 requires an extensive train-
ing process since it has to build a dictionary of multiple
LDSs trained on the different time series. Also, the combina-
tion approach does not attempt to solve the overfitting prob-
lem and it does not attempt to determine the correct num-
ber of hidden states. Compared with (Chiuso and Pillonetto
2010) in C5 category, our rLDS utilizes hidden states to cap-
ture the variations behind MTS while (Chiuso and Pillonetto
2010) relies on an observation-only linear system where no
hidden states are involved. The underlining assumption of
this approach is that the observations are obtained from lin-
ear combinations of previous observations and additional
system inputs, which may be too restrictive to model com-
plex MTS and makes the model more sensitive to noisy ob-
servations and outliers. Another method in C5 (Städler and
Mukherjee 2013) uses a hidden Markov model with discrete
hidden states and entries in the transition matrix describe the
transition probabilities between these discrete states. LDSs
and HMMs are under different underlying assumptions. The
LDS is often preferred to HMM in modeling real-value MTS
since it is able to model better smooth state evolution. Sim-
ilarly to LDSs, in HMMs we usually don’t have a prior
knowledge about the discrete states and their number. Fi-
nally, even though our rLDS belongs to the same category
(C4) as the stable LDS proposed by (Boots, Gordon, and
Siddiqi 2007), the two methods focus on the different as-
pects of the problem. (Boots, Gordon, and Siddiqi 2007) at-
tempts to achieve stability in a learned LDS while our rLDS
tries to find an appropriate state space and prevent overfitting
given a small amount of MTS data.

The Regularized LDS Framework
In this section, we propose a regularized LDS framework
that is able to (1) automatically shut down unnecessary and

spurious dimensions of a LDS’ hidden state space, and con-
sequently, determine its optimal dimensionality; (2) prevent
the model overfitting problem for short-span low-sample
MTS datasets; (3) support accurate MTS forecasting.

rLDS Framework
In rLDS, the LDS has a large implicit state space but a low-
rank transition matrix. The rLDS recovers the intrinsic di-
mensionality of MTS by using the rank of transition matrix
rather than the state space size. In order to achieve the low-
rank property, we introduce a prior, i.e., p(A) (The choice
of p(A) is discussed in the Learning section) for the hid-
den state transition matrix A. The log joint probability dis-
tribution for our rLDS is: log

(
p(z,y, A)

)
= log p(z1) +∑T

t=1 p(yt|zt)+
∑T
t=2 log p(zt|zt−1, A)+log p(A), where

z ≡ {zt}Tt=1 and y ≡ {yt}Tt=1.

Learning
We develop an Expectation-Maximization (EM) algorithm
for the MAP estimation of the rLDS. In the following, we
use ‖ · ‖F , ‖ · ‖∗ and ‖ · ‖2 to represent the matrix Frobe-
nius norm, matrix nuclear norm and vector Euclidean norm.
vec(·) denotes the vector form of a matrix; and ⊗ represents
the Kronecker product. Id is the d× d identity matrix.

E-step(Inference) Since the Markov chain z defined by
the LDS is unobserved, we cannot learn our rLDS directly.
Instead, we infer the hidden state expectations. The E-step
infers a posterior distribution of latent states z given the ob-
servation sequences y, p(z|y,Ω). In the following, we omit
the explicit conditioning on Ω for notational brevity.

The E-step requires computing the expected log likeli-
hood of the log joint probability with respect to the hid-
den state distribution, i.e., Q = Ez[log p(z,y, A|Ω)], which
depends on 3 sufficient statistics E[zt|y], E[ztz

′

t|y] and
E[ztz

′

t−1|y]. Here we follow the backward algorithm in
(Ghahramani and Hinton 1996) to compute them. The back-
ward algorithm is presented in the supplemental material.

Q =Ez

[
log p(z1)

]
+ Ez

[ T∑
t=1

log p(yt|zt)
]

+Ez

[ T∑
t=2

log p(zt|zt−1, A)
]

+ log p(A) (2)

M-step(Learning) In the M-step, we try to find Ω that
maximizes the likelihood lower boundQ (eq.(2)). As we can
see, Q function’s differentiability with respect to A depends
on the choice of A’s prior, i.e., p(A), while it is differentiable
with respect to (C,R,Q, ξ,Ψ ). Therefore, we separate the
optimization into two parts, i.e., O1 and O2.

O1: Optimization of A In each iteration in the M-
step, we need to maximize Ez

[∑T
t=2 log p(zt|zt−1, A)

]
+

log p(A) with respect to A, which is equivalent to
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minA g(A) − log p(A), where g(A) = 1
2

∑T
t=2 Ez

[
(zt −

Azt−1)′Q−1(zt −Azt−1)
]
.

In order to recover the intrinsic dimensionality from MTS
datasets through the rank of transition matrix A rather than
the state space size d, we need to choose specific priors
which can induce the desired low-rank property. Here we
have two choices of inducing a low-rank A: (1) a multivari-
ate Laplacian prior and (2) a nuclear norm prior as shown
in Table 1. Ai represents each row (or column) 1 of A. The
prior choices lead to two instances of our rLDS framework,
I1 (rLDSG) and I2 (rLDSR).

Table 1: Prior choices for rLDS.
Prior Name Prior Form Regularization

Multivariate Laplacian ∝ exp(−λ1‖Ai‖2) λ1‖Ai‖2
Nuclear norm ∝ exp(−λ2‖A‖∗) λ2‖A‖∗

I1: rLDSG with multivariate Laplacian priors In
rLDSG , we assume every row Ai is independent of each
other and has the multivariate Laplacian density. Also in or-
der to avoid overfitting, we add a multivariate Gaussian prior
to each Ai, which leads to the ridge regularization. There-
fore, we combine the multivariate Laplacian prior and Gaus-
sian prior to get a new prior for transition matrix A. Its log
probability is:

log p(A|λ1, λ3) = −λ1
d∑
i=1

‖Ai‖2−
λ3
2
‖A‖2F +const, (3)

and the objective function we want to optimize becomes:

min
A
g(A) +

λ3
2
‖A‖2F + λ1

d∑
i=1

‖Ai‖2 (4)

⇔min
a

1

2
a′Ha− b′a+ λ1

d∑
i=1

‖aGi
‖2 (5)

where a = vec(A), {Gi}di=1 is the row membership indi-
cator, H = (Q−1 ⊗

∑T
t=2 Ez[zt−1z

′
t−1] + λ3Id2), b =

(L ⊗
∑T
t=2 Ez[ztz

′
t−1]′) vec(L) and Q−1 = LL′. Mathe-

matical transformation from eq.(4) to eq.(5) is listed in the
supplemental material.

Since eq.(5) consists of a quadratic form and a non-
smooth Euclidean norm, it can be easily casted into a second
order cone program (SOCP) (eq.(6)), which can be solved
efficiently by any existing SOCP solvers. Various algorithms
can be used to solve eq.(5), such as (Yuan, Liu, and Ye 2011;
Qin, Scheinberg, and Goldfarb 2013), however, the second
order optimization methods, like SOCP, always get solutions
with high precision (low duality gap) (Bach et al. 2011).
If the state size stays moderate (<50) which is the case in

1Without loss of generality, we will use Ai to represent the row
in the following text.

our experiments, the SOCP solver should be a reasonable
choice.

min
η,η1,η2,··· ,ηd

η + λ1

d∑
i=1

ηi (6)

s.t. η ≥ 0.5a′Ha− b′a, ηi ≥ ‖aGi
‖2 i = 1, . . . , d

I2: rLDSR with a nuclear norm prior In rLDSR, we di-
rectly assume A has a nuclear norm density and similarly
to rLDSG , we also assume a multivariate Gaussian prior for
each Ai. In this case our objective function is:

min
A
h(A)+λ2‖A‖∗ where h(A) = g(A)+

λ3
2
‖A‖2F (7)

Since h(A) is convex and differentiable with respect to A,
we can adopt the generalized gradient descent algorithm to
minimize eq.(7). The update rule is

A(k+1) = proxρk
(
A(k) − ρk 5 h(A(k))

)
(8)

where ρk is the step size at iteration k and the proximal
function proxρk(A) is defined as the singular value soft-
thresholding operator,

proxλ2ρk
(A) = U · diag((σi − λ2ρk)+) · V ′ (9)

where A = Udiag(σ1, · · · , σd)V ′ is the singular value de-
composition (SVD) of A.

An important open question here is how to set the step
size of the generalized gradient method to assure it is well
behaved. Theorem 1 gives us a simple way to select the step
size while also assuring its fast convergence rate.
Theorem 1. Generalized gradient descent with a fixed step
size ρ ≤ 1/(||Q−1||F · ||

∑T−1
t=1 E[ztz

′
t|y]||F + λ2) for min-

imizing eq.(7) has convergence rate O(1/k), where k is the
number of iterations.

Proof. The proof appears in the supplemental material.

O2: Optimization of Ω\A = {C,R,Q, ξ,Ψ} Each of
these parameters is estimated similarly to (Ghahramani and
Hinton 1996) by taking the corresponding derivative of the
eq.(2), setting it to zero, and by solving it analytically. Up-
date rules for Ω\A = {C,R,Q, ξ,Ψ} are as follows:

C(k+1) =
( T∑

t=1

ytE[zt|y]
′)( T∑

t=1

E[ztz
′
t|y]
)−1 (10)

R(k+1) =
1

T

T∑
t=1

(
yty

′
t − C(k+1)E[zt|y]y

′
t

)
(11)

Q(k+1) =
1

T − 1

( T∑
t=2

E[ztz
′
t|y]−A(k+1)

T∑
t=2

E[ztz
′
t−1|y]

)
(12)

ξ(k+1) = E[z1|y] (13)

Ψ(k+1) = E[z1z
′
1|y]− E[z1|y]E[z1|y]

′
(14)
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Algorithm 1 Parameter estimation in rLDS
INPUT: Initialization Ω(0) = {A(0), C(0), Q(0), R(0), ξ(0),Ψ(0)}.
PROCEDURE:
1: repeat
2: E-step: estimate E[zt|y], E[ztz

′
t|y] and E[ztz

′
t−1|y].

3: M-step: M1:estimate C,R,Q, ξ,Ψ by eq.(10) - eq.(14)
4: if rLDSG then
5: M2:estimate A by SOCP solvers.
6: end if
7: if rLDSR then
8: M2:estimate A by generalized gradient descent algo-

rithm.
9: end if

10: until Convergence
OUTPUT: Learned LDS parameters: Ω̂ = {Â, Ĉ, Q̂, R̂, ξ̂, Ψ̂}.

Summary of the learning algorithm The entire parame-
ter estimation procedure for rLDS is summarized by Algo-
rithm 1.

Experiment
In this section, we will (1) verify that our regularized LDS
approach indeed results in a low-rank solution and (2) show
that our rLDS models are able to alleviate model overfitting
by starting the learning process from a large initial hidden
state space and by working with small amounts of training
data. Experiments are conducted on both synthetic and real-
world datasets. We would also like to note that the hyper
parameters (λ1, λ2 and λ3) used in our methods are selected
(in all experiments) by the internal cross validation approach
while optimizing models’ predictive performances.

Baselines
We compare the two instances of our rLDS framework, i.e.,
rLDSG and rLDSR to the following LDS learning baselines:
• LDS learned using the standard EM learning algorithm

(EM) (Ghahramani and Hinton 1996) that iteratively finds
the maximum likelihood solution.

• Subspace identification algorithm (SubspaceID)
(Van Overschee and De Moor 1996). SubspaceID
computes an asymptotically unbiased solution in closed
form by using oblique projection and SVD.

• Stable linear dynamical system (StableLDS) (Boots, Gor-
don, and Siddiqi 2007). StableLDS constrains the largest
singular value of the transition matrix to ensure the stabil-
ity of LDS models.

Evaluation Metrics
We evaluate and compare the performance of the different
methods by calculating the average Mean Absolute Percent-
age Error (Average-MAPE) of models’ predictions. Aver-
age MAPE measures the prediction deviation proportion in
terms of the true values:

Average-MAPE =
1

nT

n∑
i=1

T∑
j=1

|1− ŷij/yij | × 100%

where | · | denotes the absolute value; yij and ŷij are the jth
true and predicted observations from time series i. n is the
number of time series and T is the length of a MTS.

Datasets
Synthetic Data To get a good understanding of our ap-
proach, we first test it on synthetic data. We generate our
synthetic MTS dataset of length T = 200 using a 20-state
LDS with zero-mean, 0.01 variance Gaussian innovations.
A uniform random emission matrix C is used to generate
20 measurements at each time stamp t with i.i.d. zero mean
variance 0.01 measurement noise. We uniformly and ran-
domly generate a 20 × 20 matrix, normalize its SVD de-
composition by its largest singular value to ensure its stabil-
ity and truncate its 10 smallest singular values to obtain an
exact 10-rank matrix A. We train both rLDSG and rLDSR
with the different state sizes, i.e., d = 15, 20 and 30. The
results of rLDSG and rLDSR for recovering MTS intrinsic
dimensionality are shown in Figure 1. Figure 1 shows the
shrinkage changes of 20 singular values from A. We can see
that both the multivariate Laplacian prior and the nuclear
norm prior lead us to a low-rank transition matrix and that
our rLDS framework is able to recover the correct dimension
even if the dimensionality of the initial state space is large.

Production and Billing Data We use production and
billing figures data (Reinsel 2003) as a benchmark data set2
for the time series prediction experiments. The data is a bi-
variate time series of length T = 100. We run various LDS
learning baselines on the first 60 observations of this data
and use the remaining 40 for testing. First we train the LDS
models with the standard EM algorithm and vary the state
space size of the LDS from 1 to 13. The prediction results
are shown in Figure 3. As we can see, the prediction per-
formance varies a lot with the different number of hidden
states we use in the model and the LDS model tends to over-
fit the data when the state space becomes large. For exam-
ple, an LDS with 13 states that shows significant prediction
performance deterioration uses a 13 × 13 transition matrix.
However, its is trained on only 60 × 2 = 120 data points. In
contrast to this, our rLDS approach was run on 15 and 25
initial states and the results show that the approach is able to
shut down unnecessary dimensions and capture the dynam-
ics using a lower-dimensional hidden state space representa-
tion (See Figure 4). In order to gain a more comprehensive
insight into rLDS’s prediction abilities, we explored numer-
ous initial state space sizes (We also varied the training size:
90 for training and 10 for testing, due to the space limit,
we put the results in the supplement material.) The results
of these experiments are summarized in Table 2 which show
that our rLDS methods is able to outperform all the baselines
in terms of their prediction performance.

Clinical Data We also test our rLDS on a MTS clinical
data obtained from electronic health records of post-surgical
cardiac patients in PCP database (Hauskrecht et al. 2010;
Valko and Hauskrecht 2010; Hauskrecht et al. 2013). We
take 500 patients from the database who had their Complete

2http://www.stat.wisc.edu/∼reinsel/emtsa-data/prod-bill
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Figure 1: State space recovery on a synthetic dataset.
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Figure 2: State space recovery on a clinical dataset.

Table 2: Average-MAPE results on Production and Billing dataset with 60 training and 40 testing.
# of hidden states 2 3 4 5 6 7 8 10 12 14 16 18 20 30

EM 5.3373 5.5524 5.0509 5.0554 5.7982 5.4934 5.2820 4.9238 5.5338 5.3662 5.2434 5.6036 5.3460 5.6191
SubspaceID 6.2172 5.9854 4.6016 4.8212 4.9923 4.8569 5.4445 5.3183 5.2360 5.3034 5.3023 5.8577 5.7320 5.6683
StableLDS 6.2172 5.9854 4.6016 4.8212 4.9923 4.8569 5.4445 5.3183 5.2360 5.3034 5.3023 5.8577 5.7320 5.6683
rLDSG 6.2172 5.9854 4.6016 4.8212 4.9923 4.8569 5.1989 5.1876 5.2016 5.3034 5.1499 5.1792 5.1588 5.2175
rLDSR 5.2210 5.2065 4.6016 4.8212 4.9923 4.8569 5.2031 4.9005 4.8618 5.0249 5.0135 5.0169 4.9559 5.2235
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Figure 3: LDS EM overfit-
ting in benchmark data.
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Figure 4: rLDS state size re-
covery.

Blood Count (CBC) tests 3 done during their hospitalization.
The MTS data consists of 6 individual CBC lab time series:
mean corpuscular hemoglobin concentration, mean corpus-
cular hemoglobin, mean corpuscular volume, mean platelet
volume, red blood cell and red cell distribution width. We
have randomly selected 100 patients out of 500 as a test set
and used the remaining 400 patients for training the models.
We first run standard EM to learn an LDS from the training
data and varied the initial hidden state space sizes from 1 to
30. The results showing the average MAPE on the test set
are summarized in Figure 5. The results show an overfitting
pattern very similar to the pattern seen in Figure 3 for the
production data. After that we applied our rLDS approach
using models with 10, 20 and 30 initial states and the same
train/test data splits. The results are listed in Figure 2 and
Table 3. Once again the results show that our rLDS methods
are very robust and lead to better prediction performance in
the majority of the experiments.

Conclusion
In this paper, we presented a regularized LDS learning
framework for MTS modeling. Comparing with the tradi-
tional LDS learning algorithms, the advantages of our rLDS

3CBC panel is used as a broad screening test to check for such
disorders as anemia, infection, and other diseases.
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Figure 5: LDS EM overfitting with different training sizes in
clinical data.

Table 3: Average-MAPE results on Clinical dataset with dif-
ferent training sizes.

Training Size: 50 Training Size: 400
# of states 10 20 30 10 20 30
EM 6.28 17.24 23.98 4.43 5.91 5.72
SubspaceID 6.55 6.99 7.44 6.10 6.16 6.27
StableLDS 6.54 6.99 7.40 6.10 6.16 6.27
rLDSG 4.98 4.97 4.86 4.51 4.25 4.35
rLDSR 4.65 4.95 5.01 4.65 4.46 4.67

are: (1) it automatically seeks the intrinsic state dimension-
ality; (2) it is robust in preventing model overfitting even
for a small amount of MTS data; and (3) it is able to make
accurate MTS prediction. Experiment results on both syn-
thetic and two real-world datasets demonstrated that rLDS
outperforms other state-of-the-art LDS learning approaches
in terms of MAPE and effectively prevent LDSs from over-
fitting the data even with a large initial state space. In the
future, we plan to study a combination of our regularized
framework with spectral learning algorithms for LDS.
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