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Abstract

Current diagnostic methods for mental pathologies, including
Post-Traumatic Stress Disorder (PTSD), involve a clinician-
coded interview, which can be subjective. Heart rate and skin
conductance, as well as other peripheral physiology mea-
sures, have previously shown utility in predicting binary di-
agnostic decisions. The binary decision problem is easier, but
misses important information on the severity of the patients
condition. This work utilizes a novel experimental set-up
that exploits virtual reality videos and peripheral physiology
for PTSD diagnosis. In pursuit of an automated physiology-
based objective diagnostic method, we propose a learning
formulation that integrates the description of the experimen-
tal data and expert knowledge on desirable properties of a
physiological diagnostic score. From a list of desired criteria,
we derive a new cost function that combines regression and
classification while learning the salient features for predict-
ing physiological score. The physiological score produced
by Sparse Combined Regression-Classification (SCRC) is as-
sessed with respect to three sets of criteria chosen to re-
flect design goals for an objective, physiological PTSD score:
parsimony and context of selected features, diagnostic score
validity, and learning generalizability. For these criteria, we
demonstrate that Sparse Combined Regression-Classification
performs better than more generic learning approaches.

Introduction

Prevalence rates of Post-Traumatic Stress Disorder
(PTSD) in veterans returning from Iraq varies from
4 — 18% (Richardson, Frueh, and Acierno 2010) and
costs related to treatment for PTSD and depression in
this population is estimated to be $923 million (Kilmer
et al. 2011). Like other mental pathologies, PTSD is
currently defined by behavioral symptoms as interpreted
by a clinician (American Psychiatric Association 2013).
For PTSD, a structured clinical interview is the current
gold standard diagnostic tool. To diagnose, a clinician
codes the patient’s responses to questions that each address
one of three categories of symptoms, counts the number
of expressed symptoms per category and combines in a
predetermined fashion to produce a clinical score, then
compares the score to a threshold to reach a final diagnosis
(healthy or PTSD). The clinical interview provides a score
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based on patient self-reports after a time consuming and
expensive process, SO a more objective, easier to administer
diagnostic tool is sought. Although definitive physiological
bases have yet to be characterized well enough to build
a test, prior work has demonstrated that measurements of
peripheral physiology can be used to predict diagnostic class
assigned by the clinician (Orr, Metzger, and Pitman 2002;
Webb et al. 2013; Pitman et al. 1987). We seek to advance
this line of work by producing a score which provides a
finer degree of granularity, necessary for treatment planning
and monitoring.

The ultimate goal is a parsimonious but generalizable fea-
ture set and a function for synthesizing them into a single
score that can assist in the diagnostic process. The problem
at hand is somewhat circular; the gold standard for diagno-
sis is the clinical score, but the motivation for an alternate
score is the weaknesses in that score. This requires a careful
construction of the problem for learning and creates a more
urgent need for a collaboration between an Al researcher
and the domain experts — black box application of machine
learning tools would provide an inadequate result for this
important societal challenge.

Technically, this goal resembles two well studied machine
learning tasks: feature selection and regression. As we un-
derstand the context of the problem however, we find that
subtleties in the data available for learning and additional
contextual problems motivate a novel formulation of the
problem. For a well defined task and data that meets under-
lying distribution assumptions, an algorithm’s relative per-
formance can be reliably distilled to a single quantity. For
a real world problem, including research questions in other
disciplines, this is more challenging. Carefully construct-
ing performance measures suited to the unique application
area is an imperative step toward enabling the insights pro-
vided by the solution to have an impact in the application
area (Wagstaff 2012).

To advance the state of the art in PTSD diagnosis, our
solution should be a parsimonious, generalizable, and di-
agnostically valid model. We will refer to these as solution
desiderata. Next we describe the specific experimental pro-
tocol we will use to develop a physiological PTSD score. We
use the context of this experiment, expert knowledge about
current diagnostic procedures, and the solution desiderata
to formulate an application-specific technical problem in



the form of a list of learning desiderata. We propose a
sparse combined regression and classification formulation
that meets the learning desiderata and position it within re-
lated technical literature. Finally, we assess the suitability
of the learning formulation through computational experi-
ments using a set of performance measures that combine the
long term objective to improve diagnostic procedures, and
the specific goals of the current stage of the project (proof of
concept) through the solution desiderata.

The contributions of this paper are: with respect to the
application, (1) a candidate physiological scoring function
as an alternative to the more expensive and time-consuming
clinician interview-based gold standard clinical score; and
with respect to machine learning, (2) a Sparse Combined
Regression-Classification (SCRC) formulation that takes
into account the desired properties of a physiological score
as provided by a domain-expert; and (3) evaluation measures
tailored to this application.

Problem Definition

While mental pathologies are presently defined by behav-
ioral changes, we rely on the assumption that these changes
are the result of a change in the way a person’s brain
processes various events. Current diagnostic methods re-
quire the clinician to ask the patient to introspectively as-
sess past behavior as an indirect measure of this change in
brain processing. We propose peripheral physiological sig-
nals as a more objective, though still indirect measure of
this change. Experimentally, we expose the subjects to non-
idiographic virtual reality videos thematically reminiscent
of their trauma and record physiology in order to develop
a proof of concept advance in the science. The underlying
mechanisms of PTSD are not well understood so we limit
our investigation to discriminative approaches.

In contrast to the current gold standard for diagnosis, (the
Clinician Administered PTSD Scale (CAPS) (Blake et al.
1995)) which is computed from a clinician-coded structured
clinical interview, we propose a diagnostic score objectively
computed from measured signals. Specifically, the current
task is to learn a scoring function for computing a physiolog-
ical PTSD diagnostic score that is in agreement with current
clinical understanding. First we present a detailed descrip-
tion of the data to define the problem with respect to the
application and then a technical specification of the problem
we can use to develop and assess the solution.

PTSD Study and Pre-processing

For this work, we use data from a pilot-scaled study examin-
ing physiological response of PSTD by presenting the sub-
jects with virtual reality videos (Webb et al. 2013). In partic-
ular, male veteran subjects were shown two non-idiographic
videos generated with the Virtual Iraq software originally
designed for treatment applications'. One video was de-
signed to emulate a foot patrol in a city setting, and the other

'The authors thank Albert Skip Rizzo at the Institute for Cre-
ative Technologies for providing the Virtual Iraq software used for
the creation of the virtual reality videos.
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was a humvee driving scenario. Each contained five increas-
ingly intense events (i.e., helicopter flying over to insurgent
firing a weapon) spaced approximately every 45 seconds.

All procedures were IRB approved and all subjects pro-
vided informed consent. Prior to the experimental protocol,
a clinician-administered interview was conducted to deter-
mine the clinical score for each subject. The clinician codes
subject responses into binary scores for each item, counts
to produce sub-scores by category (predetermined groups of
items) and combines them following a standard procedure
to compute a total score (integer valued). During the ex-
perimental protocol, the BIOPAC system was used to mea-
sure physiological signatures from each subject, using only
the two most expressive BIOPAC channels as determined
by prior work: Electrocardiogram (ECG) and Galvanic Skin
Response (GSR) (skin conductance) (Carson et al. 2000;
Orr et al. 1998; Goldfinger, Amdur, and Liberzon 1998;
Orr et al. 2000; Pole 2007).

The Inter-Beat-Interval (IBI) signal was computed from
the ECG recording using automated peak-detection. The
IBI and GSR signals were segmented into 20 second win-
dows, called response curves, beginning at each video event.
Eleven (11) features commonly used to study various psy-
chological concepts, including peak amplitude, standard de-
viation, and area to full recovery were extracted from each
of the ten (10) response curves (for a total of 110 features
per subject) (Kircher and Raskin 1988; Webb et al. 2013).
Fifty-seven (D = 57) features remained for use in learning
a score after preliminary class-wise analyses (Webb et al.
2013). These are concatenated into a single feature vector
for each subject.

To allow meaningful comparisons across subjects and
physiological channels, the within-subject mean was sub-
tracted from each feature and features were normalized by
the within-subject standard deviation to produce the final
feature vector, x; € RP, for each subject © € 1..., N.
After removing subjects with missing data for any reason
N = 38 subjects (22 trauma, 16 PTSD) remained for learn-
ing and assessment as described in the rest of this paper. The
matrix constructed by concatenating data from all subjects is
X € RP*N and the vector of all clinical scores is y € R.

Learning Desiderata

Given the context afforded by expert knowledge of the prob-
lem, the experimental description above is an insufficient
technical specification. To solve, we must also quantify the
desired properties of the new score and the limitations of the
measurements drawn from expert knowledge. We distill in-
sight from expert consultation and data-set examination into
the following four learning desiderata, including both de-
sired properties for a physiological score, y?, and limitations
on how to learn from the clinical score, y§ (for subject 7).

1. Linearity: Linear with respect to physiological features:
yi = flxi) =] B.

2. Sparsity: Dependent on only a small subset of the physi-
ological features. Several 3y = 0.

3. Severity: Preserve ranking provided by clinical scores:
y; = g(yg), with g nondecreasing y; > y; — y; >y}



4. Ambiguity: Identical clinical scores do not indicate iden-
tical status. Zero scores are especially non-specific, it
only indicates that these subjects present no symptoms.
ys =0 — y? < e for some e near 0.

This list is motivated by the solution desiderata and will
serve as a framework for developing a learning algorithm.
We expand upon each item by highlighting the key insights
summarized and relation to the solution desiderata expressed
in the introduction.

Linearity Prior work has suggested that linear models us-
ing a standard set of features works well for the binary
diagnosis problem (Webb et al. 2013). As an application,
as encapsulated by our solution desideratum of parsimony,
it is important to provide a solution that is human inter-
pretable, so that users will trust it (Giraud-Carrier 1998;
Rudin and Wagstaff 2014); linear models fulfill this objec-
tive. Further, linear models are computationally attractive as
they rely on fewer parameters than more complex choices.

Sparsity A sparse coefficient vector yields a score that is
dependent on only a small number of features. This supports
the solution desideratum for parsimony. Sparsity or feature
selection is necessary because although after preprocessing
we only have 57 features, this is large compared to only 38
subjects. Using all of the candidate features to learn the func-
tion parameters would over-fit to this experimental data thus
contradicting our solution desideratum of generalizability.

Severity The gold standard clinical diagnostic tool, the
CAPS score, may be interpreted as a ranking of the severity
of subjects’ condition because it does not have physically in-
terpretable units, it is derived from a coded interview. Main-
taining this ranking is essential to the solution desideratum
of diagnostic validity. The distinction between the technical
specification of the linearity and severity criteria is an im-
portant subtlety of the requirements. The learned function
should be linear in the features, but it does not need to be
linearly related to the clinical score.

Ambiguity Subjects with a zero clinical score experienced
trauma, but present with no symptoms. The fact that they
have the same CAPS score does not necessarily indicate
the same underlying health status. The CAPS score was de-
signed to diagnose unhealthy subjects, so it is nonspecific
in this realm. Our physiological score need not lump these
subjects tightly together, only ensure they are not scored
near the subjects presenting with symptoms. This learning
desideratum formalizes the distinction between achieving
the solution desideratum of diagnostic validity and solving a
prediction problem.

Combined Sparse Regression-Classification

General supervised learning frameworks posit that for data
(x,7), where x € RP is input data sample and y is the tar-
get output, there exists a function y = f(x). In this setting,
the goal is to use training samples of (x,y) pairs to uncover
f or its parameters, so that for new observations of x the ap-
propriate y can be predicted. Alternatively we interpret the
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description in the prior section to define data (x,y¢), a de-
scription of the relationship y” = g(y°) and some properties
of the form of f, where y? = f(x). The end goal is to com-
pute y? = f(x) for a new observation of x. However, learn-
ing f is less straight forward in this case. In other words, our
target task output is the physiological score, y”. However,
our training data contains pairs of (x, ). The information
on y? = g(y°) and the form of f are represented in the list
of learning desiderata.

Formulation

We propose that a unifying cost function combining regres-
sion loss, classification loss, and sparse regularization will
meet all of the learning desiderata. Further, we assert that
loss should be defined differently per subject, based on the
information available. In (1a) we define our SCRC formu-
lation using ¢, regression loss, hinge classification loss, and
an ¢; regularization term. To denote the subjects with zero
and nonzero clinical scores, we will use subscripts Z and Z
respectively, X = [XzX 7] up to subject permutation. For
example X ; is the matrix of all of the features for the sub-
Jects with nonzero clinical scores and y7 is the correspond-
ing clinical score vector. We use ¢ € Z to denote the set of
indices corresponding to subjects with a zero clinical score,
suchthat ZUZ =1,...,N.

N
min 1| XZ8 =y I3 +72 ) Lu(yix:" ) + M8l

1=1

(1a)

Lyl %7 B) = max(0,1 — yix; T B) (1b)
a_Jd Y>>0

e {—d yi=0 (e

where L, defined in (1b), is called hinge loss and yfl is a
scaled (d = 65, middle of y° range) binary classification
label for each subject having a zero clinical score or not as
defined in (1c). We use ;1 and o to weigh those two terms
based on the number of subjects used in each and find that
solutions are not dependent on this choice.

Linearity After learning the [ that satisfies the optimiza-
tion problem in (1a), we compute a physiological score, y?,
that is linear with respect to the features, x;, yf = xiTB.

Sparsity To learn the subset of features that is most use-
ful, we use a sparse regularization term: ¢; in (la). The A
controls the degree of sparsity in 3, with A inversely propor-
tional to the number of features retained.

Severity As a function of yy, this objective function is
piecewise linear, which is nondecreasing; thus, meeting our
severity-preserving criterion. The squared loss term is linear,
hence in that range of y¢ we expect y¥' = y¢,i € Z, which
preserves the ranking for those subjects. The hinge loss term
uses a saturated version of y;.

Ambiguity The hinge loss term in (la) models the am-
biguity in the clinical scores of zero by optimizing such



that y¥ < y?,Vi € Z,j € Z. For subjects without symp-
toms (2 € 7 ), the physiological score only needs to be be-
low a threshold, since these subjects are not included in the
squared loss term which has specific target values.

Optimization

We solve the optimization problem using the Alternating Di-
rection Method of Multipliers (ADMM) which solves un-
constrained optimization problems by considering each term
to operate on a local variable and constraining the solution
to force consensus (Boyd 2010). The ADMM iterations for
(1a) are shown in (2) with iteration indexed by superscript
t. The first update is regularized least squares, or ridge re-
gression, the second resembles a Support Vector Machine
(SVM), and the third is a shrinkage operator.

= (XXT + pI)71 (XTy + p(B" —u})) (2a)

N
. 14
= a%121n E_l Ly (yzd7XiTB2) + 5”52 + 4"+ ublf;

(2b)
BN =8. (53 BT = ulb)) (20)
uih =ul, + 8L + 5! 2d)

where p is the augmented Lagrangian variable and controls
how much the difference between solutions regularizes the
next iteration thus only influencing convergence rate, not the
final solution. The S, (a) is the soft threshold function. We
use a stochastic gradient descent for the hinge loss term.
ADMM convergences under nonrestrictive conditions: (1)
the function in each term must be closed, proper and con-
vex, and (2) the Lagrangian must have a saddle point (Boyd
2010). Squared loss, hinge loss and ¢; are each closed,
proper and convex and their independent solutions imply a
saddle point in the ADMM form of the objective.

Related Work

There are key distinctions between SCRC and related techni-
cal solutions. First we note that combining the two loss func-
tions into a single optimization problem is different from
executing two learned models in sequence. Because the fea-
tures for each task, regression and classification, are differ-
ent, a subject that is near the decision boundary in the binary
decision feature space can have a score based on the regres-
sion features that indicates a severe condition. If the binary
decision boundary moved just a small amount, that subject
would then be marked healthy- this sensitivity is undesir-
able. We avoid this by learning the features and weights that
satisfy both objectives simultaneously.

Linear Regression and LASSO

Linear regression is a standard approach to learning coeffi-
cients for a linear combination of the input variable to pre-
dict the output variable. The Least Absolute Shrinkage and
Selection Operator (LASSO) method adds a ¢; regulariza-
tion term to the squared loss term of linear regression (Tib-
shirani 1996). This modification produces a sparse result,

1703

thus performing feature selection integrated into the regres-
sion problem.

min X758 = yl3 + Al (3)
Relative to LASSO the SCRC incorporates the additional
knowledge that we have about the zero clinical scores by
excluding them from the squared loss term and treating them
as a classification problem.

Combined Regression and Ranking

Combined regression and ranking is a tunably (via «)
weighted sum of two loss functions and a /5 regularization
for model complexity tradeoff, shown in (4) (Sculley 2010).
Any loss function can be used for either the regression term
or the ranking term; they differ in how the data are used.
A regression loss function is computed for each sample di-
rectly between the prediction f (£, x;) and the measured la-
bel, y;. A ranking loss term is computed for each pair of
samples from a prediction made on signed distance in fea-
ture space, f(3, x;—x;), and a binary representation of their
ranking t(y;, y;).

Il’l‘gn (]. — Oé) Z »Crank(t(yi; yj)7 f(ﬁvxi - x]))

i,jEP(N)

N
FMBIB + @ Lueg(yir £(8,%1)) )

=1

where P(N) is all of the unique 7, j pairs for N samples. The
SCRC is nearly a sparse variation of (4) using least squares
loss for regression and hinge loss for ranking due to the sim-
ilarity between a ranking loss and classification. However,
we use additional knowledge about the context of the prob-
lem to ignore the regression loss for some and reduce the
pairwise ranking loss to a subject-wise classification loss.
This insight eliminates the need for a computational trick
to speed up computation, since we are not comparing every
pairwise relationship.

SVM and Rank SVM

A linear SVM uses hinge loss to find the projection that
provides the maximum margin between the two classes of
data so that a hyperplane can be applied as a decision
boundary (Cortes and Vapnik 1995). RankSVM solves the
problem of ranking a series of objects by considering the
set of all pairwise comparisons and optimizing to preserve
pairwise rankings problem that can thus be solved with
an SVM (Joachims 2002). The optimization problem for
RankSVM is:

min Y- (1= (- 98" 0 =), + 813 5)

i,jEP(N)

where P(N) is again all of the unique ¢, j pairs for N sam-
ples. The first term is hinge loss, L ((y;i —y;), 87 (x; —%;))
as in our formulation. SVM solutions are sparse, but with re-
spect to the samples, not the features as in SCRC. Further,
we add the additional condition that we also have a regres-
sion loss term.



Computational Experiments

A comprehensive, context sensitive evaluation is important,
as the application is central to the contribution of this paper.
Here we assess the solution provided by our SCRC formula-
tion with respect to the solution desiderata defined in the in-
troduction: parsimony and context, diagnostic validity, and
generalizability. First we describe the general environment
used for testing, then define how we assess and discuss the
results relevant to each desideratum.

We present results comparing the SCRC only to LASSO
as defined in (3). It is the closest approach in computation
and provided outputs. The combined regression and rank-
ing formulation with sparsity suffers similar challenges to
LASSO as a key novelty is in the division of subjects. Both
problems were solved using ADMM, the LASSO code is
from supplemental materials for (Boyd 2010).

Results presented use p 1.0, based on guidance
in (Boyd 2010) and confirmation of solution insensitivity to
this ADMM parameter. The data matrices X 7 and X are
augmented with a column of ones to provide a linear offset
term, as is typical in linear modeling. We fit the models for
100 values of A spaced uniformly in log-space in a range
selected dependent on the infinity norm of the training data.
We run tests for both K = 7 fold (folds balanced for diag-
nostic class) and leave-one-out cross validation.

Diagnostic Score Validity

To assess clinical validity, we compute average performance
in the K = 7 fold cross validation results. As the primary
measure of fit, we introduce MSEyNz (6¢): normal mean-
square error for the subjects with a non-zero clinical score
(¢ € Z) and one-sided error for the subjects with a zero
clinical score (i € Z). For subjects with a clinical score of
zero, any negative physiological score is considered zero er-
ror. Per the severity desiridatum, ranking is important, so we
compare the solutions on the Spearman correlation coeffi-
cient, pg (6d). We test the physiological score in its ability
to return a diagnostic classification that matches the clinical
diagnosis (df = y§ > 6°) by comparing the learned score y?
to a range of thresholds (6°) to produce a physiological diag-
nosis and receiver-operating curve, from which we compute
an area under the curve (AUC).

vl =5"x (6a)
A=ZU{i;yf >0} (6b)
1
MSEnz(6) = D oW - )’ (6¢)
i€A
ps = Lin (Rank (y?), Rank (y¢)) (6d)

We denote Pearson linear correlation with Lin(-) and define
Rank as ascending with the position average assigned to ties
(i.e.: Rank ([10,37,25,40,25]) = [1,4,2.5,5,2.5]). Fig-
ure 1 shows that SCRC outperforms (lower MSEnz, higher
AUC) LASSO for small values of A. The smallest values of
A for which lasso is better in MSEyy, it is worse in AUC,
so in this range, although the average fit is better, LASSO
makes mistakes in more crucial areas, near the diagnostic
threshold. The performance of SCRC is nearly constant for
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Figure 1: The model fit, as defined in (6¢). Left: MSENz
and Right mean AUC, both versus log(\). Red traces are the
LASSO solution, blue are the SCRC. The bold traces are
means and finer traces are +/- one standard deviation. The
dashed line shows MSE (left) and AUC (right) for a naive
prediction (sample mean/chance).

small values of A, suggesting a more robust learning scheme
and more generalizable solution.

Learning Generalizabilty

We propose stability-related metrics to quantify generaliz-
abilty based on numerous results linking notions of cross
validation stability to the generalization power and statisti-
cal consistency of learning algorithms (Bousquet and Elis-
seeff 2002; Mukherjee et al. 2006; Lange et al. 2002). The
intuition is that swapping out one sample is a small per-
turbation at the input of the optimization problem, and that
therefore the changes at the output, the resulting 3, should
be small as well, if the model matches the data. We use
B()\) € RP*¥ (o denote the N solutions provided for each
Aanduse k € 1,..., K to index these solutions. We use f
to index elements of 3, corresponding to individual features.

We introduce the concept of feature persistence to mea-
sure feature-selection stability of SCRC across the whole
set of Leave-One-Out (LOQO) solutions as an alternative
to pairwise subset similarity measures as in (Yu, Ding,
and Loscalzo 2008; Kalousis, Prados, and Hilario 2005;
Kuncheva 2007). The Feature Persistence Rate (FPR) mea-
sures how often a feature, f is active, as the percentage
of folds, k, for which By ;(\) is nonzero, for a given A
as shown in (7a). A feature, f is persistent at level a €
[0,...,1] for a given value of A if FPR(f, \) > «. Every
feature would have a FPR of either one or zero (always on
or always off) in an ideal solution.

county (|B.x(A)| > 0)
N
3 {11( > Bri(A) FPR(f,))) >«

FPR(f,\) = (7a)

Brde) =1, B (7b)
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Figure 2: Feature Persistence log(A) = 1.92, & = 0.97. Left:
Histogram counts of features for each FPR. Right: (in color)
Mean feature weights for the a = 0.97 persistent features,
dark gray were excluded in preprocessing, the light gray
were excluded by sparsity; columns represent video events
and the rows physiological features.

LASSO SCRC

Figure 3: Qualitative illustration of model fit for & = 0.97
persistent features for log(\) = 1.92, these use the features
as shown in Figure 2. Each point is a subject, represented by
a (y“y;) pair, using the mean weights for o = 0.97 persis-
tent features to compute y”.

In Figure 2 we see that in the left column, the distribution
of FPRs from SCRC is more polarized than that of LASSO,
a more persistent solution. We present an overall solution
computed using S(log(A) 1.92,a = .97) to compute
the physiological score for each subject as shown in Figure
3). This figure qualitatively illustrates the difference in the
solutions provided by LASSO and SCRC. This shows that
the performance difference is largely in the subjects with a
zero score, SCRC keeps these subjects’ scores below zero,
confirming that the unique learning paradigm we present
achieves the desired effect. We present the diagnostic valid-
ity measures on this solution in Table 1, which shows that
with fewer features the overall solution for SCRC outper-
forms on all metrics.

Parsimony and Context

Finally we consider the context of the solution by exam-
ining the structure of the returned coefficient vector, 5. To
achieve parsimony, 3 should be sufficiently sparse to avoid
over-fitting. We quantitatively assess this through the num-
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Metric | LASSO | SCRC
ps 0.70 0.83
MSEn7 646.0284 | 628.0155
AUC 0.85 0.89
Features Count 13 9

Table 1: Diagnostic validity measures for the solution shown
in the right subfigures of Figure 2 and all of Figure 3.

ber of retained features. To agree with other literature, based
on expert insight, the nonzero elements of 3 should corre-
spond to features from both measurement channels (IBI and
GSR) and multiple video events.

The right column of Figure 2 illustrates an averaged, per-
sistent at level « 0.97 solution instead of choosing a
single fold. We note that features kept are from both the
GSR and IBI signals. Time is not modeled explicitly but the
learned score can depend on changes in feature values over
the course of time, because each feature value is computed
for a variety of times (video events). The solutions from the
two models are similar, but as we saw above, SCRC uses
slightly different weights and fewer features, which is more
parsimonious, supporting our final solution desideratum.

Discussion and Conclusions

In this work we present a learning paradigm to support
development of a physiologically based PTSD diagnostic
score. Our method uses the available measurements from an
experiment where virtual reality videos were used to evoke
a physiological response measured through IBI and GSR.
The solution unifies regression and classification loss func-
tions with a sparse regularization term. As a directly com-
petitive method does not exist, we compare the SCRC to
a computationally similar, but application-naive approach,
LASSO. Our method provides more parsimonious, diagnos-
tically valid, and generalizable results than the alternative.

Experimentally, these results demonstrate merit for an ex-
panded subject enrollment and further collaboration with
clinically focused researchers. Additionally, conducting an-
other, longer study would allow for inclusion of multi-
ple clinical interviewers to assess inter-rater reliability and
agreement of each with these physiologically based scores.
This work stems from a proof-of-concept scaled exploration
into using non-idiographic virtual reality videos, like those
previously used in treatment. Individual items or groups of
items of the CAPS, which correspond to symptoms and cat-
egories of symptoms, is also a candidate area for future ex-
ploration.

Future technical extensions of the work can explore ana-
lytical relationships of the heuristically derived performance
metrics, and the automated selection of the regularization
parameter, A. The method is presented as derived from an
empirical risk minimization perspective, but a probabilistic
interpretation may provide added insight.
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