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Abstract

Motivated by problems such as molecular energy pre-
diction, we derive an (improper) kernel between geo-
metric inputs, that is able to capture the relevant ro-
tational and translation invariances in geometric data.
Since many physical simulations based upon geomet-
ric data produce derivatives of the output quantity with
respect to the input positions, we derive an approach
that incorporates derivative information into our ker-
nel learning. We further show how to exploit the low
rank structure of the resulting kernel matrices to speed
up learning. Finally, we evaluated the method in the
context of molecular energy prediction, showing good
performance for modeling previously unseen molecular
configurations. Integrating the approach into a Bayesian
optimization, we show substantial improvement over
the state of the art in molecular energy optimization.

Introduction

This paper focuses on learning from geometric data, where
each input to the learning problem consists of a set of
points, typically in two or three dimensional space. While
many physical problems take this form, we focus here on
the task of molecular energy prediction from input data
describing the 3D configuration of atoms. This problem
has been studied before in the machine learning literature,
though in a slightly different context (Rupp et al. 2012;
Montavon et al. 2012), and has numerous applications rang-
ing from energy materials to drug design. The basic task here
is, given a set of atoms and their respective 3D positions,
to predict the energy of the resulting configuration; since
molecules in nature will typically settle in minimum energy
configurations, in finding minima of these functions we can
assist in the design of new materials. Physically-based sim-
ulation to determine these configurations, notably methods
based upon density functional theory (DFT) approaches, are
a very mature technology, but are a very computationally in-
tensive process. The canonical problem we consider in this
paper, therefore, is the task of learning a faster surrogate
function for this expensive process, using machine learning
techniques. This can be used simply as a means of predicting
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the energy of new configurations, or within a Bayesian opti-
mization procedure for finding the minimum energy config-
uration for a molecule.

A main contribution of this paper is the development of a
(improper) kernel approach to dealing with this data, based
upon the singular value decomposition. Geometric learning
problems of the type we consider typically exhibit certain
invariances, such as translational and rotational invariance
(i.e., rotating or translating all the atoms on a molecule do
not actually change any qualitative information about the
molecule, since it remains the same molecule), and we de-
rive a kernel formulation that respects these invariances. Fur-
thermore, because many physical simulations that serve as
the input to such geometric methods (notably those based
upon adjoint methods) can also provide derivatives of the
output quantity with respect to all point locations, we de-
rive an approach to including derivative information into
our kernel learning. Finally, we highlight the method on ex-
amples from the molecular energy prediction task, showing
good performance in modeling previously unseen configura-
tions. Incorporating the method into a Bayesian optimization
framework, we show significant improvement over existing
state of the art in molecular energy optimization.

Related work

This work builds upon a number of different approaches
in kernel methods, computer vision, Bayesian optimization,
and applications to material science. Kernel methods have
long been applied to spatial data in general (see, e.g. (Pozd-
noukhov 2009)), which shares a high-level similarity to the
work we present here in that both methods use 2D or 3D co-
ordinates as input to a learning system. However, the work
presented here differs substantially from most work in spa-
tial learning, as the goal there is typically to predict a quan-
tity at a single spatial point (and thus the notions of trans-
lational and rotational invariance are specifically inapplica-
ble). In contrast, the work here looks at developing a kernel
that measures similarity between configurations of multiple
points, while respecting certain invariances in the data.

The basic singular value decomposition (SVD) approach
that we use, for finding optimal translation and rotations be-
tween molecules, has been previously studied for some time
(Horn, Hilden, and Negahdaripour 1988), and has been used
in the vision community as a subroutine for fast geometric



transforms (Lu, Hager, and Mjolsness 2000). However, the
main contributions over this basic approach in the current
work are: 1) the introduction of a kernel based upon this
SVD-based distance metric, and 2) the derivation of func-
tional derivatives of this kernel in a compact form, which
is of particular importance for the domain of molecular en-
ergy prediction. This last item also exploits work in kernel
methods for incorporating derivative information in Gaus-
sian processes (Solak et al. 2003); we use exactly this ap-
proach in order to incorporate observations of the molecu-
lar forces (derivatives) into our model, though the challeng-
ing aspect here is computing the proper kernel derivatives,
which is one of the primary contributions of this paper.

Our work also uses recent approaches to Bayesian op-
timization (Brochu, Cora, and De Freitas 2010). From the
core algorithmic perspective, we are mainly using existing
approaches from the literature, specifically the lower confi-
dence bound approach (Cox and John 1997) that is widely
used in the machine learning community. However, most
Bayesian optimization approaches have been applied using
relatively simple forms of kernels such as the exponential
or Matern kernels (Snoek, Larochelle, and Adams 2012). In
contrast, the use of the geometric kernel that we derive here
lets us use Bayesian optimization as a drop in replacement
for existing molecular energy optimizers, based upon tradi-
tional optimization approaches such as gradient descent or
LBFGS. In this context, the work here can be viewed as inte-
grating Bayesian optimization in this approach to numerical
scientific computing.

Finally, in the domain of material science, our approach
builds upon a number of past works. Both neural networks
and Gaussian processes have been used to predict the poten-
tial energy of a single molecule (Behler and Parrinello 2007;
Bartok et al. 2010), but these used either black box or non-
invariant kernel approaches, and do not integrate derivative
observations. More recent approaches learn across the en-
tire chemical compound space by using data from multiple
molecules. These approaches represent molecules by their
so-called Coulomb matrix and their corresponding vectors
of eigenvalues (Rupp et al. 2012; Montavon et al. 2013).
The major difference presented here is the use of the singular
value decomposition to define the distance between two in-
puts and the incorporation of the available molecular energy
derivative information.

An SVD kernel for geometric data

In this section we present the main algorithmic contribution
of this paper, an improper kernel for geometric input data.
In the sequel, we will use this kernel in the context of Gaus-
sian process estimation and Bayesian optimization, but the
key contribution here relates to the derivation of the kernel
itself and its corresponding derivatives that can enable us to
incorporate derivative information into the kernel.

Let X € R3xn represent molecules of n atoms, where
each column of the matrix denotes the 3D coordinate of the
corresponding atom. Since translating or rotating a molecule
results in the an unchanged molecule, a measure of similar-
ity between two molecules should be invariant to these prop-
erties. To construct a Gaussian process model for such data,

1890

we define the distance between two molecules X € R3*"
and Z € R3*" ag the minimum distance over all rotations
and translations:

d(X,7) = 1X = (RZ+01)|[F (D)

min
ReR3%3 teR3 RT R=1I3
Although this is a non-convex problem, it can be solved ef-
ficiently using the singular value decomposition. This is a
well-known property (see, e.g. (Horn, Hilden, and Negah-
daripour 1988)), but we include a brief derivation for com-
pleteness.
Theorem 1. The solution to the minimization in (1) is given
by
t*=(X-R*Z)1/n, R*=VUT 2)
where USVT = XBBTZ" is a singular value decom-
position and B is the centering matrix defined as B
I,—117 /n. Furthermore, the distance takes the closed form
d(X,2) = [|XBIlp + VBl —2TrS ()
where S is the diagonal matrix of singular values as above.

Proof. Taking the gradient of (1) with respect to ¢

Vil X -RZ-t1T|%2=(X -RZ—-t1")1 @)
gives the the first part of the solution
t* = (X — RZ)1/n. 5)

Substituting this back into the objective transforms (1) into
the equivalent optimization problem

d(X,Z)= min |[XB - RZB|? 6
(X,2) R;n]%glsll Iy2 (6)
and note that
||IXB — RZB||%
= | XB|% +||RZB|% - 2Te B"Z"R"XB  (7)
= |XB|% +ZB||% —2Tr R" XBB* Z™".
We next take the singular value decomposition USV? =
XBBTZzT
TrRTUSVT = Tt VT RTUS = Tr RS (8)

where RTR? 1. Since S is diagonal, this problem is opti-
mized with BR* = I, so that R* = UV T. The final form of
the distance follows from the fact that

TevUtUusSvt = wuTusviv =T S. 9)

O

We use this distance in a corresponding exponential ker-
nel given by

1
K(X.2) = exp { = 32X Bl + 1125 - 2105)}.

(10)
Note that this is not a proper (semidefinite) kernel, due to the
fact that this distance function is not a true metric (it does not
obey the triangle inequality); thus the kernel matrix above
may have negative eigenvalues. In this case, we can simply
treat the kernel as a set of features describing the input (i.e,
using the matrix K7 K to compute predictions); we can also
exploit the fact that, for large enough +, the kernel will be
guaranteed to be positive definite, as all non-diagonal en-
tries will fall off exponentially. In practice, we observe that
this is rarely a problem, and all values of v chosen by cross
validation, for instance, results in positive definite kernels.



Kernel derivatives

A common theme in many learning methods that use geo-
metric data, specifically those where the geometric data is
itself generated through some simulation process, also pro-
duce derivatives of the output quantity with respect to all the
input coordinates. For instance, the general class of meth-
ods known as adjoint methods produce these derivatives us-
ing approximately twice as much computation as it takes to
compute the output originally. Such methods have therefore
become extremely widely used in simulation and optimiza-
tion, and we want to enable our kernel approach to use such
information. As shown in previous work (Solak et al. 2003),
a Gaussian process can incorporate derivative observations
by defining an extended kernel matrix that also models the
covariance between the inputs and their derivatives, and be-
tween the derivatives themselves. In particular, since the co-
variance is a bilinear operator:

Cov (y<s>,y<t>) K (X<s>7X<t>)

o [0 ) _ OK(X®, X)
ox"” X% an
C ay(s) 8y(t) _82K(X(5),X(t))
N ox® ox® ) T T ax®@ax®
Y ke 2] ke

In the remainder of this section, we will derive a closed form
expression for these derivatives for the SVD kernel. For con-
venience, it is useful to combine all the kernel derivatives
between two molecules X, Z € R3*™ in the block form:

IK(X,Z) IK(X,Z)
}(()(’27) 0711 0Z3n
IK(X,Z) 9*K(X,Z) 9*K(X,Z)
0X11 0X110Z11 0X110Z3n (12)
OK(X,Z) 0*K(X,Z) %K (X,Z)
0X3n 0X3n0Z11 0X3n0Z3n

Theorem 2. For the rotationally invariant distance kernel
in (10), the block of derivatives in (12) has the following
form:

[:(11 f:ﬁz

_ 1
K(X,Z):exp{—2’yd(X,Z)} { Koy Koo } (13)

where

Ky =1

Kig =—vvec(Z - VU'X)'BT

Ko yBvec(X —UVTZ)

Ky =B (I,  UVT)
—-(Z"VeU)AUTX e VT)) BT
+ K21 Kio

(14)
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with ® as the Kronecker product, B = (B® I3), and

rToO 0 0 0 0 0 0 0 0T
o 2 o =2 0 0 0 0 0
S12 S12
0o 0 L 0 o 0 = 0 o
513 S13
0O == 0 = 0 0 0 0 0
A=|10 0 0O O 0O O 0 0 0
oo o o o0 L o =o
S§23 §23
o 0o =2 0 0 0 <+ 0 o0
513 S13
oooooﬁoéo
L0 0 0 0 0 0 o0 0 0]
(15)

where s;; = S;; + Sj;.

Proof. To derive these expressions, we determine the deriva-
tives of the singular value decomposition using a method-
ology similar to the work of (Papadopoulo and Lourakis
2000), beginning with the following identity:

USsvt = xXBBzT (16)
We take the derivative of both sides with respect to some
input coordinate X; j, multiply on the left and right by U”

and V respectively, and take the trace. Since U7 (%UJ) and

(M) V' are antisymmetric, we get:
X, y » We gett
a8 .
t =tr(JYBZTVUT
! <3X ij ) rl )
with (J%) g = §;50;;. Let b; be the jth column of B. Substi-
tuting the value in equation 17 for the derivative of the sin-

gular values, the first derivative of the distance metric with
respect to X;; can be expressed as the following:

0d(X, Z)
By varying ¢ and j, we can thus construct a row of all the
first derivatives of X:

0d(X, Z)

Ovec(X)

We substitute into the derivative of the kernel to get:
0K(X,7) 1 _

— = ——vd(X,Z) ¢ K. 20

dvec(X) eXp{ 2 (X, )} 2t 0)

An almost identical process results in the respective expres-
sion for the derivative with respect to the second input:

OK(X,Z) 1 _
DvealZ) —exp{—2’)/d(X,Z)}K12 21

For the second derivatives, we begin by directly taking the
second derivative of the kernel:

a7

=2(b; ® e;)" vec(X —UVTZ) (18)

=2(B®I3) vec(X —UVTZ) (19)

P’K(X,Z)
W—K(X’Z) (a—p) (22)
where
1, (9d(X,2)\ (9d(X,Z)
— 1\ ozy 09X,
) 23)

5o L 2MX 2)

= 27 9Z,0X,,



The first part is expressed from the first derivative results:
a = [Kan]gij) K2 ry 24)

where the subscripts (ij), (kl) refer to the indices of the
derivative with respect to X;;, Zy;. For the second part, tak-
ing the second derivative of the distance metric shows that
we need the second derivative of the singular values:

Pd(X,Z) ot d%8
0Zr0Xi; 0Z110Xj

To get this quantity, we first take the second derivative of
the identity USVT = XBBTZ" and multiply on the left
and right by U7 and V respectively. Taking the trace of the
resulting equation, we get

ol S
021,0X,;

(25)

> =tr (UTJYBJ"V)

o (9 + ) s (@ + o))

(26)
where
y ou oU
Q¥ —yT Okl T
v=U oXy; Y 0Zy o7
o ovT ov
iy _ kl __
v 8Xijv 2y = az,dv

and (J¥)g; = 8;,0;. For the latter term, we can solve for an
explicit form of ;] and Q7 by solving the system of equa-
tions given by the off-diagonal entries of the first derivative
of equation 16. Using these, we can compute

o whowd wiwy
. . i i S1+S2 Si}+83 i
QY 4+ QY = _ Wi -Wy 0 Waz =W
U \4 s1+s So+s
1152 - - 2153
Wl.%_Wsi _ W2§_W3% O
s1+s3 s2+53
(28)

where W% = UTJYBZTV. We can get an identical ex-
pression for Q5! + Q¥ using Wk = UT X BJ'*V in place
of W, Substituting these into the trace in equation 26 and
using A, we derive the following expression:

tr ((95 T QVJ) S (Qf} + Q‘y))

- (~witwis + wiwa - wiwi! + wiwi)
S1 + S2
(-wiwty + wiw - wiwi + wiiwl)
S1 + 83
s (CwRWE - wawa - wwdll - wiw)

= vec (W% g Avec (W kT
(29)

We substitute into equation 26 to get an expression for the
trace of the second derivative of the singular values. After
rearranging, we get the final form of 3:

ﬂ = — ’Y(bj & €i)T(I (%9 UVT)(b] X ek)

+(b; @ e) T (ZTV @ U)AUTX @ V(b @ ex)
(30)
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By varying the indices ¢, j, k, we construct a block of all
the second derivatives of the kernel, resulting in the desired
form for K95 This completes the expression for the second
derivative of the kernel with respect to X;; and Zy;:

PK(X,2Z)
dvec(X)dvec(Z)T

= K(X,Z)Kx (31)

O

Low rank structure

One potential issue with the methodology proposed here is
that the size of the kernel matrix, especially with deriva-
tives, can grow very quickly: for m molecules with n atoms
each, the full K matrix will be m(3n + 1) x m(3n + 1).
Even though the goal of our approach is to use relatively
few molecules for training, this can quickly grow infeasible
for large n: even multiplying a vector by the full K matrix
will naively have cost O(m?n?).

However, there is also substantial structure in the full X
matrix that lets us reduce this time substantially. Namely,
each 22 block of the collection of derivatives is the sum of a
rank-one matrix, and two matrices

B(I,UVTBT =B UVT (32)
and
B(ZTVeU)AUTX o vVT)BT 33)
= (BZ"VeU)ABUTX @ VT)

Multiplying a vector by this product just involves centering
and multiplication by 3x3 matrices, which together are O(n)
operators. Thus, the cost of a matrix-vector product can eas-
ily be brought down to O(m?n). Combined with conjugate
gradient approaches, these methods can be used to bring the
cost of the SVD kernel with derivatives to approximately the
same level as the standard SVD kernel.

Application to Molecular Energy Prediction

We now come to the main applied focus of this paper: us-
ing the above kernel approach to model the free energy
of molecules. As described above, the basic task is, given
a configuration of atoms in 3D space (the 3D coordinate
of each atom along with it’s type), we want to predict the
molecular energy of the atom. This is a task with numerous
applications in energy, physics, and biology, and such meth-
ods are widely studied in chemical engineering (see, e.g.
(Sholl and Steckel 2011)). Existing methods, such as those
based upon density functional theory (DFT), are capable of
computing these quantities to reasonably high accuracy, but
the methods are computationally intensive (they amount to
solving a large partial differential equation to compute the
energy). The goal of our overall approach, similar to the
work of (Rupp et al. 2012), is to use a machine learning ap-
proach to “replicate” the results of an expensive simulation
procedure with a much faster surrogate function. Unlike this
past work, however, we explicitly incorporate energy deriva-
tives (forces), which are automatically generated by DFT
methods when computing the energy. We also focus upon
the task of optimizing the molecular configuration to find the
configuration with minimum energy; this is a canonical task



Kernel RMSE
Mean predictor 24154
Eigenspectrum representation | 0.4284
SVD kernel 0.7182
SVD kernel with derivatives 0.6239

Table 1: Prediction error on water

in molecular modeling, and we show Bayesian optimization
methods, based upon our approach, can substantially outper-
form existing state-of-the-art solvers used in the chemical
engineering community, such as LBFGS.

To begin, we will evaluate the performance of our ap-
proach just on predicting the energy of previously unseen
configurations of a molecule. In this section and the next,
all computations were carried out using the GPAW numer-
ical code (Mortensen, Hansen, and Jacobsen 2005), a grid-
based implementation of the DFT calculator. We also use the
Python Atomic Simulation Environment (ASE) (Bahn and
Jacobsen 2002) to set up the computations and later to per-
form the molecular optimization. As mentioned above ob-
taining the potential energies is extremely computationally
expensive using these tools, so the algorithm must be able to
generalize from a comparatively small subset of the molecu-
lar space. To get accurate energy results, the time to perform
a DFT calculation can take anywhere from a few hours for a
simple molecule to days for complex compounds.

We applied a Gaussian process using the SVD kernel to
model the energies of water and glycerol molecules. For
both molecules, we generated 100 data points by adding
noise to the original coordinates. Denote X" as the set of all
our inputs (3D positions of the atoms) and y the vector of
corresponding energies. We form a prediction on new exam-
ples X’ by the standard Gaussian process equations

H(AX') = R(X, X)(K (X, X) + Ay
o(X) = KX, X' -
K(X, X)(K(X, &) + \I) " K(X, X')

(34)

The kernel hyperparameters, namely exponential parameter
~ and regularization parameter A, were chosen by a grid-
search with an inner 4-fold cross validation and optimized
for the root mean squared error. We introduce an additional
regularization parameter Aqeriy to account for the difference
in magnitude between the energies and derivatives.

In the case of the simple molecule water, the SVD ker-
nel is able to capture much of the structure of the poten-
tial energy function, with the derivative information giving a
small improvement in performance. Since water only has 3
atoms, the SVD kernel is already able to model the molecule
quite well without the derivatives. Furthermore, the eigen-
value method from (Rupp et al. 2012) performs marginally
better in this application, likely because it exploits additional
information about the energy of single atoms (such informa-
tion could be included in our setting as well, though we do
not pursue this approach here).

In contrast, on the larger glycerol molecule with 14 atoms,
none of the methods except the SVD kernel with derivatives
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Kernel RMSE
Mean predictor 0.7418
Eigenspectrum representation | 0.7369
SVD kernel 0.7609
SVD kernel with derivatives 0.2276

Table 2: Prediction error on glycerol
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Figure 1: Learning curves for the SVD kernel on glycerol
with and without derivatives. The presence of kernel deriva-
tives results in faster convergence to a lower error.

are able to accurately model the system, and all other meth-
ods perform virtually identical to simple mean predictions.
This is also born out in the learning curves in Figure 1. The
SVD kernel with derivatives is able to achieve low error us-
ing approximately 40 simulations, whereas the SVD-only
approach (and similar approaches), never achieve good per-
formance (the fluctuations in the learning performance for
the SVD kernel in Figure 1 are a product of random folds,
and are all higher than simply predicting the mean energy in
the data set).

Bayesian optimization

Finally, the ultimate goal of a fast DFT approximation is
not just to predict the energy, but to find the minimum en-
ergy configuration. Since the target function has a high cost,
we take a Bayesian optimization approach to minimize the
potential energy of a molecule. We use a Gaussian process
model with the SVD derivative kernel as an approximation
of the target energy function, and we use the lower confi-
dence bound (LCB) as our acquisition function to sample
new points:

LCB(X) = u(X) — ko (X) (35)

where 1 and o are the mean and variance from the Gaus-
sian process. We optimized this surrogate function itself us-
ing LBFGS, though importantly, this optimization procedure
is very fast, as we can compute the GP predictions very
quickly.

For the testing environment, we optimize three molecules
whose atoms have had noise added to their initial coordi-
nates. We treat the DFT energy calculation as the function
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Figure 2: The average minimum found over all 40 runs per
iteration for various molecules, which corresponds to the
number of function samples. Results for the SVD kernel
converge faster and closer than LBFGS to the optimal value.

to be minimized, and provide the negative forces as the gra-
dient function. Each algorithm begins with only the initial
starting set of coordinates, and the optimization is repeated
for 40 randomly perturbed starting configurations.

We compare our optimization method against the LBFGS
quasi-Newton method (directly performing LBFGS using
the derivatives provided by the DFT). We use an imple-
mentation made specifically for optimizing molecular struc-
tures from the Python ASE package, which is a state-of-the-
art method for performing molecular structure optimization.
Because the time used by the DFT solver far exceeds any of
the computation time used either by LBFGS or our Bayesian
optimization, we report results in terms of the number of (ex-
pensive) simulation iterations required.

We see that the SVD kernel with derivatives within the
Bayesian optimization framework offers a significant im-
provement over the LBFGS method. On average, the SVD
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Figure 3: A plot of all 40 individual optimizations for each
algorithm on water. The SVD kernel converges rapidly in
almost all cases regardless of starting position. The LBFGS
method depends on the starting configuration and has greater
variance in convergence rate and final energy value.

kernel with derivatives uses fewer iterations to get closer to
the optimal value, converging more rapidly than LBFGS in
Figure 2 across multiple molecules. Another benefit that the
SVD method has is its ability to converge quickly to the
same optimal value regardless of the starting position. For
example, after 5 iterations, nearly all optimizations of water
using the SVD method are close to the optimal value as seen
in Figure 3. In contrast, the LBFGS method depends signifi-
cantly on the starting configuration. Some LBFGS optimiza-
tions converge slower than others and reach a variety of final
energy values.

Conclusion

When using physical systems or geometric data, there are
certain properties of translational and rotational invariance
and an availability of derivative information that we can ex-
ploit to improve the performance of learning in this space. In
the case of molecular energies, predicting accurate energies
is especially important since calculating the exact energy of
a compound typically takes days, and scales badly as the
complexity of the molecule increases.

In this paper, we have developed a kernel based on the sin-
gular value decomposition that maintains the translational
and rotational invariants expected in geometric data. We in-
corporated derivative data into the kernel and constructed a
simplified form to compute the larger covariance matrices.
Our results show that the SVD kernel has good predictive
ability, and can outperform other methods. Practically, our
work shows that the SVD kernel can optimize molecules
faster and more reliably than current methods.

References

Bahn, S. R., and Jacobsen, K. W. 2002. An object-oriented
scripting interface to a legacy electronic structure code.
Computing in Science & Engineering 4(3):56—66.

Bartdk, A. P.; Payne, M. C.; Kondor, R.; and Csanyi, G.
2010. Gaussian approximation potentials: The accuracy of



quantum mechanics, without the electrons. Physical review
letters 104(13):136403.

Behler, J., and Parrinello, M. 2007. Generalized neural-
network representation of high-dimensional potential-
energy surfaces. Physical review letters 98(14):146401.

Brochu, E.; Cora, V. M.; and De Freitas, N. 2010. A tu-
torial on bayesian optimization of expensive cost functions,
with application to active user modeling and hierarchical re-
inforcement learning. arXiv preprint arXiv:1012.2599.

Cox, D. D., and John, S. 1997. Sdo: A statistical method for
global optimization. Multidisciplinary design optimization:
state of the art 315-329.

Horn, B. K.; Hilden, H. M.; and Negahdaripour, S. 1988.
Closed-form solution of absolute orientation using orthonor-
mal matrices. JOSA A 5(7):1127-1135.

Lu, C.-P;; Hager, G. D.; and Mjolsness, E. 2000. Fast and
globally convergent pose estimation from video images. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions
on 22(6):610-622.

Montavon, G.; Hansen, K.; Fazli, S.; Rupp, M.; Biegler, F.;
Ziehe, A.; Tkatchenko, A.; Lilienfeld, A. V.; and Miiller, K.-
R. 2012. Learning invariant representations of molecules
for atomization energy prediction. In Advances in Neural
Information Processing Systems, 440—448.

Montavon, G.; Rupp, M.; Gobre, V.; Vazquez-Mayagoitia,
A.; Hansen, K.; Tkatchenko, A.; Miiller, K.-R.; and von
Lilienfeld, O. A. 2013. Machine learning of molecular elec-

1895

tronic properties in chemical compound space. New Journal
of Physics 15(9):095003.

Mortensen, J. J.; Hansen, L. B.; and Jacobsen, K. W. 2005.
Real-space grid implementation of the projector augmented
wave method. Physical Review B 71(3):035109.

Papadopoulo, T., and Lourakis, M. I. 2000. Estimating
the jacobian of the singular value decomposition: Theory
and applications. In Computer Vision-ECCV 2000. Springer.
554-570.

Pozdnoukhov, A. 2009. Machine learning for spatial envi-
ronmental data: theory, applications, and software. EPFL
press.

Rupp, M.; Tkatchenko, A.; Miiller, K.-R.; and von Lilien-
feld, O. A. 2012. Fast and accurate modeling of molecular
atomization energies with machine learning. Physical re-
view letters 108(5):058301.

Sholl, D., and Steckel, J. A. 2011. Density functional theory:
a practical introduction. John Wiley & Sons.

Snoek, J.; Larochelle, H.; and Adams, R. P. 2012. Practical
bayesian optimization of machine learning algorithms. In
Advances in Neural Information Processing Systems, 2951—
2959.

Solak, E.; Murray-Smith, R.; Leithead, W. E.; Leith, D. J.;
and Rasmussen, C. E. 2003. Derivative observations in gaus-
sian process models of dynamic systems. In Neural Infor-
mation Processing Systems. MIT Press.





