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Abstract

The overarching goal of music theory is to explain the
inner workings of a musical composition by examin-
ing the structure of the composition. Schenkerian music
theory supposes that Western tonal compositions can be
viewed as hierarchies of musical objects. The process
of Schenkerian analysis reveals this hierarchy by identi-
fying connections between notes or chords of a compo-
sition that illustrate both the small- and large-scale con-
struction of the music. We present a new probabilistic
model of this variety of music analysis, details of how
the parameters of the model can be learned from a cor-
pus, an algorithm for deriving the most probable anal-
ysis for a given piece of music, and both quantitative
and human-based evaluations of the algorithm’s perfor-
mance. This represents the first large-scale data-driven
computational approach to hierarchical music analysis.

Introduction

Music analysis is largely concerned with the study of musi-
cal structures: identifying them, relating them to each other,
and examining how they work together to form larger struc-
tures. Analysts apply various techniques to discover how the
building blocks of music, such as notes, chords, phrases, or
larger components, function in relation to each other and to
the whole composition. Schenkerian analysis is a particular
style of music analysis. This widely-used theory of music
posits that compositions are structured as hierarchies of mu-
sical events, such as notes or intervals, with the surface level
music at the lowest level of the hierarchy and an abstract
structure representing the entire composition at the highest
level. This type of analysis is used to reveal deep structure
within the music and illustrate the relationships between var-
ious notes or chords at multiple levels of the hierarchy.

For more than forty years, music informatics researchers
have attempted to construct computational systems that per-
form automated music analysis, as having systems capa-
ble of analyzing music is helpful for both academic and
applied reasons. Music naturally lends itself to scientific
study because it is a “complex, culturally embedded ac-
tivity that is open to quantitative analysis” (Cook 2005),
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and approaching musical studies from a scientific stand-
point brings a certain empiricism to the domain which
historically has been difficult or impossible due to innate
human biases (Volk, Wiering, and van Kranenburg 2011;
Marsden 2009).

Despite the importance of Schenkerian analysis in the mu-
sic theory community, computational studies of Schenke-
rian analysis are few and far between due to the lack
of a definitive, unambiguous set of rules for the analysis
procedure, limited availability of high-quality ground truth
data, and no established evaluation metrics (Kassler 1975;
Frankel, Rosenschein, and Smoliar 1978). More recent mod-
els, such as those that take advantage of new representational
techniques (Mavromatis and Brown 2004; Marsden 2010) or
machine learning algorithms (Gilbert and Conklin 2007) are
promising but still rely on a hand-created set of rules.

In contrast, the work presented here represents the first
purely data-driven approach to modeling hierarchical music
analysis. We use the largest set of encoded music analyses
in existence to develop a probabilistic model of the rules of
music analysis, deploy this model in an algorithm that can
identify the most likely analysis for a piece of music, and
evaluate the system using multiple metrics, including a study
with human experts comparing the algorithmic output head-
to-head against published analyses from textbooks.

There are many potential uses of this work. Aside from
the straightforward option of analyzing new music, the prob-
abilistic model and algorithm described here could be used
in systems for calculating music similarity, such as in music
recommendation or new music discovery; intelligent tutor-
ing systems for teaching music composition or Schenkerian
analysis itself; or in music notation software.

The MOP Representation

Schenkerian analysis views a musical composition as a se-
ries of hierarchical levels. During the analysis process, struc-
tural levels are uncovered by identifying prolongations, sit-
uations where a musical event (a note, chord, or harmony)
remains in control of a musical passage even when the event
is not physically sounding during the entire passage. Con-
sider the five-note melodic sequence shown in Figure 1, a
descending sequence from D down to G. Assume that an an-
alyst interprets this passage as an outline of a G-major chord,
and wishes to express the fact that the first, third, and fifth



notes of the sequence (D, B, and G) are more structurally im-
portant in the music than the second and fourth notes (C and
A). In this situation, the analyst would interpret the C and
A as passing tones: notes that serve to transition smoothly
between the preceding and following notes by filling in the
space in between. From a Schenkerian aspect, we would say
that there are two prolongations at work here: the motion
from the D to the B is prolonged by the note C, and the mo-
tion from the B to the G is prolonged by the note A.
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Figure 1: An arpeggiation of a G-major chord with passing
tones. The slurs are a Schenkerian notation used to indicate
the locations of prolongations.

However, there is another level of prolongation evident in
this passage. Because the two critical notes that aurally de-
termine a G chord are the G itself and the D a fifth above,
a Schenkerian would say that the entire melodic span from
D to G is being prolonged by the middle note B. Therefore,
the entire intervallic hierarchy can be represented by the tree
structure shown in Figure 2(a), though it can be more con-
cisely represented by the equivalent structure in Figure 2(b),
known as a maximal outerplanar graph, henceforth known
as a MOP.
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Figure 2: The prolongational hierarchy of a G-major chord
with passing tones represented as (a) a tree of melodic inter-
vals, and (b) a MOP.

MOPs were first proposed as elegant structures for rep-
resenting prolongations in a Schenkerian-style hierarchy by
Yust (2006). A single MOP is used to represent a set of pro-
longations identified in a monophonic sequence of notes,
though Yust proposed some extensions for polyphony.

Formally, a MOP is a complete triangulation of a poly-
gon, where the vertices of the polygon are notes and the
outer perimeter of the polygon consists of the melodic inter-
vals between consecutive notes of the original music, except
for the edge connecting the first note to the last, which is
called the root edge. Each triangle in the polygon specifies
a prolongation. By expressing the hierarchy in this fashion,
each edge (x,y) carries the interpretation that notes x and y
are “consecutive” at some level of abstraction of the music.
Edges closer to the root edge express more abstract relation-
ships than edges farther away.

Probabilistic Model

We now propose a mathematical model of MOPs that allows
estimation of the probability that a particular MOP analysis
is the best one for a given piece of music.

1771

Each triangle in a MOP triangulation has three endpoints,
which we will denote by L, R, and C, corresponding to the
left parent note, the right parent note, and the child note,
respectively. The assignment of these labels to the notes of
a triangle is unambiguous because MOPs are “oriented” by
virtue of the temporal dimension: the left endpoint is always
the earliest note of the three, while the right endpoint is al-
ways the latest. This corresponds exactly to our interpreta-
tion of a musical prolongation as described earlier: a prolon-
gation always occurs among exactly three notes, where the
middle (child) note prolongs the motion from the left note to
the right.

We now define a probability distribution over triangles de-
fined by their three endpoints; we call this the conditional
triangle distribution P(C' | L, R). This distribution tells us
how likely it is for a given melodic interval (from L to R)
to be prolonged by a given child note (C). This distribution
has some elegant mathematical properties that relate to the
algorithms described in the next section.

We are interested in this distribution because it can be
used to build a probabilistic model for an entire analysis
in MOP form. Assume we are given a sequence of notes
N = (nq,n2,...,nr). We may define the probability of a
MOP analysis A as P(A | N). Because a MOP analysis is
defined by the set of triangles 7}; comprising the MOP, we
will define

P(A ‘ N) = P(Tall) :P(Tl,Tg,...,Tm).

We will derive a method for estimating this probability by
using corpus of ground-truth Schenkerian analyses. In par-
ticular, we use the SCHENKER41 data set (Kirlin 2014a),
which contains 41 excerpts of music and a correspond-
ing Schenkerian analysis for each excerpt. The corpus con-
sists of music from the common practice period of Euro-
pean art music, and includes excerpts by J. S. Bach, G.
F. Handel, Joseph Haydn, M. Clementi, W. A. Mozart, L.
van Beethoven, F. Schubert, and F. Chopin. The analyses in
the corpus are drawn from four sources: three Schenkerian
analysis textbooks and one expert music theorist. There are
only a handful of Schenkerian analysis textbooks; the three
used in SCHENKER41 are the ones most commonly used in
beginner-level courses. Historically, it has proven difficult to
create corpora with ground-truth Schenkerian analyses due
to the time-consuming process of collecting and encoding
the analyses; at the moment, the SCHENKER41 data set is
the largest digitized publicly-available data set of Schenke-
rian analyses.

We would like to use this corpus to train a mathemati-
cal model to estimate the probability P(71, 15, ..., T,,), but
the curse of dimensionality prevents us from doing so. Di-
rectly using this joint probability distribution as the basis for
the model would require many more ground-truth analyses
than the 41 in the corpus — and almost certainly more than
anyone has available — to get good estimates of the joint
probabilities for every combination of triangles. Instead, as
an approximation, we assume that the presence of a given
type of triangle in a MOP is independent of the presence of



all other triangles in the MOP. In other words,
P(A|N):=P(Ty)=P(Th,Ts,...,Tn)
= P(Ty) - P(T3)--- P(T),). (1)

An experiment with synthetic musical data (Kirlin and
Jensen 2011) demonstrates that this independence assump-
tion largely preserves the ranking of candidate analyses by
their P(A | N) calculations.

Given the assumption of independence, we examine
methods for using the SCHENKER41 corpus to obtain es-
timates for the probability of an individual triangle being
found in an analysis. A straightforward way to estimate these
quantities is to count their frequencies in the corpus and
normalize them to obtain a probability distribution. This ap-
proach is not feasible due to (a) the size of the SCHENKER41
corpus and (b) the large number of triangle categories need-
ing to be distinguished. The latter condition arises from the
wealth of musical information available in the score to guide
the analysis process, such as harmonic and metrical informa-
tion.

In order to create a more accurate model that can han-
dle more features with a smaller corpus, we use random
forests (Breiman 2001), an ensemble learning method. Ran-
dom forests create a collection of decision trees at training
time. Each decision tree is only trained on a subset of the
features available. The output of the random forest is nor-
mally the mode of the output of each individual tree, but
we counted the frequencies of the outputs of all the trees
and normalized them into a probability distribution instead
(Provost and Domingos 2003).

It is straightforward to use random forests for obtaining
estimates for the probabilities comprising the conditional tri-
angle distribution P(C' | L, R): we use features of the left
and right endpoints to predict features of the child endpoint
in the middle. On the other hand, it is not so straightforward
to incorporate multiple features per endpoint into this model.
Although we would suspect that many harmonic, melodic,
and metrical features of the three endpoints play a role in
the Schenkerian analysis process, asking each individual de-
cision tree in a random forest to predict multiple features
in the output leads to another curse of dimensionality situa-
tion. Therefore, we will factor the conditional model using
the rules of conditional probability. Assuming the features
of the child note C' — the note the random forest is trying
to learn a probability distribution over — are denoted C
through C,,, we can rewrite P(C' | L, R) as

P(C|L,R)=P(C1,Cs,...,Cy | L,R)
=P(Ci|L,R)-P(Cs,...,C, | Cy,L,R)
=P(C1| L, R)- P(Cs,| C1,L,R) -+~

P(C,|Ch,...,Cph_1,L, R). 2)
This formulation allows us to model each feature of the note
using its own separate random forest. Specifically, we train

six total random forests, with each forest learning one fea-
ture of the middle note C:

e (g: The scale degree (1-7) of the note.

e (5: The harmony present in the music at the time of the
note, represented as a Roman numeral I through VII.

e (4: The category of harmony present in the music at the
time of the note, represented as a selection from the set
tonic (any I chord), dominant (any V or VII chord), pre-
dominant (I, TI%, or TV), applied dominant, or VI chord.
(Our data set did not have any III chords.)

e ('3 Whether the note is a chord tone in the harmony
present at the time.

e (C5: The metrical strength of the note’s position as com-
pared to the metrical strength of note L.

e (;: The metrical strength of the note’s position as com-
pared to the metrical strength of note R.

Note that the features are labeled Cg through Cf; this
ordering is used to factor the model as described in Equa-
tion 2. This ordering of the features is used because the
features convey more specific musical information as one
moves from from C; to Cg, and therefore it makes sense to
allow the random forests which are learning the more spe-
cific features to use extra training information from the less
specific features.

We also used a variety of features for the left and right
notes, L and R. These were:

e The scale degree (1-7) of the notes L and R (two fea-
tures).

e The melodic interval from L to R, with intervening oc-
taves removed.

e The melodic interval from L to R, with intervening oc-
taves removed and intervals larger than a fourth inverted.

e The direction of the melodic interval from L to R; i.e., up
or down.

e The harmony present in the music at the time of L or R,
represented as a Roman numeral I through VII (two fea-
tures).

e The category of harmony present in the music at the time
of L or R, represented as a selection from the set tonic,
dominant, predominant, applied dominant, or VI chord
(two features).

e Whether L or R was a chord tone in the harmony present
at the time (two features).

e A number indicating the beat strength of the metrical po-
sition of L or R. The downbeat of a measure is 0. For
duple meters, the halfway point of the measure is 1; for
triple meters, the one-third and two-thirds points are 1.
This pattern continues with strength levels of 2, 3, and so
on (two features).

e Whether L and R are consecutive notes in the music.
e Whether L and R are in the same measure in the music.

e Whether L and R are in consecutive measures in the mu-
sic.

Random forests can be customized by controlling the
number of trees in each forest, how many features are used
per tree, and each tree’s maximum depth. We use forests
containing 1,000 trees with a maximum depth of four. We
used Breiman’s original idea of choosing a random selection



of m = int(log, M + 1) features to construct each individ-
ual tree in the forest, where M is the total number of features
available to us. In our case, M = 16, so m = 5.

Algorithms

We have a created an algorithm, known as PARSEMOP, that
accepts a monophonic string of notes N as input and pro-
duces the most probable MOP analysis A by maximizing
P(A | N) according to Equations 1 and 2. PARSEMOP
is based on the CYK algorithm used to parse context-free
grammars, adapted to both (1) take probabilities into ac-
count, and (2) permit ranking the parses efficiently rather
than just finding the single most probable parse (Jurafsky
and Martin 2009; Jiménez and Marzal 2000). PARSEMOP
uses dynamic programming to optimally triangulate succes-
sively larger sections of the MOP, and runs in O(n3) time,
where n is the number of input notes.

We examined three variations of the PARSEMOP algo-
rithm that differ in how they determine the correct analysis
of the “upper levels” of the musical hierarchy. In particu-
lar, Schenkerian analyses usually incorporate one of three
specific melodic patterns at the most abstract level of the
musical hierarchy. Heinrich Schenker, the originator of the
analysis method that bears his name, hypothesized that be-
cause of the way listeners perceive music centered around a
given pitch (i.e., fonal music), every tonal composition could
be viewed as an elaboration of one of the three possible
patterns, and therefore should be reducible to that specific
pattern. The three patterns are specific stepwise descending
melodic sequences, each known as an Urlinie. The Urlinie
concept is Schenker’s attempt to show how seemingly very
different pieces can grow out of a small set of basic melodic
structures via prolongations (Pankhurst 2008). This idea has
proved much more controversial than that of a structural hi-
erarchy of notes within the music.

The first variation of the parsing algorithm, known as
PARSEMOP-A, functions identically at all levels of the mu-
sical hierarchy and does not force the background structure
of an analysis to conform to an Urlinie pattern or to any spe-
cific contour. Unsurprisingly, analyses produced by PARSE-
MopP-A often fail to find an Urlinie even when there is one
in the ground-truth interpretation of a note sequence.

In contrast, the PARSEMOP-B algorithm accepts not only
a sequence of notes as input, but also information specifying
exactly which notes of the input sequence should be part of
the background structure (the Urlinie and any initial ascent
or arpeggiation). The dynamic programming formulation in
PARSEMOP-B forces all parses to place these notes at the
highest levels of the musical hierarchy, thus insuring that
the algorithm will always produce a most-probable analy-
sis with a correct background structure. This variation of
PARSEMOP is, of course, only useful in situations where this
background information can be determined beforehand.

The PARSEMOP-C algorithm is a compromise between
the A and B algorithms to better reflect the real-world sce-
nario of being able to identify the contour of the correct
background musical structure for a piece ahead of time but
not which specific notes of the piece will become part of that
structure. While the input to PARSEMOP-B is a sequence of
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notes, some of which are specifically identified as belonging
to the background structure, PARSEMOP-C accepts the same
note sequence but along with only the names of the notes, in
order, that belong to the background melodic structure. For
example, given the sequence of notes E-F-D-C-E-D-B-C
with the correct background structure underlined, PARSE-
MopP-B must be informed ahead of time that the first, sixth,
and eighth notes of the input must appear at the uppermost
levels of the musical hierarchy. PARSEMOP-C, on the other
hand, is provided only with the information that the back-
ground must contain the notes E-D—C in that order, but will
not know which E, D, and C are the “correct” notes.

Evaluation and Discussion

We now evaluate the quality of our probabilistic model of
music analysis by studying the analyses that the PARSEMOP
algorithms produce for the music in the SCHENKER41 cor-
pus. We also evaluate the utility of providing PARSEMOP
with prior information about the structure of the Urlinie.
Specifically, we show the results of four experiments, which
(a) quantitatively compare analyses produced by PARSE-
MoP to corresponding analyses from textbooks, (b) show
the locations within the analyses produced by PARSEMOP
where the algorithm is more likely to make a mistake, (c)
illustrate how the accuracy of the analyses produced by
PARSEMOP changes as one moves through a list of anal-
yses ranked by probability, and (d) use experienced music
theorists to judge the analyses produced by PARSEMOP.

Due to the difficulty of finding additional musical excerpts
with corresponding analyses to use as a testing data set, cou-
pled with the small size of the corpus (41 musical excerpts),
we used a leave-out-one cross-validation approach for train-
ing and testing in these experiments. Specifically, for each
excerpt in the corpus, we generated a training set consisting
of the music from the other 40 excerpts, trained the proba-
bilistic model on these data, and used each PARSEMOP vari-
ant to produce a list of the top 500 analyses for the original
excerpt that was left out.

Experts in Schenkerian analysis sometimes disagree on
the “correct” analysis for a composition. It is therefore pos-
sible to have more than one musically-plausible hierarchical
analysis of an excerpt; occasionally these analyses will dif-
fer radically in their hierarchical structures. However, due to
limited data, our experiments rely on using a single analysis
as ground truth.

Evaluation metrics

We define the edge accuracy of a candidate MOP as the per-
centage of edges in the candidate MOP that match with an
edge in the equivalent reference MOP from SCHENKER41.
We use this metric rather than the percentage of entire
matching triangles because it is possible for two MOPs to
have edges in common but no triangles in common.
Calculating the edge accuracy for a candidate MOP
against a reference MOP is straightforward except for the
possibility of untriangulated subregions inside the reference
MOPs (candidate MOPs produced by PARSEMOP are al-
ways fully-triangulated). Humans experts sometimes leave



out small details in an analysis when including such details
would detract from the overall presentation of the musical
hierarchy. Though this is common in textbooks, it results
in reference MOPs in SCHENKER41 that are sometimes not
fully triangulated.

To handle this situation, we modify our definition for
“matching” edges as follows. A “matching” edge in a candi-
date MOP is an edge that either (1) matches exactly with an
edge in the reference MOP, or (2) could fit in an untriangu-
lated area of the reference MOP. In other words, edges are
matches if they appear in the reference MOP or could hy-
pothetically appear, if the reference MOP were completely
triangulated.

While it may seem that compensating for untriangulated
regions in this fashion could distort accuracy statistics, we
take this into account by providing the edge accuracy for
a randomized reference triangulation, providing a baseline
level of accuracy for comparison. Furthermore, untriangu-
lated regions account for only 183 of the 907 triangles in
the corpus (about 20%). The baseline percentage of edge
matches, along with the edge accuracy scores for the three
PARSEMOP algorithms is shown in Figure 3. The relative
accuracies, unsurprisingly, align with the amount of prior
information given to PARSEMOP.

It is also instructive to examine, on a piece-by-piece basis,
how much better PARSEMOP performs over the baseline al-
gorithm. We can determine this value for a piece by normal-
izing the improvement over the baseline obtained by PARSE-
MoP relative to the hypothetical maximum improvement. In
other words, if PARSEMOP produced an analysis matching 8
out of 10 edges and the baseline algorithm matched 6 out of
10 edges, then the normalized improvement would be 50%,
because PARSEMOP improved by 2 edges out of a possi-
ble 4. A histogram of these normalized percents is shown in
Figure 4.

ParseMop-A

ParseMop-B

ParseMop-C

Baseline . E

40 60 80
Edge accuracy

Figure 3: Edge accuracies for the three PARSEMOP algo-
rithms and the baseline randomized algorithm.

Error locations

In addition to studying what kinds of errors PARSEMOP
makes, it is worthwhile to identify where the errors are being
made. In other words, we would like to know if PARSEMOP
is making more mistakes at the surface level of the music
or at the more abstract levels. We can quantify the notion of
“level” by numbering the interior edges of a candidate MOP
produced by PARSEMOP with increasing integers starting
from zero, with zero corresponding to the most abstract in-
terior edge. Perimeter edges are not assigned a level because
they are always present in any MOP and therefore cannot
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be in error. These assigned integers correspond to the stan-
dard idea of vertex depth in a tree, and therefore can be re-
garded as edge depths. We will normalize these edge depths
by dividing each integer by the maximum edge depth within
the MOP, giving an error location always between 0 and 1,
with O corresponding to the most abstract edges, and 1 cor-
responding to those closest to the musical surface.

ParseMop-A

ParseMop-B
Percent of corpus

COOO00000 COOO0000 COOO000O

ParseMop-C
oRNWRUON oRNWhUIOON oRNWhUION

0.0

02 04 06

Normalized percent
improvement over baseline

08 1.0

Figure 4: Histogram tallying, for each piece, the normalized
percent improvement over the baseline algorithm.

Figure 5 shows the probability for the three PARSEMOP
variants to include an incorrect edge at different normal-
ized error depths. Unsurprisingly, the probability of mak-
ing an error at the most abstract level corresponds exactly to
how much extra information the PARSEMOP variant is given
about the contour of the main melody of the musical excerpt
in question: PARSEMOP-B has the lowest probability for an
error at depths between 0.0 and 0.2 (the highest levels of the
hierarchy), while PARSEMOP-A has the largest.

Maximum accuracy as a function of rank

So far we only have examined the accuracy of the top-ranked
analysis produced by the PARSEMOP algorithms for each
musical excerpt. However, it is instructive to examine the
accuracies of the lower-ranked analyses as well, in order to
investigate how accuracy relates to the ranking of the analy-
ses. In particular, we are interested in studying the maximum
accuracy obtained among the analyses at ranks 1 through n,
where n is allowed to vary between 1 and 500. We would
hope that analyses that are judged as being accurate are not
buried far down in the rankings, especially when the top-
ranked analysis is not perfectly accurate.

Figure 6 illustrates how the maximum accuracy changes
for each musical excerpt as one moves through the ranked
list. The relative quality of the results for the three PARSE-
Mor variants reflects the amount of a priori information
provided to each variant. A few oddities in the graphs
are worth mentioning. A single musical excerpt appears to
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Figure 5: Histogram showing the locations of errors for the three PARSEMOP variants over all excerpts in the corpus.

present problems for PARSEMOP-A; it can be seen as the
single line in the PARSEMOP-A graph that is clearly iso-
lated below the other lines. This piece is a Mozart minuet
that is particularly difficult to analyze due to repeated notes
in the input and the pitches of the Urlinie being hidden in
an inner voice. Interestingly, the isolated lowest line in the
PARSEMOP-C graph corresponds to a different Mozart ex-
cerpt: this one is complicated to analyze due to its highly
figurated texture and the notes of the Urlinie being often lo-
cated on metrically weak beats, a rather uncommon situation
that PARSEMOP likely learns to avoid identifying.

Human-based evaluation

While it is useful to examine mathematical accuracy metrics,
there is no substitute for having human evaluations of the
PARSEMOP analyses. In particular, having experienced mu-
sic theorists evaluate the analyses is indispensable because
humans can make both qualitative and quantitative judge-
ments that the accuracy metrics cannot.

We recruited three expert music theorists to assist with an
experiment in which each expert graded pairs of analyses.
The order of the musical excerpts in the corpus was random-
ized and for each excerpt, the graders were provided with
the music notation of the excerpt itself, along with the cor-
responding PARSEMOP-C analysis and the textbook anal-
ysis. The graders were not given any information on the
sources of the analyses; in particular, they did not know that
the two analyses within each pair came from very different
places. Furthermore, the order in which the two analyses of
each pair were presented on the page was randomized so
that sometimes the PARSEMOP analysis was presented first
and sometimes second. Both analyses were displayed using
a pseudo-Schenkerian notation scheme that uses slurs to il-
lustrate prolongations and beams to show the notes of the
main melody and other hierarchically-important notes. It is
important to note that the textbook analyses were also pre-
sented using this notation style; this was done because the
output of the algorithm which translates MOPs to pseudo-
Schenkerian notation does not yet rival the true Schenkerian
analytic notation used by humans, and so reproducing the
textbook analyses verbatim would be too revealing to the
graders.

The graders were instructed to evaluate each analysis in
the way they would evaluate “a student homework submis-
sion.” Each grader was asked to assign a letter grade to each
analysis from the set A, A-, B+, B, B-, C+, C, C-, D+, D,
D-, F, according to a grading scheme of their own choos-
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Grader 1
Grader 2
Grader 3

0.0

0.5

1.0 15 20 25 3.0

Average grade assigned
(ParseMop analyses: black, textbook analyses: gray)

3.5 4.0

Figure 7: Average grades assigned by each grader to the text-
book and PARSEMOP analyses.

ing. The goal of this experiment was to determine how much
the PARSEMOP-C analyses differ in quality from their text-
book counterparts. Figure 7 illustrates how, on average, the
graders judged analyses when the A-F grades are converted
to a standard 4.0 grading scale (A = 4, B = 3, C = 2,
D =1, F = 0. A “plus” adds an additional 0.3 points and a
“minus” subtracts 0.3 points). The average differences (the
amount the textbook analyses are preferred over the PARSE-
MorP analyses) indicate that the graders preferred the text-
book analyses by somewhere between half a letter grade and
a full letter grade. This relationship is also illustrated in Fig-
ure 8, which directly compares the grade of each PARSE-
Mopr analysis with the grade of the corresponding textbook
analysis.

Additional details of the evaluation procedures and fur-
ther discussion of the results are available in Kirlin (2014b).
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Figure 8: This graph plots grades (jitter added) for each
PARSEMOP-C and textbook analysis pair. Different shapes
correspond to different graders.
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Summary and Future Work

In this paper, we have presented the first large-scale data-
driven study of modeling Schenkerian analysis. We have
shown a probabilistic model of the analysis procedure, an
algorithm for identifying the most probable analysis for a
piece of music, and studies illustrating the performance of
the model and algorithm from both quantitative and human-
centric perspectives.

The probabilistic model presented has extensive potential
for further research and application. A logical next step for
improving the model would be to include support for mul-
tiple voices, as the model currently assumes all of the notes
of the input music constitute a single monophonic voice. A
more sophisticated model capable of correctly interpreting
polyphonic music — music with multiple notes sounding at
once — would be extremely desirable.
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