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Abstract

Neuroimage analysis usually involves learning thou-
sands or even millions of variables using only a lim-
ited number of samples. In this regard, sparse models,
e.g. the lasso, are applied to select the optimal features
and achieve high diagnosis accuracy. The lasso, how-
ever, usually results in independent unstable features.
Stability, a manifest of reproducibility of statistical re-
sults subject to reasonable perturbations to data and the
model (Yu 2013), is an important focus in statistics,
especially in the analysis of high dimensional data. In
this paper, we explore a nonnegative generalized fused
lasso model for stable feature selection in the diagno-
sis of Alzheimer’s disease. In addition to sparsity, our
model incorporates two important pathological priors:
the spatial cohesion of lesion voxels and the positive
correlation between the features and the disease labels.
To optimize the model, we propose an efficient algo-
rithm by proving a novel link between total variation
and fast network flow algorithms via conic duality. Ex-
periments show that the proposed nonnegative model
performs much better in exploring the intrinsic struc-
ture of data via selecting stable features compared with
other state-of-the-arts.

Introduction

Neuroimage analysis is challenging due to its high fea-
ture dimensionality and data scarcity. Sparse models such
as the lasso (Tibshirani 1996) have gained great reputa-
tion in statistics and machine learning, and they have been
applied to the analysis of such high dimensional data by
exploiting the sparsity property in the absence of abun-
dant data. As a major result, automatic selection of rele-
vant variables/features by such sparse formulation achieves
promising performance. For example, in (Liu, Zhang, and
Shen 2012), the lasso model was applied to the diagno-
sis of Alzheimer’s disease (AD) and showed better perfor-
mance than the support vector machine (SVM), which is one
of the state-of-the-arts in brain image classification. How-
ever, in statistics, it is known that the lasso does not always
provide interpretable results because of its instability (Yu
2013). “Stability” here means the reproducibility of statis-
tical results subject to reasonable perturbations to data and
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the model. (These perturbations include the often used Jack-
nife, bootstrap and cross-validation.) This unstable behavior
of the lasso model is critical in high dimensional data anal-
ysis. The resulting irreproducibility of the feature selection
are especially undesirable in neuroimage analysis/diagnosis.
However, unlike the problems such as registration and clas-
sification, the stability issue of feature selection is much less
studied in this field.

In this paper we propose a model to induce more sta-
ble feature selection from high dimensional brain structural
Magnetic Resonance Imaging (sMRI) images. Besides spar-
sity, the proposed model harnesses two important additional
pathological priors in brain SMRI: (i) the spatial cohesion of
lesion voxels (via inducing fusion terms) and (ii) the pos-
itive correlation between the features and the disease la-
bels. The correlation prior is based on the observation that
in many brain image analysis problems (such as AD, fron-
totemporal dementia, corticobasal degeneration, etc), there
exist strong correlations between the features and the labels.
For example, gray matter of AD is degenerated/atrophied.
Therefore, the gray matter values (indicating the volume)
are positively correlated with the cognitive scores or dis-
ease labels {-1,1}. That is, the less gray matter, the lower
the cognitive score. Accordingly, we propose nonnegative
constraints on the variables to enforce the prior and name the
model as “non-negative Generalized Fused Lasso” (n>GFL).
It extends the popular generalized fused lasso and enables it
to explore the intrinsic structure of data via selecting sta-
ble features. To measure feature stability, we introduce the
“Estimation Stability” recently proposed in (Yu 2013) and
the (multi-set) Dice coefficient (Dice 1945). Experiments
demonstrate that compared with existing models, our model
selects much more stable (and pathological-prior consistent)
voxels. It is worth mentioning that the non-negativeness per
se is a very important prior of many practical problems,
e.g. (Lee and Seung 1999). Although n?GFL is proposed
to solve the diagnosis of AD in this work, the model can be
applied to more general problems.

Incorporating these priors makes the problem novel w.r.t
the lasso or generalized fused lasso from an optimization
standpoint. Although off-the-shelf convex solvers such as
CVX (Grant and Boyd 2013) can be applied to solve the
optimization, it hardly scales to high-dimensional problems
in feasible time. In this regard, we propose an efficient algo-



rithm that solves the n?GFL problem exactly. We general-
ize the proximal gradient methods (such as FISTA) (Beck
and Teboulle 2009) to solve our constrained optimization
and prove its convergence. We then show that by using an
element-wise post-processing, the resulting proximal oper-
ator can be reduced to the total variation (TV) problem. It
is known that TV can be solved by parametric flow algo-
rithms (Chambolle and Darbon 2009; Xin et al. 2014). In the
present study, we provide a novel equivalence via conic du-
ality, which gives us a minimum quadratic cost flow formu-
lation (Hochbaum and Hong 1995). Fast flow algorithms (in-
cluding parametric flow) are then easily applied. In practice,
our algorithm runs hundreds of times faster than CVX at the
same precision and can scale to high-dimensional problems.

Related work. In addition to sparsity, people leverage
underlying data structures and introduce stronger priors
such as the structured sparsity (Jacob, Obozinski, and Vert
2009) to increase model stability. However, for voxel-based
sMRI data analysis, handcrafted grouping of the voxels or
sub-structures may not coincide with various pathological
topology priors. Consequently, group lasso (with overlap)
(Jacob, Obozinski, and Vert 2009; Jenatton et al. 2012;
Rao et al. 2013) is not an ideal model to the problem. In con-
trast, the graph-based structured sparse models adapt better
to such a situation. The most popular one is referred here
as Lale, which adopts /5 norm regularization of neighbor-
hood variable difference (e.g. (Ng and Abugharbieh 2011;
Grosenick et al. 2013)). However, as we will show in the ex-
periments, these models select many more features than nec-
essary. Very recently, generalized fused lasso or total vari-
ation has been successful applied to brain image analysis
problems inducing the /; difference (Gramfort, Thirion, and
Varoquaux 2013; Xin et al. 2014). In the experiments, we
show that by including an extra nonnegative constraint, the
features selected by our model is much more stable than that
of such unconstrained models. A very recent work (Avants
et al. 2014) also explored this positive correlation (partially
supporting our assumption), but the problem formulation
was quite different: neither structural assumption was con-
sidered, nor the stability of feature selection was discussed.
From the optimization standpoint, the applied framework is
similar to that of (Xin et al. 2014) but two key differences
exist: (1) the FISTA and soft-thresholding process applied in
(Xin et al. 2014) do not generalize to constrained optimiza-
tion problems, we show important modifications and provide
theoretical proof; (2) we propose a novel understanding of
TV’s relation with flow problems via conic duality and prove
that the minimum norm point problem of (Xin et al. 2014)
is a special case of our framework.

The Proposed Method
Nonnegative Generalized Fused Lasso (n>GFL)
Let {(x;,:)}Y, be a set of samples, where x; € R and

y; € R are features and labels, respectively. Also, we denote

! Although different names are given in e.g. (Ng and Abughar-
bieh 2011; Grosenick et al. 2013), they are in fact fundamentally
applying the graph Laplacian smoothing.
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by X € R¥N andy € R¥ the concatenations of x; and ;.
Then, we consider the formulation

min
BeRY

d
(B X y) + M Y [Bil+ X D> wis|Bi— B,
i=1 (i,j)EE
st. 3>0
(1)

where A1, A\ > 0 are tuning parameters. [ is a loss term
of variable 3 (assumed to be convex and smooth). w;;s are
pre-defined weights. Here, the variables (e.g. the SsMRI voxel
parameters in the AD problem) are supposed to have cer-
tain underlying structure represented by a graph G = (V, E)
with nodes V' and edges E. Each variable corresponds to a
node on the graph. As mentioned above, in many brain im-
age analysis, there exist strong directional correlations (pos-
itive or negative) between the features and the labels, thus
we assume 8 > 0 (or 3 < 0). Due to the /; penalties on
each variable as well as each adjacent pair of variables in (1),
solutions tend to be both sparse and smooth, i.e., adjacent
variables tend to be similar and spatially coherent. Also be-
cause we have added the nonnegative constraints, the model
will not select negatively correlated features as support. In
practice, we notice that unconstrained models will system-
atically select many negatively correlated features. The non-
negative constraints greatly reduce these falsely recovered
variables and encourage genuine disease-related features to
be selected.

Efficient Optimization of n>GFL

The optimization of n?GFL is convex and off-the-shelf
solver such as CVX can be applied. However, this solution
hardly scales to a problem sized of thousands (mainly due
to its choice of general second order frameworks), see Table
1. In this regard, we propose certain modifications to scal-
able first order methods (e.g. accelerated proximal methods
(Beck and Teboulle 2009)). This is done by exploring La-
grange multiplier method to deal with the constraints. From
the optimization standpoint, these modifications are non-
trivial and compose one major contribution of this work.

We first extend the (fast) iterative shrinkage thresholding
algorithm (ISTA and FISTA) (Beck and Teboulle 2009) as
follows.

Proposition 1. Let 3" be the optimal solution to (1) and ,Bk
defined as follows

d
e M
— "5+ T Z |Bil+
= @)
Z wij|Bi — Bil, st. B>0,
(i,j)eE

where L > 0 is the Lipschitz constant of VI(-) and k is the
iteration number.

o 0_ g%2
2 =B~ LVUB"), then F(By) —F(B7) < *HEypls,
where F(-) is the objective of (1). If 2% = y* — 1 VI(y*)
where y* = g% + oF (,Bk — 6k_1) with « controlling the

momentum, we have F'(3,) — F(3") < %

<



The proof can be viewed as an instantiation of the con-
vex analysis introduced in (Nesterov and Nesterov 2004).
We provide a rigorous proof in the supplementary file.

Now the key to solve (1) is how efficiently we solve (2).
If there were no constraints, (2) is the fused lasso signal ap-
proximation proposed in (Friedman et al. 2007), where it
was shown that by utilizing the separability of the /; norm,
an element-wise soft-threshold technique can be applied to
remove the sparse term. Since the constraints of (2) are also
separable, we show how (2) can be further reduced likewise.

Proposition 2. [f we define
—zll3 + T Z wij|B; — Bjl,

(m)EE

3

then the optimal solution to (2) (denoted as @* ) can be
achieved by an element-wise post-processing to 3 as follows

B* = max(sign(B8) ® max(|8| )

where © is an element-wise product operator.

1
I — O 0 N
I ) )7 )7

A1 ..
7 and 0;;

Proof. We define 6, = )‘2# respectively
forall i € V and (i,j) € E. We denote 3  as the optimal
solution of the unconstrained problem of (2). According to
(Friedman et al. 2007), 3, = sign(8;) max(|5;| — 0;,0). We
now consider the nonnegative constraints in (2). According
to the Karush-Kuhn-Tucker (KKT) conditions, the necessary

and sufficient conditions for 7, ... 3] are
(ﬂz - zz + 0; iSi + Z 92]t2j
Ji(i,5)€E
%)
Z gijtji — ;= 0, s.t. aiﬁi = 0,
J:(38)€E

where o; > 0 are the Lagrange multipliers and s, t are sub-
gradients: s; = sign(3;) if B; #0and s; € [—1,1]if §; =
0; ti]‘ = Sign(ﬁi — 6]) for (3; 7& ﬁj and tij S [—1, 1] if
B: = B;. The objective equation in (5) is to set the derivative
of the Lagrange function to zero and the constraint equations
are obtained from the complementary slackness condition.
We now consider two cases of 3:

Case 1 8} > 0: Note that by setting a; = 0, 3} > 0 satisfies
the conditions in (5), thus 8} = 3, = sign(8;) max(|5;| —
6;,0) is the solution of (2).

Case 2 3/ < 0: We can set 5 = 0 and o; = —f3; > 0, then

we have ] = 3 — a;.
Lg,
(5 - zz + 0; i8i + Z eljtlj Z azgtn — Q4
J:(,9)€E j:(4,5)€EE
=B —ai—z)+0isi+ Y Oijtij— Y Oty
J:(i,5)€E J:(J,i)eE
= (ﬁ — Zz + 0, i S; + Z 01]15” Z gijtji =0.
J:(i.5)€€ J:(9)€E
Hence, in summary, we have
B* = maz(sign(8) ® maz(|B| — =*,0),0). O

L
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Notice that, (3) is a (continous) total variation prob-
lem, which is known can be efficiently solved by para-
metric flow algorithms in (Chambolle and Darbon 2009;
Xin et al. 2014). Here we present a more general perspective
of such an equivalence via conic duality, which gives us a
natural and novel minimum quadratic cost flow formulation.
Fast flow algorithms, such as but not limited to parametric
flow (Gallo, Grigoriadis, and Tarja 1989) etc. are then eas-
ily applied. For example, we show that the minimum norm
point problem solved by parametric flow in (Xin et al. 2014)
can be viewed as a special case of the proposed dual.

Conic Dual to Total Variation

To solve (3), we apply generalized inequalities and its cor-
responding Lagrange duality introduced in (Boyd and Van-
denberghe 2004). Specifically, we first define a set C' such
that C={(B, @) € R™ [ V(i, 5), |8 = B;| < a}.

Lemma 3. The set C is a proper cone.

This can be easily shown by checking all the properties
required by a proper cone. See the supplementary file for
a proof. We now consider the following problem (we keep
using 0;; = ’\2% for M in (3)):

— 0,0
v(i,j)EE, {ﬁ”eRd aueR}QHﬁ z|3 + Z i
(i.4)eE
By ke (6)
+. (B9 iy e Cand g9 = 4Pk FTBI
s.t. (BY,a") € C and 3} {0 e

Since (8", a%) € C, then |8; — ;| < o', therefore (6)
is indeed equivalent to (3). Moreover, because C' is a proper
cone, we can rewrite (6) as follows,

min VA 2 + ‘91' .aij
V(i,j)€E,{B" €R?,aii €R} 2 Hﬁ Iz Z J
(i.5)€E
3 B k=ij (7
t Pl = ij _ [Be k=i]
>t L‘”} =c Oand 5 {0 else

where 3 =¢c 0 <= 3 € C is defined as generalized in-
equality (Boyd and Vandenberghe 2004). We call (7) the
primal problem (which equals to the original TV prob-
lem). Since the primal problem is both convex and satis-
fies Slater’s condition, strong Lagrange duality holds (under
generalized inequality). We define the Lagrange function as

L(/g’ a’ E? 7-)

1 B ii17T T aij
§||ﬁ*ZH§+Zaija” *Z |:7£_zj:| |:gzj:|

(4,4) 1j

(3
- i
st. €9 eRe: [fj] =c- 0and €9 = 0if k # 4, j,

where (£, 7%7) are the Lagrange multipliers and C* is the
dual cone of C, defined as C* = {v |wlv >0, Vw € C}.
To formulate the dual problem, we take the derivative of L(-)
with respect to the primal variables (3, &) and we have

ﬁfszg”:O and Hijfrijzo.

ij

€))



Figure 1: Graph structure and the flows. Each source-to-node edge
(s,1) has O cost and a maximum capacity v; and a minimum ca-
pacity -y, this ensures a flow ~;; each node-to-node edge (i,j) has
0 cost and a maximum capacity 60;;; each node-to-sink edge (i,t)
has infinite capacity and a cost (in red) % (y; — (& + 7i)), where
& = >j(i.jyer & - All flows through node 2 is highlighted in
blue for an example.

By applying (9) to (8), the dual problem is written as
1 ii 1
—sla+ S &3+ Sl
(i,j)€E
st (89, 79) e C% € =0,k #1,§.

max
V(i.)€E{€" €R?} (10)

Proposition 4. (¢7,77) € C*, &) = 0,k # i,j +=
& +¢& =0, 67 < 0
Please find the proof in the supplementary file.
Accordingly, the dual problem becomes

ij (12
> &3
(i.J)EE
s.t. 5}? = Oak 7& iaj7 5:] +§;] = 07 |£le| < eija
where we omit ||z||3 from the objective since it is a constant
with respect to €s and we also changed the sign of all &s for
better illustration of the flows.

Problem (11) can be viewed as the following minimum
quadratic cost flow formulation,

(Y €7 +7)3
(i.J)€E
s.t. 5]? = ka # i7j7 f:J +§;J = 07 |£jj| S eiju

where we have induced v (v; = max {[z], >2; (; jyep 0ii D

1
min —||lz —
¥(i.j)€E {€7 €R} 2

(11)

1
min Sy —
V(i,j)€E,{£1 R} 2 (12)

and denote y=z + v to ensure y > 0 and (£ 4+ ~) > 0.
Thus each feasible £ of (12) is a possible flow on graph
G=(V, E). Since & + & = 0, [£”] can denote a flow
on edge (i,j) such that & > 0 denotes a flow coming into
node ¢ and & < 0 denotes a flow leaving node 7. Figure 1
illustrates such flows by taking node 2 as an example. Thus
to minimize the objective of (12) is equivalent to comput-
ing a minimum cost flow on this graph. Since the cost is
quadratic with respect to the flow, this problem is a mini-
mum quadratic cost flow problem. According to (Hochbaum
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Table 1: Runtime (in sec.) comparison of the proposed algo-
rithm with CVX. d is the data dimensionality. * indicates the
test did not finish within 24 hours.

d 400 900 2500 4900 10000
CVX 522 3371 889.80 1.08¢* *
Ours 0.87 239 1595 6433 32193

and Hong 1995; Mairal et al. 2011), this type of problems
can be efficiently solved via fast flow algorithms including
but not limited to the parametric flow (Gallo, Grigoriadis,
and Tarja 1989). Note that in (Xin et al. 2014), TV is shown
equivalent to a minimum norm point (MNP) problem under
submodular constraints which is solved via parametric flow.
We now discuss the relation between the dual problem i.e.
(12) or (11) and the MNP considered in (Xin et al. 2014).
Recall that the MNP problem is defined as follows

min |z — SH%, (13)

seR4,se B(Afe.)

where fc(S) is a cut function, defined as f.(S)
ies jev\s Wij and B(-) is the base polyhedron of f..

Proposition 5. For any minimizer £ of (11), define § such
that 8 = 32 iep €Y, then § is a minimizer of (13). For
any minimizer s* ofA (13), there exists a decomposition such
that S*:Z(i,j)eE &Y where é is one minimizer of (11).

According to Prop. 5, the MNP problem i.e. (13) can
be viewed as a special case of (11) (the conic dual),
where 3 ; ;e €7 =s. Moreover, since (11) has relatively
“looser” constraints, it is possible to devise more efficient
algorithms (than parametric flow) to solve (11) and there-
after TV. For example, in (Mairal et al. 2011), a faster (than
parametric flow) flow algorithm is proposed to solve their
specific minimum quadratic flow problem. Hence, the conic
dual perspective opens a new opportunity to solve the fa-
mous TV problem more efficiently.

Optimization summary. In summary, by applying Prop.
1, we can solve n2GFL by iteratively solving (2). By apply-
ing Prop. 2, we further reduce (2) to the TV problem defined
in (3), we then transform it to a minimum cost flow algo-
rithm via conic duality and solve it by a fast flow algorithm.

In Tab. 1, we compare the proposed algorithm with an
off-the-shelf solver on synthetic data. We generate a random
B € R? and a 2D grid graph of d nodes with each node
having four neighbors. We then generate N = d/2 sam-
ples: x; € R< and Y = [)'Taci + 0.01n;, where x; and n;
are drawn from the standard normal distribution. All experi-
ments are carried out on an Intel(R) Core(TM) i7-3770 CPU
at 3.40GHz. The experiments show that the proposed opti-
mization algorithm is more efficient and scalable.

Application to the Diagnosis of AD

In the diagnosis of AD, two fundamental issues are AD/NC
(Normal Control) classification and MCI/NC (Mild Cog-
nitive Impairment) classification. Let x; € R? be sub-



(a) T—test(LDA) ‘ (b) LapL

(c) lasso

(d) GFL (e) n?GFL

Figure 2: Feature selection by different models. The top row illustrates selected voxels in a 3D model (voxels with positive 3 are in brown
and negative ones are in blue), the mid and bottom rows illustrate the corresponding projections on brain slices.

jects” sSMRI voxels and y; = {—1,1} be the disease sta-
tus (AD/NC or MCI/NC). Since the problems are classifica-
tions, we use the logistic regression as the loss term

N

1(B) = Z log (1 + exp (—4:(8" x; + ¢))),

i=1

(14)

where ¢ € R is the bias parameter (to be learned). For the
graph structure, we define each voxel as a node and their
spatial adjacency as the edges, i.e. w;;=1 if voxels ¢ and j
are adjacent and 0 otherwise. The data are obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database®. We split all the baseline data into 1.5T and 3.0T
MRI scans datasets (named 15T and 30T). 64 AD patients,
90 NC and 208 MCI patients are included in our 15T dataset;
66 AD patients and 110 NC are included in our 30T dataset.
(Most 30T MCI data are in an on-going phase and are not
included). Data preprocessing follows the DARTEL VBM
pipeline (Ashburner and others 2007) as commonly done in
the literature. 2,527 8 x8x8 mm?3 size voxels that have val-
ues greater than 0.2 in the mean gray matter population tem-
plate serve as the input features. We design experiments on
three tasks, namely, ISADNC, 30ADNC, 15MCINC.
Classification Accuracy. 10-fold cross-validation (CV)
evaluation is applied and the classification accuracy for all
tasks are summarized in Tab. 2. Under exactly the same ex-
periment setup, we compare n>GFL with the state-of-the-
art classifiers: logistic regression (LR), SVM, sparse models
e.g. the lasso and its graph Laplacian structured variants, i.e.

*http://adni.loni.ucla.edu
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Table 2: Classification accuracies.

SVMLR MLDA LapL lasso GFL n2GFL

ISADNC 83.1 83.1 83.1 84.4 85.7 85.1 86.4
30ADNC 87.5 869 83.5 87.5 83.6 858 90.3
ISMCINC 71.1 70.5 59.4 70.1 70.8 69.8 71.8

the LapL, the unconstrained GFL (Xin et al. 2014), and the
“MLDA” model (Dai et al. 2012), which applies a variant of
Fisher Discriminant Analysis after univariate feature selec-
tion (via T-test). For each model, we used grid-search to find
the optimal parameters respectively. Note that our accura-
cies may not be superior to the recent work (Liu et al. 2014),
the main reason is that in (Liu et al. 2014), multi-modality
data (including PET and sMRI data) are used. Nevertheless,
Tab. 2 demonstrates that n>GFL outperforms all the other
models using only voxel-based sMRI data.

Feature selection. For each task, the selected features
are those whose (3 are not zero . In Figure 2, the result of
30ADNC is used to illustrate the feature selection by differ-
ent models (using the parameters at their best accuracy). As
shown, the selected voxels by both GFL and n?GFL cluster
into several spatially connected regions, whereas those of
lasso and T-test/MLDA scatter around. Also, as mentioned
before, the LapL tends to select much more voxels than nec-
essary due to the l» regularization. Moreover, the selected
voxels by GFL and n2GFL are concentrated in Hippocam-
pus, ParaHippocampal gyrus (which are believed to be the
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Figure 3: Stability of selected voxels across different folds of the cross-validation. The results of 5 different folds are shown in (a)-(e). The
voxels with positive 3 are in brown, negative ones are in blue. The common/overlapped voxels selected in all 10 folds are shown in green (f).
The top row illustrates voxels selected by the lasso model, the mid row illustrates those of GFL and the bottom row shows those of n?GFL.

early damaged regions). On the other hand, the lasso and T-
test/MLDA either select less lesion voxels or select probably
noisy voxels not in the early damaged regions.

Feature Stability. In Figure 3, we show the selected vox-
els across different folds of CV3. As shown, the selected
voxels by lasso vary much across different folds, whereas
the selected voxels by GFL are more stable. However, by as-
suming the positive correlation between the features and the
disease labels in n2GFL, we further increase the stability.
To quantitatively evaluate the stability gain, we denote the
variables of the kth fold of CV as 3(k). We introduce two
measurements here. In (Yu 2013), the Estimation Stability
(ES) is proposed to measure the stability of the estimation
- XBl3/K18I13,

ES = Z 1XB(k (15)

where 3 = Zk 1 B( )/ K. It is shown in (Yu 2013) that ES
is a fair measurement of the estimation stability. To further
understand the stability of feature selection, we also extend
the Dice coefficient (Dice 1945) to multiple sets and apply
the multi-set Dice Coefficient (mDC) as a measurement.
We denote set S(k) = {i : 5;(k) # O} and define mDC as

/Z# ),

where # is the number of elements in a set. In Tab. 3, both
measurements quantitatively suggest n>GFL obtains much

mDC = K#(nE_ S(k (16)

3Here, parameters were determined by accuracy. Similar results
were observed using parameters producing same level of sparsity.
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Table 3: Stability comparison of the models.

lasso GFL n?GFL
ES (smaller is better) 0.035 0.033 0.022
mDC (larger is better) 0.267 0.374 0.644

more stable voxels due to the consideration of the correlation
between the features and the disease labels .

Conclusions

In this paper, we explore the nonnegative generalized fused
lasso model to address an important problem of neuroim-
age analysis, i.e. the stability of feature selection. Experi-
ments show that our model greatly improves the stabilities
of feature selection over existing methods for brain image
analysis. Although n2GFL is applied to the diagnosis of AD
problem, it can be applied to solve more general problems.
Moreover, we believe that the theoretical points made here
e.g. nonnegative FISTA, soft-thresholding and the conic dual
of TV, provide motivation for future work of general interest.

“We notice that, in (Xin et al. 2014), the stability is computed
using the top 50 positive voxels because these voxels are believe
to be the most atrophied ones. By computing the stability of all
non-zero voxels, the mDC of GFL drops around 30%. This clearly
shows that the instability is caused largely by the undesirable vox-
els that disagree with the correlation prior (those scattered blue
voxels in the mid row).
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