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Abstract

One key challenge in statistical relational learning (SRL)
is scalable inference. Unfortunately, most real-world prob-
lems in SRL have expressive models that translate into large
grounded networks, representing a bottleneck for any infer-
ence method and weakening its scalability. In this paper we
introduce Preference Relaxation (PR), a two-stage strategy
that uses the determinism present in the underlying model to
improve the scalability of relational inference. The basic idea
of PR is that if the underlying model involves mandatory (i.e.
hard) constraints as well as preferences (i.e. soft constraints)
then it is potentially wasteful to allocate memory for all con-
straints in advance when performing inference. To avoid this,
PR starts by relaxing preferences and performing inference
with hard constraints only. It then removes variables that vi-
olate hard constraints, thereby avoiding irrelevant computa-
tions involving preferences. In addition it uses the removed
variables to enlarge the evidence database. This reduces the
effective size of the grounded network. Our approach is gen-
eral and can be applied to various inference methods in rela-
tional domains. Experiments on real-world applications show
how PR substantially scales relational inference with a minor
impact on accuracy.

Introduction
Relational and deterministic dependencies in data have been
addressed with the emergence of statistical relational learn-
ing (SRL) (Getoor and Taskar 2007). Typically in SRL the
theory is propositionalized to a grounded network wherein
any probabilistic inference like MC-SAT or belief propaga-
tion can be applied. However this approach can be very time-
consuming: the grounded network is typically large, which
slows down inference, and this can be problematic for learn-
ing when using inference as a subroutine.

Many SRL models, if not most, feature a set of structural
properties like determinism, sparseness, symmetry, redun-
dancy, and type hierarchy. Markov Logic is a powerful SRL
formalism that exhibits these properties, and a simple way
to enhance the scalability of inference on the underlying
SRL model such as those instantiated by Markov logic is
to exploit such properties. For instance, Lifted Inference(de
Salvo Braz, Amir, and Roth 2005; Singla and Domingos
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2008; Ahmadi et al. 2013; Kersting 2012) uses the sym-
metry present in the structure of the network to reduce its
size. Lazy Inference (Poon, Domingos, and Sumner 2008;
Singla and Domingos 2006b) uses sparseness to ground
out the theory lazily (i.e., we do not need to instantiate
atoms and clauses that have default values), which yields
gains in memory and time. Coarse-to-Fine Inference (Kid-
don and Domingos 2011) uses an induced type hierarchy
over a domain’s objects to apply sequences of increasingly
fine approximations of inference to control the trade-off be-
tween lifting and accuracy. Although determinism some-
times poses a significant challenge to probabilistic inference,
it remains an intrinsic part of the structure of SRL models.
One approach (Allen and Darwiche 2003) based on recur-
sive conditioning has been proposed to exploit determinism
in order to speed up exact inference by using standard log-
ical techniques such as unit propagation. But the approach
does not scale to large real-world problems. More recently,
an efficient algorithm (Papai, Singla, and Kautz 2011) based
on ideas from constraint programming has been introduced
to use determinism in order to prune objects in the domain of
atoms by enforcing generalized arc consistency on the set of
hard constraints in the theory. For each hard constraint, the
algorithm iteratively performs two main operations (join and
project) and therefore its complexity (both space and time)
is sensitive to the complexity of those operations that are in
some cases exponential in the number of atoms. In our work
we take advantage of determinism in the underlying model
to improve the scalability of inference for large, real-world
problems.

It is common for many real-world problems in SRL
to have expressive models that combine deterministic and
probabilistic dependencies. The former often appear in the
form of mandatory (i.e. hard) constraints that must be sat-
isfied in any world with a non-zero probability. The latter
are typically formulated as preferences (i.e. soft constraints),
and dissatisfying them is not impossible, but less probable.
Thus, if a query atom X which is involved with a set of
constraints C = {H,S} (where H and S are its subsets of
hard and soft constraints respectively) violates one of the
hard constraints h inH, then its marginal probability will be
zero, even if it satisfies its other hard and soft constraints in
C − {h}. A variable violates a hard constraint if there is a
truth value for that variable such that the constraint is vio-
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lated in all possible worlds consistent with that truth value
assignment to the variable and the evidence. Current infer-
ence approaches do not exploit the fact that there is no need
to consider irrelevant computations (and memory usage)
with soft constraints S, since using only hard constraints H
should be sufficient to compute that its marginal probability
P (X) is zero. In relational domains, where we have millions
of query atoms each involved with thousands of constraints,
such irrelevant computations greatly weaken the scalability
of the inference, especially if most query atoms have a ten-
dency to violate hard constraints. Inspired by the sparseness
property of relational domains, the marginal probability of
the vast majority of query atoms being true is frequently
zero. Potentially this is due to the violation of hard con-
straints that have at least one false precondition query atom.

In this paper we propose Preference Relaxation (PR), a
two-stage strategy that uses the determinism (i.e. hard con-
straints) present in the underlying model to improve the scal-
ability of relational inference. The basic idea of PR is to take
advantage of the fact that hard constraints are sufficient to
extract zero marginal probabilities for the considerable num-
ber of query ground atoms that violate them, and this with-
out ever having to waste computational time (and memory
usage) with preferences. To diminish such irrelevant com-
putational time and memory, in a first stage PR starts by re-
laxing preferences and performing inference with hard con-
straints only in order to obtain the zero marginals for the
query ground atoms that violate the hard constraints. It then
filters these query atoms (i.e. it removes them from the query
set) and uses them to enlarge the evidence database. In a
second stage preferences are reinstated and inference is per-
formed on a grounded network that is constructed based on
both a filtered query set and an expanded evidence database
obtained in the first stage. PR substantially reduces the ef-
fective size of the constructed grounded network, potentially
with a loss of accuracy.

In what follows we begin by giving some background be-
fore demonstrating our general PR approach and illustrating
how it applies to both MC-SAT and Belief Propagation al-
gorithms. Finally we present experimental evaluations, fol-
lowed by our conclusions.

Background
Notation. We use f ∈ F to denote a constraint (or ground
clause) that is a disjunction of literals built from X , where
X = {X1, X2, cldots,Xn} is a set of n Boolean random
variables representing ground atoms. Both “+” and “−” will
be used to denote the true and false appearance of the vari-
ables. A weightwi is attached to each constraint fi. For each
variable Xj , we use θXj

= [θ+
Xj
, θ−Xj

] to denote its pos-
itive and negative marginal probabilities, respectively. We
use fsi (resp. fhi ) to indicate that the constraint fi is soft
(resp. hard); the soft and the hard constraints are included
in the two sets Fs and Fh respectively. The set Xh, and Xs

correspond to the variables appearing in the scope of hard
constraints Fh and soft constraints Fs, respectively.
Propositional grounding. Propositional grounding is the
process of replacing a first-order Knowledge Base (KB) by

an equivalent propositional one. In finite domains, inference
over a first-order KB can be performed by propositional
grounding followed by satisfiability testing. But in order to
apply a satisfiability solver we need to create a Boolean vari-
able for every possible grounding of every predicate in the
domain and a propositional clause for every grounding of
every first-order clause. One of the most powerful represen-
tations used in this area is Markov logic networks (Richard-
son and Domingos 2006).
Markov Logic Network (MLN). A Markov Logic Network
is a set of pairs (fi, wi), where fi is a first-order logic for-
mula (or clause in CNF) and wi is a numerical weight. To-
gether with a finite set of constants, it defines a Markov logic
network that has a binary variable node for each ground
atom, and a feature for each ground clause (i.e. constraint).
The weights attached to constraints reflect their strength de-
pendencies. Thus hard constraints have the largest weight
(w →∞), in the sense that they must be satisfied. A Markov
logic compactly represents the joint distribution over un-
known variables {X1, · · · , Xn} given the evidence vari-
ablesE as: P (X1, · · · , Xn|E) = Z−1

E e
∑

i wi·fh
i ·e

∑
k wk·fs

i ,
where ZE is the normalizing constant. For any possible
world, X1, · · · , Xn, to have a non-zero probability, all the
hard constraints have to be satisfied, in which their (infinite)
weights can be factorized out of both the denominator and
numerator.
Probabilistic Inference. The object of the inference task
in a MLN is to compute either the most probable explana-
tion of the grounded network, or to compute the marginal
probability of the non-evidence variables (the query) given
others as evidence. MC-SAT (Poon and Domingos 2006), a
slice sampling MCMC inference and loopy Belief Propaga-
tion (BP) (Yedidia, Freeman, and Weiss 2005), a message-
passing inference, are two widely-used algorithms that pro-
vide approximate marginals.

Scaling Up Relational Inference via PR
In graphical models that feature determinism, it is wasteful
to allocate memory to all constraints in advance when per-
forming inference. The PR framework first allocates mem-
ory to the hard constraints along with their corresponding
variables. In domains where most variables are more likely
to violate hard constraints, this can save memory and also
speed up the computation since we do not allocate memory
and perform computations for soft constraints that do not
affect the marginal probabilities of some query variables.

The PR Framework
Definition 1. Let F be a set of constraints. Each constraint
fi(X1, ...Xl) ∈ F , where the Xj’s are either variables or
functions, has an inference state. The default state of con-
straints is awake, meaning that the constraint will be con-
sidered when constructing the underlying grounded network
for answering the queries (i.e. for inference). Otherwise the
constraint is relaxed, meaning that it will be ignored. A vari-
able is awake if it appears directly as an argument of an
awake constraint or in a function that is an argument of an
awake constraint. Otherwise it is considered to be relaxed.
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Assume that A is an inference algorithm that we want
to transform via PR to obtain inference algorithm Â. We
make the following assumptions about A so that our frame-
work can be used: (1) the theory ofA involves carrying out a
propositionalization step, then calling a propositional infer-
ence algorithm; (2) The propositional inference algorithm
used by A updates one variable at a time.

We now describe how to derive Â from A. Algorithm 1
takes as input an underlying model of constraints M (e.g.
Markov logic model that involves clauses with associated
weights), query variables X whose marginals we want to
compute, a pruning threshold γ, and an evidence database
DB that involves variables we can condition. Its output are
the marginal probabilities Θ of query variables X . In the
first stage we relax all soft constraints and allocate mem-
ory for the hard constraints that are not satisfied when all
evidence variables are set to their fixed values. This con-
sequently awakens the non-evidence variables that are in-
volved in these hard constraints. The awake variables and
awake hard constraints become the initial set of variables
and constraints that are used to perform inference, comput-
ing marginal probabilities of awake query variables. Since
many local-search-based inference algorithms (e.g., Walk-
SAT) as well as MCMC-based algorithms resort to random-
ization to choose the next variable to update, when relaxing
the preferences we apply a smart randomization technique
(Poon, Domingos, and Sumner 2008) over awake variables
only. After convergence, Â filters the set of awake query
variables: those whose marginals are at most γ are removed
from X and are added to evidence database DB as false evi-
dence, and those whose marginals are at least 1−γ are added
as true evidence.

In the second stage Â awakens all preferences that were
previously relaxed. It then constructs the grounded network
based on both the enlarged evidence database DB∗ and the
reduced set of query variablesX ∗∗. That is to say it allocates
memory for awake constraints (both hard and soft) that are
not satisfied in the new evidence database DB∗ to answer
query variables X ∗∗. Then it applies the appropriate prob-
abilistic inference to compute the marginal probabilities of
awake query variables X ∗∗. It is worth noting that although
the query variables are awakened at some point during infer-
ence, ultimately all of their marginal probabilities are guar-
anteed to be computed, but some are computed in the first
stage (i.e., filtered query variables) and the rest will be com-
puted in the second stage.

The advantage of our PR strategy is three-fold. First we
avoid unnecessary computations with soft constraints to ob-
tain marginal probabilities of awake query variables that vi-
olate awake hard constraints. Second we reduce the set of
query variables X by filtering out some awake query vari-
ables that violate hard constraints. Third we enlarge the ev-
idence database by adding those filtered query variables,
which reduces the effective size of the grounded network
that will be constructed for inference in the second stage
since the evidence variables are fixed to their truth values.

Algorithm 1: PR-based Inference algorithm Â
Input: Evidence database (DB), set of query variables (X ),

underlying model (M), pruning Threshold (γ).
Output: Marginals of query variables (Θ).

// Preference Relaxation (PR) step
1: Fh ← awake hard constraints not satisfied by DB;
2: Xh ← awake query variables in X that appear in Fh;
3: Mh ← ConstructNetwork(Xh,Fh,DB);
4: ΘXh

← Infer(Xh,Mh);
// Filtering query variables Xh

5: for each Xj ∈ Xh do
6: if θ+

Xj
≤ γ then

DB ← DB ∪ {¬Xj} ;

ΘX̂ ← ΘX̂ ∪
{
θ+
Xj

}
; X ← X \ {Xj} ;

7: else if θ+
Xj
≥ 1− γ then

DB ← DB ∪ {Xj} ;

ΘX̂ ← ΘX̂ ∪
{
θ+
Xj

}
; X ← X \ {Xj} ;

8: end if
9: end for

10: DB∗ ← DB; // Enlarge evidence database
11: X ∗ ← X ; //Shrink query set

// Awake all relaxed preferences
12: F∗ ← awake hard & soft constraints not satisfied byDB∗;
13: X ∗∗ ← awake query variables in X ∗ that appear in F∗;

//Construct the reduced grounded network

14: M∗ ← ConstructNetwork(X ∗∗,F∗,DB∗);
15: ΘX∗∗ ← Infer(X ∗∗,M∗);
16: Θ← ΘX∗∗ ∪ΘX̂ ;
17: Return Θ;

PR-based Relational Inference Algorithms

In relational domains the variables are ground atoms which
are defined over Boolean domains D = {+,−}. A ground
atom is an evidence if its marginal θ+ = 0 (false evidence)
or θ− = 0 (true evidence). The constraints are ground
clauses. Thus the ground clause is relaxed if it is set to a
non-default state and otherwise it is awake. A ground atom is
awake if it is included by (at least) one awake ground clause,
otherwise it is relaxed.

PR-based inference algorithm Â is general and can be
combined with many relational inference algorithms such
as MCMC sampling (e.g. Gibbs sampling, simulated tem-
pering, etc.), MC-SAT, Walk-SAT, and Belief propagation
(BP). Here we illustrate PR-based relational inference for
Belief propagation and MC-SAT, and use the latter in our
experiments.

PR-BP Given a factor graph G, PR-BP performs three
steps. The situation is depicted in Fig. 1(b). Step (i) - Re-
laxing the Factor Graph: We relax soft factors and con-
struct the factor graph for factor nodes and variable nodes
that represent the awake ground hard clauses and their awake
ground atoms, respectively. Assuming there is no evidence,
all awake variable nodes are queries. We simulate BP in-
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Figure 1: a) Propositional-BP. b) From left to right, the steps
of PR-BP inference algorithm.

ference by alternating the passing of awake messages.1 The
message from an awake variable Xj to an awake factor fi
is:

µawake
Xj→fi =

∏
fk∈FXj

\{fi}

µawake
fk→Xj

(1)

and the message from an awake factor fi to awake variable
Xj is:

µawake
fi→Xj

=
∑

Xfi
\{Xj}

f awake
i

∏
Xk∈Xfi

\{Xj}

µawake
Xk→fi

 (2)

Step (ii) - Enlarging the Evidence Database: We keep
track of which variables and factors send and receive violat-
ing awake messages: an awake message is violating if it is
less than γ or greater that 1 − γ. The weight of an edge is
the number of times the variable node receives an identical
violating message from the same factor node. If we obtain
a specified weight of such a message for a variable, then
this means that it violates the hard factor. Thus we filter the
variable and relax its messages. For instance at Fig. 1(b)-
ii, if variable C violates a factor we mark it as evidence (i.e.
black circle) by adding it toDB and relax its passing of mes-
sages with this factor (i.e. dashed line). In addition if a factor
is satisfied by marking one of its argument variable nodes
as evidence then we relax this factor (i.e. black square) and
relax its messages as well. Step(iii) - Constructing the re-
duced Factor Graph: We awake soft factors and construct
the reduced grounded factor graph based on the last infor-
mation we obtained from step (2). We then run the standard
BP algorithm on it.

PR-MC-SAT PR-MC-SAT initializes by relaxing all soft
clauses and awakens only those hard clauses that are not
satisfied by the given evidence database DB. It then calls
Walk-SAT to find a solution to all awake hard clauses (which
is a satisfying assignment to their awake ground atoms).
At each iteration it generates membership M by sampling
from the currently satisfied awake hard clauses. Note that
since the candidate clauses in M are all hard, we do not

1The message is awake if it is passed between the awake vari-
able node and the awake factor node, or vice versa.

select them based on their weights (all uniformly infinite)
but whenever their auxiliary variable is greater than 1. We
then run unit propagation in order to simplify the selected
clauses in M . PR-MC-SAT next calls SampleSAT (Wei,
Erenrich, and Selman 2004) to obtain the next state over
awake atoms by sampling near-uniformly from their solu-
tions in M , which is initialized using smart randomization
(Poon, Domingos, and Sumner 2008) over the awake atoms.
Once the num samples threshold is reached we identify
awake atoms whose marginals are less than γ or greater
than 1 − γ. These atoms are removed from the query set
and added to the evidence database. We then awake the soft
clauses and construct a grounded Markov network based on
the shrunken query list and enlarged evidence database, on
which we perform standard MC-SAT inference.

Combining PR with Lazy Inference
One key advantage of PR is that it can be combined with
other state-of-the-art approaches which improve the scala-
bility of inference, such as Lazy and Lifted. Algorithm 2
shows how to combine PR with Lazy MC-SAT (Poon,
Domingos, and Sumner 2008): it only differs from PR with
propositional MC-SAT at Lines 2, 5, 6, and 8. Lazy-PR
starts by calling Lazy-SAT to find the solution to awake hard
constraints and then runs unit propagation among active-
awake hard clauses in M and their atoms. It then calls
Lazy-SampleSAT to obtain the next state by sampling near-
uniformly from the solutions in M . After reaching the
num samples threshold, it filters active-awake query atoms
and enlarges the evidence database.

Algorithm 2: Combining PR with Lazy MC-SAT.
1: Relax soft clauses and maintain only active ones

hard clauses that are awakened;
// call Lazy-SAT

2: X (0)
h ← Satisfy (active-awake hard clauses);

3: for i← 1 to num samples do
4: M ← ∅;
5: for ∀ck ∈ active-awake hard clauses satisfied byX (i−1)

h do
6: add ck to M ;
7: end for
8: Sample X (i−1)

h ∼USAT(M); //call Lazy SampleSAT
9: end for
10: [DB∗,X∗]← Filtering the active-awake query atomsΘXh

;
11: Construct the grounded network lazily onDB∗ and X∗;
12: call MC-SAT;

Experiments
The goal of our experimental evaluation is to investigate
the following key questions. (Q1) Is PR powerful enough
to reduce significantly the size of grounded networks? (Q2)
Is PR-based inference competitive with prominent state-of-
the-art methods such as Lazy Inference? (Q3) How is the
scalability of PR-based inference influenced by the amount
of determinism present in the underlying model and the
pruning threshold that is used in filtering the query vari-
ables?
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We experimented on a protein interaction task in a molec-
ular biology domain, a link prediction task in a social net-
working domain, and an entity resolution task in a citation
matching domain. In these problem domains it is possible to
transform certain soft constraints into hard constraints. This
provides us with the ability to test PR at differing levels of
hard constraints.

To assess PR, we compared the space consumption and
running time of construction and inference, and the accu-
racy (with and without PR) for both propositional MC-SAT
(Poon and Domingos 2006) and its lazy inference version
(Poon, Domingos, and Sumner 2008), as implemented in the
Alchemy system (Kok et al. 2007). We conducted the exper-
imental evaluations in the following manner. In the training
phase, we learned the weights using a preconditioned scaled
conjugate gradient (PSCG) algorithm (Lowd and Domingos
2007) by performing a four-way cross-validation for pro-
tein interaction task, and a five-way cross-validation for both
the link prediction and entity resolution tasks. In the testing
phase, we carried out inference on the held-out dataset using
six underlying inference algorithms (MC-SAT, Lazy-MC-
SAT, PR-MC-SAT 0.001, PR-MC-SAT 0.01, PR-Lazy-
MC-SAT 0.001, PR-Lazy-MC-SAT 0.01) to produce the
marginals of all groundings of query atoms being true. We
ran each algorithm until it either converged or its number of
iterations exceeded 10 000. To obtain robust answers to the
proposed questions, we did the following: 1) vary the num-
ber of objects in the domains, following methodology pre-
viously used (Poon, Domingos, and Sumner 2008); 2) use
two pruning thresholds 0.001 and 0.01 for PR; and 3) vary
the amounts of determinism in the models (i.e., starting with
hard constraints that initially exist in MLN, we gradually
increase the number of hard constraints and re-run the ex-
periment). All of the experiments were run on a cluster of
nodes with 3.0 GHz Intel CPUs, 3 GB of RAM, RED HAT
Linux 5.5, and we implemented PR as an extension to the
Alchemy software (Kok et al. 2007).

Protein Interaction
Here we use the MLN model of (Davis and Domingos 2009)
for a Yeast protein interaction problem. The Yeast problem
captures information about a protein’s location, function,
phenotype, etc. The goal of inference is to predict the in-
teraction relation (Interaction, and Function). Here, we ran
the experiment at two amounts of determinism: 25% (i.e.,
ratio: 2 constraints out of 8 constraints, initially present as
hard in MLN) and 37.5% (ratio: 3 constraints out of 8 con-
straints were considered hard), and we varied the number of
objects in the domain from 0 to 1000 by increments of 50.

Link Prediction
For the link prediction task, we used the MLN model avail-
able on the Alchemy website (excluding the 22 unit clauses)
of the UW-CSE dataset from (Richardson and Domingos
2006). UW-CSE records information about the University of
Washington (UW) Computer Science and Engineering De-
partment (CSE). The inference task is to predict advisory
relationships (AdvisedBy), and all other atoms are evidence
(corresponding to all the information scenario (Richardson

and Domingos 2006)). Here we ran the experiment at two
amounts of determinism: ≈ 9.7% (ratio: 7 out of 72 con-
straints were hard) and ≈ 38.9% (ratio: 28 out of 72 con-
straints were considered hard). In addition, we varied the
number of objects in the domain from 0 to 400 by incre-
ments of 50.

Entity Resolution
For the entity resolution experiment, we used the MLN
model that is similar to the established one of Singla (Singla
and Domingos 2006a) on the Cora dataset from (Poon,
Domingos, and Sumner 2008), consisting of 1295 citations
of 132 different computer science papers. The goal of infer-
ence is to predict which pairs of citations refer to the same
citation, author, title and venue (i.e, SameBib, SameTitle,
SameAuthor and SameVenue). The other atoms are consid-
ered evidence atoms. We ran the experiment at two amounts
of determinism: ≈ 12.5% (ratio: 4 out of 32 constraints, ac-
tually already appearing in MLN as hard) and≈ 25% (ratio:
8 out of 32 constraints were considered hard). Additionally,
we varied the number of objects in the domain from 0 to 500
by increments of 50.

Results
Figure 2 displays the time for total inference (where total in-
ference = construction time + inference time) as a function
of the number of objects in the domain for the six underlying
inference algorithms at different amounts of determinism.
The results show that PR-MC-SAT at thresholds 0.001 and
0.01 finishes at least four orders of magnitude faster than the
propositional MC-SAT on both Yeast and UW-CSE datasets,
and three orders of magnitude on the Cora dataset. It was
also very competitive with Lazy Inference on Yeast and on
UW-CSE with 38.9% determinism. In addition, PR-lazy-
MC-SAT at thresholds 0.001, 0.01 exceeds both the propo-
sitional MC-SAT and the lazy-MC-SAT on all underlying
tested datasets. Clearly, PR-lazy-MC-SAT 0.01 was able to
handle all full datasets, whereas lazy-MC-SAT ran out of
memory with 1000 objects in the Yeast dataset.

Table 1 summarizes the average Construction (with and
without PR) and inference times (mins.), memory (MB)
and accuracy (CLL) metrics of Propositional grounding and
PR-based MC-SAT inference algorithms on the underlying
datasets. The results complement those of Figure 2, ensuring
the promise of PR-based algorithms to improve MC-SAT’s
inference time and memory space. It also shows that RP-
based algorithms at low thresholds (0.001) maintain approx-
imately the same accuracy on the three underlying datasets,
although they have a minor loss in accuracy to estimate
marginals with a large pruning threshold (0.01), particularly
in the Cora dataset.

Discussion
Overall the results clearly show that PR-based algorithms
substantially improve the scalability of propositional MC-
SAT inference. This is due to, first, avoiding irrelevant com-
putations as well as memory usage involving soft ground
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Figure 2: Inference time (secs) vs. number of objects in Yeast at 25%, 37.5% amounts of determinism (left), in UW-CSE at
9.7%, 38.9% amounts of determinism (middle), and in Cora at 12.5%, 25% amounts of determinism (right)

clauses for the large number of query ground atoms that vi-
olate hard ground clauses. Second, the enlarging of the evi-
dence database that provides great implications for reducing
the effective size of the grounded network.

Table 1: Average Construction (with and without PR) and
Inference times (mins.), memory (MB) and accuracy (CLL)
metrics of Propositional grounding and PR-based MC-SAT
inference algorithms on the Yeast data set over 200 objects,
the UW-CSE data set over 150 objects, and the Cora data set
over 200 objects.

Datasets Yeast UW-CSE Cora
Determinism % Determinism % Determinism %

Algo. Metric 25% 37.5% 9.7% 38.9% 12.5% 25%

Pr
op

os
it. Cons. 63.82 63.83 7.92 7.92 80.85 81.01

Infer. 716.26 797.44 783.75 873.38 1074.15 1390.33
Mem. 389 429 1144.41 1445.93 1430.51 1653.87
CLL −0.0353 −0.0357 −0.0433 −0.0457 −0.210 −0.245

PR
0.

00
1 PR-Cons. 99.93 117.58 13.27 14.97 162.5 170.5

Infer. 150.94 90.15 169.05 140.03 270.13 249.62
Mem. 125.85 93.29 314.68 213.60 535.88 439.43
CLL −0.0354 −0.0362 −0.0443 −0.0467 −0.219 −0.261

PR
0.

01

PR-Cons. 98.33 110.82 12.98 13.09 195.7 201.02
Infer. 126.32 70.38 114.06 93.60 164.3 131.51
Mem. 112.40 80.17 258.39 160.93 376.97 301.58
CLL −0.0365 −0.0370 −0.0459 −0.0470 −0.235 −0.280

PR-based algorithms were also very competitive with re-
spect to Lazy Inference whenever a substantial amount of
determinism is present in the model. This can be attributed
to the fact that determinism offers a trade-off for the ca-
pacity of PR-based algorithms in terms of saving/wasting
computational time and memory: on one hand the PR step

costs both memory and time for inference on a large number
of hard clauses, but on the other hand it shrinks the query
set and enlarges the evidence database. Moreover, PR-based
algorithms dominate both propositional MC-SAT and lazy-
MC-SAT on all tested data sets when they were combined
with Lazy Inference. This is because the result of such com-
bination is the exploitation of both sparseness in Lazy and
determinism in PR to scale up the inference.

Conclusion and Future work
We have proposed Preference Relaxation, a two-stage strat-
egy that exploits determinism to scale up relational infer-
ence. Preferences are first ignored in order to shrink the
query set and enlarge the evidence database. Experiments
on real-world domains show that PR is able to greatly reduce
the time and space requirements of inference by several or-
ders of magnitude when applied to propositional MC-SAT
and is twice as fast as its lazy version. In the future we plan
to apply PR to other inference algorithms such as Lifted In-
ference. We also intend to perform an on-line inference sce-
nario of PR-based algorithms.
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