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Abstract 
A user-adaptive information visualization system capable of 
learning models of users and the visualization tasks they 
perform could provide interventions optimized for helping 
specific users in specific task contexts. In this paper, we in-
vestigate the accuracy of predicting visualization tasks, user 
performance on tasks, and user traits from gaze data. We 
show that predictions made with a logistic regression model 
are significantly better than a baseline classifier, with par-
ticularly strong results for predicting task type and user per-
formance. Furthermore, we compare classifiers built with 
interface-independent and interface-dependent features, and 
show that the interface-independent features are comparable 
or superior to interface-dependent ones. Finally, we discuss 
how the accuracy of predictive models is affected if they are 
trained with data from trials that had highlighting interven-
tions added to the visualization. 

 Introduction   
Research in information visualization has always had a 
strong focus on understanding how cognitive and percep-
tual processes interact with visualizations. In recent years, 
there has been increased attention in investigating the im-
pact of users’ individual differences on interactions with 
visualizations. Researchers have found that several cogni-
tive abilities and personality traits can impact the effec-
tiveness of visualizations (e.g. Ziemkiewicz et al., 2011, 
Toker et al., 2013). These findings suggest that personal-
ized visualizations may offer benefits to users by adapting 
to their individual traits.  
 The goal of our current work is to explore what value 
gaze data can have for an adaptive visualization that active-
ly learns the traits of its users and presents customized 
highlighting of information to meet their individual needs. 
Gaze patterns are of interest both because they are tightly 
linked to information processing (Just and Carpenter, 
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1976), and because gaze data can be obtained for non-
interactive visualizations. Earlier work showed that three 
different  cognitive abilities (perceptual speed, visual 
working memory and verbal working memory), task per-
formance, and task type can be estimated (albeit with vary-
ing degrees of accuracy) from gaze patterns during visuali-
zation tasks with bar graph and radar graph visualizations 
(Steichen et al., 2014a). Our work complements these pre-
vious findings as follows. 
 First, we verify whether we can obtain similar results for 
predicting the same user and task properties while users 
interact with bar graphs visualizing more complex datasets.   
The inclusion of task performance as a target for prediction 
is intended to address the question of when adaptive inter-
ventions should be displayed: users with low predicted 
performance stand to benefit more from additional support. 
The prediction of user cognitive abilities and task type can 
inform the decision of which interventions should be dis-
played, since prior work has correlated these characteristics 
with effects on specific aspects of visualization processing 
(Carenini et al., 2014). 
 Second, we add the prediction of a user’s locus of con-
trol, a personality trait that has been shown to impact visu-
alization performance (e.g. Ziemkiewicz et al., 2011). 
 Third, we compare classifiers built with interface-
independent and interface-dependent features, in order to 
assess the extent to which these predictive models require 
having detailed information on the presented visualization. 
 Finally, we investigate how model accuracy is affected 
if models are trained with data from tasks that had different 
types of highlighting interventions added to the visualiza-
tion. These interventions were designed to highlight graph 
bars that were relevant to perform the given task. Interven-
tions could eventually be used to provide adaptive support 
by dynamically redirecting the user's attention to different 
subsets of the visualized data as needed (e.g. when the vis-
ualization is used together with a verbal description that 
discusses different aspects of a dataset, Carenini et al., 
2014). 
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 The rest of this paper presents related work, followed by 
a summary of the user study that generated our datasets. 
Next, we illustrate the classification experiments that were 
run to predict the aforementioned user and task properties. 
Finally, we discuss our results and conclusions. 

Related Work 
Our work on user-adaptive visualizations draws from re-
search in three related areas: analyzing influences of user 
traits on visualization effectiveness, user modeling, and the 
use of eye-tracking to build user and task models. 
 The influence of user traits on the effectiveness of visu-
alizations has been studied for both cognitive abilities and 
personality-based traits. Perceptual speed, visual working 
memory, and verbal working memory cognitive abilities 
were found to influence both performance with and prefer-
ences for visualizations (Conati and Maclaren, 2008), (Ve-
lez et al., 2005) (Toker et al., 2012). The locus of control 
personality trait was found to influence performance on 
visualization tasks (Ziemkiewicz et al., 2011). 
 Studies linking user traits to visualization effectiveness 
motivate the need to estimate those traits during visualiza-
tion use. Several researchers have approached this task by 
tracking user interface actions. For instance, Grawemeyer 
(2006) and Mouine and Lapalme (2012) recorded user se-
lections among alternative visualizations to recommend 
visualizations in subsequent tasks.  Gotz and Wen (2009) 
track suboptimal user interaction patterns to recommend 
alternative visualizations for the current task. (Ahn and 
Brusilovsky, 2013) track a history of user search terms to 
customize the display of exploratory search results. 
 Gaze data has been shown to be a valuable source of 
information for user modeling in various domains. Eivazi 
and Bednarik (2011) used gaze data to predict user strate-
gies when solving a puzzle game. Kardan and Conati 
(2013) and Bondareva et al. (2013) use gaze to predict stu-
dent learning with educational software, while Jaques et al. 
(2014) leverages it for affect prediction. Liu et al. (2009) 
predict skill level differences between users in collabora-
tive tasks. 
 In information visualization, user modeling with gaze 
data was explored by Steichen et al. (2014a), and Toker et 
al. (2014). Steichen et al. found that task type and com-
plexity, user performance, and three user cognitive abilities 
(perceptual speed, visual working memory and verbal 
working memory) could be classified with accuracies sig-
nificantly above a majority class baseline. Their work used 
simple bar graph visualizations with at most three data 
points per series. In this paper, we use data from a study 
that involved more complex bar graphs (doubling the max-
imum data points per series) and added highlighting inter-
ventions to the graphs. We also add the classification of a 

user’s locus of control, and test classification accuracy 
with gaze features built upon interface-independent areas 
of interest (AOIs). Toker et al. (2014) used the same da-
taset leveraged in this paper to model users’ skill acquisi-
tion. They also looked at the performance of interface-
independent AOIs and found that they did not perform as 
well as AOIs based on specific interface features for pre-
dicting skill acquisition. In this paper, we extend the work 
of Toker et al. on interface-independent AOIs to the classi-
fication of task type, user performance, and user cognitive 
traits. 

User Study 
The gaze data used in this paper was collected during a 
user study that investigated both the effectiveness of four 
highlighting interventions, as well as how this effective-
ness is impacted by task complexity and different user 
traits (Carenini et al., 2014). In the study, 62 participants 
between the ages of 18 to 42 were given bar graph visuali-
zations along with textual questions on the displayed data 
(see Figure 1). There were 39 female participants and 23 
males. The experimental software was fully automated and 
ran in a web-browser. User gaze was captured with a Tobii 
T120 eye-tracker, embedded in the computer monitor. 

Figure 1. The study interface showing a task without highlighting 
interventions (components have been scaled for printing).  

Task complexity was varied by having subjects perform 
2 different types of tasks, chosen from a standard set of 
primitive data analysis tasks (Amar et al., 2005). The first 
task type was Retrieve Value (RV), one of the simplest 
task types in (Amar et al., 2005), which in the study con-
sisted of retrieving the value for a specific individual in the 
dataset and comparing it against the group average (e.g., 
"Is John's grade in Philosophy above the class average?"). 
  The second, more complex task type, was Compute 
Derived Value (CDV). The CDV task in the study required 
users to first perform a set of comparisons, and then com-
pute an aggregate of the comparison outcomes (e.g., Figure 
1). All tasks involved six data points and eight series ele-
ments. 
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Figure 2. Highlighting interventions. Left to right: bolding, 
connected arrows, de-emphasis, and reference line. 

 Each intervention evaluated in the study (shown in Fig-
ure 2) was designed to highlight graph bars that were rele-
vant to answer the current question, to guide a user's focus 
to a specific subset of the visualized data while still retain-
ing the overall context of the data as a whole (Few, 2009). 
The Bolding intervention draws a thickened box around the 
relevant bars; De-Emphasis fades all non-relevant bars; 
Average Reference Lines draws a horizontal line from the 
top of the left-most bar (representing the average) to the 
last relevant bar; Connected Arrows involves a series of 
connected arrows pointing downwards to the relevant bars. 
Participants began by completing a set of tests that meas-
ured the 5 user characteristics evaluated in the study, se-
lected because they had been previously shown to influ-
ence user performance or satisfaction with visualizations. 
They included: (1) Perceptual speed, a measure of speed 
when performing simple perceptual tasks (Ekstrom, 1996); 
(2) Visual Working Memory, a measure of storage and ma-
nipulation capacity of visual and spatial information (Fu-
kuda and Vogel, 2009); (3) Verbal Working Memory, a 
measure of storage and manipulation capacity of verbal 
information (Turner and Engle, 1989); (4) Bar Graph Ex-
pertise, a self-reported measure of a user's experience with 
using bar graphs; and (5) Locus of Control, a personality 
trait measuring whether individuals tend to take responsi-
bility for their circumstances or blame them on external 
factors. Next, each participant performed each of the two 
task types (RV & CDV) with each of the 4 interventions as 
well as No Intervention as a baseline for comparison, in a 
fully randomized manner. Additional details about the user 
study protocol and references to all the standardized tests 
used to assess user characteristics can be found in (Toker et 
al., 2013). 

Design of Classification Experiments 

Classification Targets 
We used the dataset collected from the study described in 
the previous section to build classifiers for the following 
classification targets: task type, user performance, visual 
working memory (visual WM), verbal working memory 
(verbal WM), locus of control, perceptual speed (PS), and 
expertise with bar graphs. All classifiers leverage only 
gaze features as inputs and predict binary labels. Binary 
labels were created from median splits of continuous traits. 

 The task type could be either RV or CDV representing, 
respectively, tasks of lower or higher complexity.  User 
performance represents the time required by users to com-
plete tasks, where longer completion times are indicative 
of lower performance. 

Eye Tracking Features 
Eye tracking data consists of fixations (i.e., gaze points on 
the screen), and saccades (i.e., quick movements between 
fixations). For our classification experiments, we process 
the raw gaze data into a set of basic measures (fixation 
number, rate and duration, saccade length, and abso-
lute/relative saccade angles) calculated using the open-
source Eye Movement Data Analysis Toolkit (EMDAT). 
EMDAT converted these basic measures into individual 
eye-tracking features by calculating summary statistics 
such as their mean, sum, and standard deviation. Addition-
al features were obtained by defining specific areas of in-
terest (AOIs) within the interface and then calculating sta-
tistics on basic gaze measures restricted to these AOI. 
Transitions between AOIs are also captured by AOI-
specific features. 

Figure 3. Areas of interest (AOIs). Left to right: Custom AOIs, 
2×2 Grid, 3×3 Grid, 4×4 Grid, and X Grid. 

 To test how much knowledge of the current interface is 
necessary for accurate classification of our targets, we de-
fined different types of AOI. The Custom AOI set includes 
six interface-specific AOIs manually defined to cover the 
functional elements of the interface used in the study (e.g. 
bar graph labels, legend, top part of the bars in the graph, 
question text, input area). Following (Toker et al. 2014), 
four additional, interface-independent, sets of AOIs were 
created based on the geometric grids shown in Figure 3 
(Generic AOIs from now on). AOI-dependent features 
were supplemental to the AOI-independent summative 
gaze features. All classification experiments were repeated 
with each of the five AOI sets and with a set including only 
AOI-independent features. The set of only AOI-
independent features contained 14 features, while the other 
feature sets ranged in size from 78 features to 654 features. 

Classifier and Evaluation Details 
To simulate the temporal evolution of the data that would 
be available to an adaptive system, we created “partial” 
datasets by generating features from percentages of the 
interaction time for each trial (e.g. the first 10% of a trial’s 
data, 20%, etc.). For each classification target and “partial” 
dataset, separate classification experiments were run for 
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each possible combination of a displayed intervention and 
an AOI set used for feature generation. 
 All classification experiments tested the accuracy of 
using logistic regression and correlation-based feature se-
lection (Hall, 1999) for learning models. Logistic regres-
sion was selected after testing it alongside random forest, 
support vector machine, multilayer perceptron, decision 
tree, and naïve Bayes classifiers because it had the highest 
overall accuracy. Models were trained using the WEKA 
machine learning toolkit (Hall et al., 2009), and evaluated 
via ten runs of 10-fold cross-validation by comparison 
against a majority class baseline classifier. 
 In order to summarize the multitude of results from the-
se classification tasks, we run three-way, 2 (classifier type) 
by 6 (AOI type) by 5 (intervention type), repeated 
measures ANOVAs for each classification target with clas-
sification accuracy as the independent measure and use 
these to (i) identify significant differences between the 
performance of logistic regression and the baseline; (ii) 
systematically compare the effect of interventions and 
AOIs on classification results. Bonferroni adjustments are 
applied to correct for both the multiple statistical compari-
sons conducted due to the eight separate ANOVAs, as well 
as pairwise tests used to interpret effects within each 
ANOVA. Reported effects are all significant at the p<0.05 
level after adjustments. 

Results 

Classifier Effects 
For all our classification targets except visualization exper-
tise and locus of control, main effects of classifier in the 
ANOVAs indicate that logistic regression performs signifi-
cantly better than the baseline. Because of the poor per-
formance for visualization expertise (which mirror the 
findings from Steichen et al., 2013) and locus of control, 
these targets are dropped from the rest of the paper. As 
Table 1 shows, the mean accuracy of the logistic classifier 
is above 90% for task type and 85% for completion time. 

Table 1. Main effects of classifier type on classification. 

Classification 
Target 

Logistic Mean 
(%) [Std. Dev.] 

Baseline Mean  
(%) [Std. Dev.] 

Task Type 91.5 [6.38] 51.6 [2.00] 
Completion Time 88.2 [3.50] 73.6 [6.55] 

Perceptual Speed 59.9 [3.90] 51.2 [0.92] 

Visual WM 56.0 [3.52] 54.4 [0.84] 
Verbal WM 61.6 [2.55] 59.8 [0.81] 

 Accuracies for user characteristics are lower, consistent 
with the findings reported by Steichen et al. (2013). It 

should be noted, however, that the means reported in Table 
1 are obtained by averaging over the results from all the 
tested AOI feature sets, interventions, and varying amounts 
of observed data. Thus, these means are conservative esti-
mates of the accuracies that could be achieved in practice 
since less informative feature sets would not be used. 

Effects of AOI Type and Interventions 
Our ANOVA results show significant main effects for both 
AOI type and interventions on classification accuracy for 
all classification targets. These effects can be interpreted 
using pairwise comparisons between levels of each factor. 
Table 2 and Table 3 summarize all pairwise comparisons 
between, respectively, AOI types and interventions. In the-
se tables, underlines group levels for which there are no 
statistically significant differences in accuracy. For exam-
ple, Table 2 shows that Custom AOIs and X Grid AOIs do 
not have significantly different accuracy in the classifica-
tion of perceptual speed. 

Table 2. Effects of AOI type on classification. See text for details. 

Classification 
Target 

AOI Type 
(Lowest Classification Accuracy to Highest) 

Perceptual 
Speed 

No AOIs < Custom < X < 4×4 < 3×3 < 2×2 

Visual WM No AOIs < 3×3 < Custom < X < 2×2 < 4×4 

Verbal WM No AOIs < 4×4 < 3×3 < X < 2×2 < Custom 

Task Type No AOIs < X < Custom < 3×3 < 4×4 < 2×2 

Completion 
Time 

No AOIs < Custom < X < 4×4 < 2×2 < 3×3 

Main Effects of AOI Type 
Several trends are visible from the pairwise comparisons in 
Table 3. The No AOI feature set consistently performs 
worse than the AOI-based sets, thus showing the value of 
the finer-grained information provided by the AOI-based 
measure.  On the other hand, the Custom AOIs are general-
ly not better than generic feature sets. In fact, for each clas-
sification target except verbal working memory, there is a 
generic AOI feature set with significantly higher accuracy 
than the Custom AOI. These findings suggest that manual-
ly isolating functional regions in the interface may not al-
ways be necessary for creating informative AOIs, and thus 
provide encouraging, although preliminary, evidence that 
gaze-based classifiers can be built without a priori infor-
mation on the target visualizations. This result is consid-
ered preliminary as its generality has yet to be tested on a 
wide variety of visualizations or data distributions. 
Verbal WM and visual WM share several trends with re-
spect to their accuracy with each type of AOI (e.g. the 2×2 
grids were better than both the 3×3 grids and the X grids, 
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which were in turn better than having no AOIs). The simi-
larity in these trends could be a reflection of the similarity 
of the role of these two traits in task processing. 
 Aside from the trends noted above, the relative accura-
cies obtained with each set of AOIs vary among classifica-
tion targets. This finding can be attributed to each target 
having distinct influences on the way users interact with 
the interface, which in turn influences which interface ele-
ments and related gaze patterns are most predictive. For 
example, task type influences the number and position of 
bars that participants must examine, while verbal WM in-
fluences how long users can retain information given in the 
question text, the graph labels, and the legend. The varied 
performance of different AOI across targets may reflect 
their different abilities in capturing the relevant interface 
elements and related attention patterns. For example, in the 
4×4 Grid AOIs, three of the grid cells lie near the top of 
bars in the bar graph and may collectively capture the ma-
jority of visual comparisons of bar length. Features from 
these three AOIs were often selected in the classification of 
visual working memory. 
Main Effects of Interventions 
As was the case for feature sets, the main effects of inter-
ventions, summarized in Table 3, vary with each classifica-
tion experiment. Classification accuracy with the None 
condition (in which no highlighting is presented, further 
discussed in the next section), is of particular interest for 
practical applications because it emulates the scenario in 
which an adaptive system must decide if and how interven-
tions should be displayed. In contrast, the prediction accu-
racies in tasks with interventions provide data for how well 
a system could continue to refine its user and task models 
after presenting interventions. 

Table 3. Effects of interventions on classification. The average 
reference line intervention is abbreviated as ‘Line’ and the con-
nected arrow intervention is abbreviated as ‘Arrow’. 

Classification 
Target 

Intervention 
(Lowest Classification Accuracy to Highest) 

Perceptual 
Speed 

Bold < None < De-emphasis < Arrow < Line 

Visual WM De-emphasis < Line < Arrow < None < Bold 

Verbal WM De-emphasis < None < Arrow < Line < Bold 

Task Type None < Line < Bold < Arrow < De-emphasis 

Completion 
Time 

None < Line < Bold < Arrow < De-emphasis 

 The effects in Table 3 show that classification accuracy 
with the None condition is often worse than accuracy with 
an intervention. For every classification target there is at 
least one intervention that correlates with statistically sig-
nificant improvements in predictions. For instance, for 

visual working memory classification, significantly better 
predictions can be obtained with the Bolding intervention 
(59% mean accuracy) than with no intervention (57% 
mean accuracy), but presenting other interventions reduced 
the accuracy of predictions. This variation in prediction 
accuracies across interventions may be due to the fact that, 
in some cases, interventions may make classification more 
difficult by reducing the differences in user gaze behaviors 
between the two groups to be predicted (e.g. helpful inter-
ventions may make the gaze behavior of low  perceptual 
speed users closer to that of their high perceptual speed 
counterparts). 
 In addition to the main effects reported above, there 
were interaction effects between the AOI and intervention 
factors, as well as classifier type. One general implication 
of these results is that the effect of using a partic-ular fea-
ture set is dependent on the intervention displayed during 
trials, but the specific interactions are difficult to interpret 
owing to the large number of conditions that could be indi-
vidually considered. In the interest of brevity, in the next 
section we focus on classification results for the No Inter-
vention condition, which is the condition of most direct 
interest for providing adaptive help and the condition that 
is most directly comparable to the work of Steichen et al. 
(2013). 

Best Obtained Models with No Intervention 
Looking only at tasks in which users received no interven-
tions, Table 4 reports, for each classification target, the 
mean accuracy across all datasets achieved by the best per-
forming AOI set. To give a better sense of how classifica-
tion accuracy changes with the amount of data available, 
Figure 4 shows the trends in accuracy over time for some 
of the classification targets. Recall that the time factor is 
simulated by creating “partial observation” datasets that 
sample data from the start of task trials. 

Table 4. Best obtainable classifiers with no intervention. 

 Classification accuracy for task type increases as more 
data becomes available throughout the trial, but it already 
reaches 81.7% after observing only 10% of the data. This 
result has direct implications for providing adaptive sup-
port to users. For instance, Carenini et al. (2014) found that 
certain highlighting interventions had better performance 

Classification 
Target 

Baseline Accura-
cy 

Logistic Regression 
Accuracy 

Mean Std.  
Dev. 

Best  
AOIs 

Mean Std. 
Dev. 

Task Type 51.0 0.40 3 × 3  92.3 6.28 
Compl.  Time 65.1 0.77 3 × 3  86.2 2.45 
Perceptual Sp. 50.9 0.19 2 × 2  61.4 3.32 
Visual WM 54.3 0.43 4 × 4  61.5 1.91 
Verbal WM 59.5 0.43 4 × 4  61.7 1.67 
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on RV than CDV tasks, thus early prediction of user task 
could help an adaptive visualization select the most appro-
priate intervention as soon as it is needed. 
 User performance classification, measured by comple-
tion time, complements task type classification by identify-
ing occasions in which users are most in need of support. 
Accuracy on user performance increases as more data be-
comes available over time, as with task type; it already 
reaches 85.0% after seeing 10% of the data and plateaus at 
90.3% accuracy with 90% of the data observed. The ability 
of the constructed models to make accurate predictions for 
performance and task type with 10% of the trial data indi-
cates that these factors influence eye gaze patterns from the 
very beginning of tasks. 

Figure 4. Trends in classification accuracy over time. 

 Predicting user performance and task type is sufficient 
for providing general adaptations, but to provide support 
optimized for individual users it’s necessary to model user 
characteristics as well. In contrast to task type and perfor-
mance, the accuracy of perceptual speed peaks before the 
end of the interaction. This trend is representative of the 
trends exhibited by other user characteristics, and is con-
sistent with those reported by Steichen et al. (2013). The 
trend can be attributed to the diluting effect that generating 
features over more data has on transient patterns that occur 
earlier in trials. The peak accuracies for cognitive traits 
range from 63.5% to 64.5%. Notably, an accuracy within 
one percent of each of these peak results was obtained in 
the first half of interactions, indicating that most of the 
value from gaze features can be extracted while a user is 
still engaged in a task. 
 Our obtained accuracies for cognitive traits are better 
than or comparable to those reported by Steichen et al. 
(2013), which were obtained using a custom set of AOIs 
and range between  59% to 64% with a baseline of roughly 
50%. This comparison reinforces the finding that using 
interface-independent features compares favorably to mod-
els built with manually specified AOIs. On the other hand, 
these accuracies remain low for practical use, and while 
cognitive abilities impact how users execute tasks (Toker 
et al., 2013), (Steichen et al., 2014b), the difficulty of pre-
dicting them compared to task type and performance is an 

indication that variance in gaze patterns is largely attribut-
able to the nature of the visualization tasks and the way 
they are executed. Still, our findings imply that gaze data is 
at least a potential source of information for modeling the-
se user characteristics, which should be further investigated 
in conjunction with other sources and by using different 
machine learning approaches (e.g. sequence mining, 
Steichen et al., 2014b). 

Conclusions 
This paper investigated the accuracy of predicting user 
tasks, performance and traits, while users are performing 
visualization tasks with bar graphs. This research is a step 
toward user-adaptive visualization systems that can model 
their users’ needs during interaction and provide real-time 
intervention personalized to satisfy these needs.   
We showed that user performance, task type, and four of 
the user characteristics investigated can be predicted from 
eye gaze data with accuracies significantly above a majori-
ty class baseline, with particularly strong results for task 
type and performance. These findings mirror results from 
previous work in which users used bar graphs for solving 
similar tasks with simpler datasets, thus supporting the 
robustness of the results to changes in visualization com-
plexity. Furthermore, we showed that using gaze features 
not customized to the specific interface used in the study 
delivered comparable accuracies as interface-dependent 
feature sets. This finding is an encouraging sign that the 
classification methods discussed in the paper could be gen-
eralized across interfaces without requiring the definition 
of custom features for each one.  
Finally, we found that classification accuracy is influenced 
by the highlighting interventions added to bar graphs to 
support visualization processing. This influence can be 
either negative or positive, depending on the intervention 
and the classification target.  Interventions that facilitate 
continued user and task modeling could be preferred in 
practice over interventions that are otherwise comparably 
effective in improving user performance. 
 As future work, we are planning to investigate other 
sources of user modeling information from eye-tracking 
data, including pupil dilation and distance of the user’s 
head from the screen, to augment the classification results 
obtained with summative eye gaze features alone and to 
predict additional measures such as user interest and con-
fusion. We also plan to integrate the models and interven-
tions described in this paper into a prototype adaptive sys-
tem and evaluate its practicality. 
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