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Abstract

Microblog sentiment classification is an important re-
search topic which has wide applications in both
academia and industry. Because microblog messages
are short, noisy and contain masses of acronyms and
informal words, microblog sentiment classification is a
very challenging task. Fortunately, collectively the con-
textual information about these idiosyncratic words pro-
vide knowledge about their sentiment orientations. In
this paper, we propose to use the microblogs’ contex-
tual knowledge mined from a large amount of unlabeled
data to help improve microblog sentiment classification.
We define two kinds of contextual knowledge: word-
word association and word-sentiment association. The
contextual knowledge is formulated as regularization
terms in supervised learning algorithms. An efficient
optimization procedure is proposed to learn the model.
Experimental results on benchmark datasets show that
our method can consistently and significantly outper-
form the state-of-the-art methods.

Introduction
Microblogging services, such as Twitter, have become very
popular in recent years. They provide public platforms for
users to share their opinions on various topics, such as daily
living activities, social or political events, news about com-
panies or celebrities and so on. Identifying sentiments or
opinions from microblogs can statistically facilitate or vali-
date many other disciplines, including social customer rela-
tionship management, political science, and social psychol-
ogy etc. (Go, Bhayani, and Huang 2009; O’Connor et al.
2010; Bollen, Mao, and Pepe 2011; Wu et al. 2014).

Machine learning methods, especially supervised learn-
ing methods, are widely used in microblog sentiment classi-
fication field (Go, Bhayani, and Huang 2009; Bermingham
and Smeaton 2010; Liu, Li, and Guo 2012; Hu et al. 2013).
These methods use labeled data to train a sentiment classi-
fier to classify the new microblog messages. However, mi-
croblog messages are usually very short and noisy, and con-
tain massive acronyms and informal words, such as “tnx”
and “coooool.” This brings challenges to microblog senti-
ment classification, because the labeled training data may
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not be sufficient to infer a model to predict the sentiment
polarity for such acronyms and informal words. Manually
labeling enough data is costly and time consuming. On the
other hand, the unlabled data are relatively cheap and mi-
croblogs in their nature provide a lot of knowledge about
sentiment orientations of the short messages. For example,
microblogs usually enable and encourage users to use emoti-
cons to express their emotions. Thus, it will be helpful to
mine such sentiment knowledge from unlabeled data to im-
prove classification.

One way to use the knowledge from large scale unlabeled
data is to build a larger sentiment lexicon to increase the cov-
erage (Wilson, Wiebe, and Hoffmann 2005; Baccianella,
Esuli, and Sebastiani 2010; Dang, Zhang, and Chen 2010;
Tang et al. 2014; Kiritchenko, Zhu, and Mohammad 2014;
Cambria et al. 2014). For example, Kiritchenko et al. gener-
ated two tweet-specific sentiment lexicons based on words’
associations with emoticons and hashtags containing sen-
timent word respectively (Kiritchenko, Zhu, and Moham-
mad 2014). Then a sentiment classification system was cre-
ated which incorporates lexicon-related features, such as the
number of positive and negative terms in a message, as well
as other features into training and classification. Their sys-
tem won the first place in SemEval-2013 competition. How-
ever, a word in different domains or contexts may convey
different sentiments. For example, when describing CPU,
the word “fast” is positive. Whereas, when describing bat-
tery, it usually conveys negative sentiment. For instance,
“the battery runs out fast.” The above lexicon based meth-
ods can not tackle this problem very well, because the same
word is set to have the same sentiment polarity for different
contexts.

In this paper, we propose a contextual knowledge regu-
larization framework. Our framework can mine contextual
knowledge of words from unlabeled data, and incorporate
it as regularization terms into supervised learning frame-
work to train a more accurate and robust model. Specifi-
cally, we establish two kinds of contextual knowledge from
large scale short messages, i.e., the word-word association
and word-sentiment association. The word-word association
is the information indicating that two words may share sim-
ilar sentiment. The word-sentiment association indicates the
prior knowledge about the sentiment polarity of words. We
propose to use a linear classification model to perform sen-
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timent classification. We model the word-sentiment knowl-
edge into a linear regularization term and model the word-
word relation into a graph-guided fused lasso regularization
term. We give an efficient optimization method based on
ADMM (Boyd et al. 2011) to solve the regularized optimiza-
tion problem. In addition, we propose an algorithm based on
FISTA method (Beck and Teboulle 2009) to accelerate the
most time-consuming component in the optimization pro-
cedure. We empirically validate our method with these two
types of knowledge via extensive experiments on benchmark
datasets. The experimental results show the effectiveness
and efficiency of our method.

Contextual Knowledge
In this section we describe the two kinds of contextual
knowledge: word-word and word-sentiment associations.

Word-Word Association
The assumption of this contextual knowledge is that if two
words co-occur frequently in the same message, it is proba-
ble that they convey similar sentiment. For example, a tweet
may be “Love love my iPhone 6! Sooooo beautiful!”. We
can find many more cases that “love” and “beautiful” co-
occur. As a consequence, we presume they share similar sen-
timent if they appear in a new short message. To more accu-
rately perform the statistics, we compute the co-occurrence
frequency by following rules. If a message contains adversa-
tive conjunctions such as “but” and “however,” then this mi-
croblog message will be split into different clauses in order
to make sure that each clause conveys the consistent senti-
ment. If two words both appear in a clause, then their co-
occurrence frequency increases by one. Formally, we use
pointwise mutual information (PMI) as the measure of the
sentiment similarity between a pair of words:

PMI(word1, word2) = log2
p(word1, word2)

p(word1)p(word2)
, (1)

where p(word1, word2) represents the probability that
word1 co-occurs with word2, and p(word1) and p(word2)
are the marginal probabilities of word1 and word2. PMI
score measures the statistical dependence degree between
these two words. It has been used in sentiment analysis tasks
such as sentiment lexicon construction (Turney and Littman
2002; Kaji and Kitsuregawa 2007; Kiritchenko, Zhu, and
Mohammad 2014) and unsupervised classification of re-
views (Turney 2002). Different from them, here we do not
consider the emoticons but only compute the word level re-
latedness. This enables us to find more words that may share
the same sentiment even though there is no emoticon to in-
dicate the sentiment.

Word-Sentiment Association
An interesting phenomenon in microblogging services is
that users tend to frequently use emoticons to express their
emotions when posting microblogs. These emoticons can
provide useful hints of sentiment. For instance, emoticons
like “:)” and “;)” usually indicate positive sentiment and

emoticons such as “:(” tend to represent negative senti-
ment. Thus emoticons can be used as noisy sentiment la-
bels, known as distant supervision. Some researchers have
already tried this method to train sentiment classifiers and
obtained certain accuracies (Go, Bhayani, and Huang 2009;
Liu, Li, and Guo 2012). Motivated by naive Bayes classifi-
cation, here we define the sentiment score of word i inferred
from the distant supervision as:

SentiScore(wordi) = log

 n+
i +α0∑D

j=1 n
+
j +D·α0

n−
i +α0∑D

j=1 n
−
j +D·α0

 , (2)

where n+i and n−i are the frequencies that word i appears
in positive and negative microblogs respectively. D is the
length of vocabulary and α0 > 0 is a smoothing factor.
According to Eq. (2), if a word has a higher probability
to appear in positive microblogs rather than in negative
microblogs, then its SentiScore will be larger than zero,
which indicates that this word has a positive sentiment. Sim-
ilarly, if a word is more likely to appear in negative mi-
croblogs, then its SentiScore will be less than zero and this
word tends to convey a negative sentiment. More interest-
ingly, the definition in Eq. (2) is in fact equivalent to the
PMI-based score used by Kiritchenko et al. in (Kiritchenko,
Zhu, and Mohammad 2014) when α0 = 0.

Contextual Knowledge Regularization
Contextual information has been proven to be useful for
many NLP tasks (Subramanya, Petrov, and Pereira 2010;
Das and Smith 2012). In this section, we introduce how to
encode the contextual knowledge information into the regu-
larized sentiment classification framework, and how to solve
the corresponding optimization problem efficiently.

Notations
We denote X ∈ RN×D and y ∈ RN×1 as the training data.
xi ∈ RD×1 is the transpose of the ith row of X, representing
the feature vector of the ith sample, and yi ∈ {+1,−1} is
the corresponding sentiment label. D is the dimension of
the feature vector, i.e., the size of the vocabulary, and N is
the number of training samples. Denote w as the parameter
vector of model, and f(xi, yi,w) as the loss of classifying
xi into class yi under the model parameter w.

We first evaluate the PMI score on all pairs of
words in the vocabulary. We only keep the PMI values
PMI(wordi, wordj) larger than threshold γ1 > 0. Denote
Np as the number of remaining pairs. Then we construct a
matrix A ∈ RNp×D. An,i = 1 and An,j = −1 if and only
if PMI(wordi, wordj) > γ1 and PMI(wordi, wordj) ranks
at the nth position. Otherwise, An,i = 0, n = 1, ..., Np and
i = 1, ..., D. Since A is highly sparse, we use sparse matrix
to store it.

We use the vector p ∈ RD×1 to represent the knowledge
of word-sentiment association. Given the sentiment score of
word i calculated by Eq. (2), if it is larger than threshold
γ2 > 0, then pi = 1. If it is less than −γ2, then pi = −1.
Otherwise, pi = 0. The introduction of thresholds is to filter
out the contextual knowledge we are not very certain about.
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Model
Given the training data and the contextual knowledge mined
from unlabeled data, our goal is to train an accurate and ro-
bust sentiment classification model. The model proposed in
this paper is as follow:

argmin
w

L =
∑N
i=1 f(xi, yi,w)− αpTw + β‖Aw‖1

+λ1‖w‖22 + λ2‖w‖1,
(3)

where α, β, λ1, λ2 are non-negative regularization coeffi-
cients for word-sentiment associations, word-word associ-
ations, and model parameters. Our model is flexible to the
selection of loss function f . f can be squared loss (yi −
xTi w)2, log loss log

(
1 + exp(−yixTi w)

)
and hinge loss[

1− yixTi w
]
+

. Here we use the L1-norm regularization of
model parameter ‖w‖1 because we believe that not all of
the words will contribute to the final decision of sentiment
classification. This can be regarded as feature selection for
sentiment words. We also combine it with theL2-norm regu-
larization term as elastic regularization, which is more stable
in practice (Zou and Hastie 2003).

In Eq. (3), minimizing −pTw equals to minimizing
‖w − p‖22, because ‖w − p‖22 = ‖w‖22 + ‖p‖22 − 2wTp,
where ‖p‖22 is a constant number and ‖w‖22 can be merged
into the L2-norm regularization term. By this formula-
tion, we hope that the sentiment weight of a word learned
here does not violate its original contextual sentiment po-
larity. Moreover, minimizing ‖Aw‖1 equals to minimiz-
ing
∑
i,j s.t.{PMI(wordi,wordj)>γ1} |wi−wj |. This means we

constrain the learned sentiment weights of a pair of words
should be similar if they are identified in the contextual
knowledge. In this way, we penalize the original sentiment
classification with these two regularization terms as soft con-
straints, which are controlled by α and β.

Optimization Method
Assuming the loss function f is convex as used in this paper,
the optimization problem in Eq. (3) is also convex. However,
it is still not easy to solve Eq. (3), even if the loss function f
is smooth, due to the graph-guided fused lasso regularization
term and L1-norm regularization term in the objective func-
tion. Here we propose an efficient algorithm based on the
alternating direction method of multipliers (ADMM) (Boyd
et al. 2011) to solve this optimization problem.

Before applying ADMM, we reformulate Eq. (3) as fol-
lowing optimization problem:

argmin
w,v

L =
∑N
i=1 f(xi, yi,w)− αpTw + β‖v‖1

+λ1‖w‖22 + λ2‖w‖1,
s.t. : v = Aw.

(4)
As a method of multipliers, in ADMM, Eq. (4) is further

formulated as an augmented Lagrangian problem:

L(w,v,µ) =
∑N
i=1 f(xi, yi,w)− αpTw + β‖v‖1

+λ1‖w‖22 + λ2‖w‖1 + µT (Aw − v)
+ρ

2‖Aw − v‖22,
(5)

where µ ∈ RNp×1 is the Lagrangian multipliers vector, and
ρ > 0 is a penalty coefficient.

ADMM is an iterative optimization method. Unlike tra-
ditional multiplier methods where all the variables are opti-
mized simultaneously in each iteration, in ADMM the vari-
ables w, v and µ are optimized sequentially in an alternat-
ing manner, which allows the original problem to be decom-
posed into several easier sub-problems (Boyd et al. 2011).
Denote u = µ/ρ as the scaled dual variable (Boyd et al.
2011), then in the tth iteration of ADMM, the variables w,
v and u are updated as follows.

Updating wt+1:

wt+1 ← argmin
w

∑N
i=1 f(xi, yi,w)− αpTw

+λ1‖w‖22 + λ2‖w‖1 + ρ
2‖Aw − vt + ut‖22.

(6)

Updating vt+1:
vt+1 ← argmin

v
β‖v‖1 + ρ

2‖Awt+1 − v + ut‖22. (7)

Updating ut+1:
ut+1 ← ut +Awt+1 − vt+1. (8)

According to Eq. (8), updating ut+1 is direct and trivial.
The optimization problem in Eq. (7) can be solved using
proximal algorithm (Parikh and Boyd 2013) and has an ana-
lytical solution:

vt+1 = Sβ/ρ(Awt+1 + ut), (9)

where S is soft thresholding operator and is defined as
Sκ(a) = (a− κ)+ − (−a− κ)+.

Unlike updating ut+1 and vt+1, there is no analytical
solution to the optimization problem in updating wt+1. It
makes Eq. (6) the bottleneck of efficiency in the whole op-
timization problem. Thus, we should solve it in an efficient
way.

When f is convex and smooth, such as squared loss and
log loss, we propose here an accelerated algorithm based
on FISTA (Beck and Teboulle 2009) to tackle Eq. (6). This
algorithm keeps the advantage of low computational com-
plexity as gradient method and subgradient method in each
iteration, and at the same time it has a much faster conver-
gence rate (O(1/k2)) than gradient method (O(1/k)) and
subgradient method (O(1/

√
k)) (Beck and Teboulle 2009),

where k is the number of iterations.
The core idea of FISTA is to use last two solutions to es-

timate current solution and iteratively update the approxi-
mate point z and the search point s. The search point s is
estimated by the linear combination of last two approximate
points:

sk+1 = zk + ak(zk − zk−1), (10)
where ak is the combination coefficient at kth iteration.

Next we describe how to update the approximate point
zk+1. First, we denote:

g(z) =
∑N
i=1 f(xi, yi, z)− αpT z+ λ1‖z‖22

+ρ
2‖Az− vt + ut‖22.

(11)

Then the gradient of g(z) is:

g′(z) =
∑N
i=1 f

′(xi, yi, z)− αp+ 2λ1z
+ρAT (Az− vt + ut).

(12)
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When f is squared loss, we have f ′(xi, yi, z) = −(yi −
zTxi)xi. When f is log loss, we have f ′(xi, yi, z) =
−yixi/

(
1 + exp(yiz

Txi)
)
.

Based on above derivations, the approximate point zk+1’s
updating rule is:

zk+1 = Sλ2/Lk

(
sk+1 − 1

Lk
g′(sk+1)

)
, (13)

where 1
Lk

is the step size and Lk is selected according to
following rule (Parikh and Boyd 2013):

g(zk+1) ≤ g(sk+1) + g′(sk+1)
T (zk+1 − sk+1)

+Lk

2 ‖zk+1 − sk+1‖22.
(14)

The complete accelerated algorithm for updating wt+1 in
Eq. (6) is summarized in Algorithm 1.

Algorithm 1 Accelerated algorithm for updating wt+1.
1: Input: X, y, A, wt, vt, ut, p, α, λ1, λ2, ρ, η > 1, L0.
2: Output: wt+1.
3: Initialize z1 = z0 = wt, k = 0, L = L0.
4: while the convergence condition is not satisfied do
5: k = k + 1, ak = k

k+3
.

6: sk+1 = zk + ak(zk − zk−1).
7: g′(sk+1) =

∑N
i=1 f

′(xi, yi, sk+1)− αp+ 2λ1sk+1

+ρAT (Ask+1 − vt + ut).
8: zk+1 = Sλ2/L

(
sk+1 − 1

L
g′(sk+1)

)
.

9: while Eq. (14) doesn’t hold do
10: L = ηL.
11: zk+1 = Sλ2/L

(
sk+1 − 1

L
g′(sk+1)

)
.

12: end while
13: z = zk+1.
14: end while
15: wt+1 = z.

If the loss function f in Eq. (6) is not smooth, for example,
when f is hinge loss function, then the accelerated algorithm
in Algorithm 1 can not be applied. In this case, we propose
to use subgradient method to solve the optimization problem
in Eq. (6) (Shalev-Shwartz et al. 2011), whose convergence
rate is O(1/

√
k).

Complexity Analysis
The convergence rate of the whole algorithm (the loop of
updating wt+1, vt+1, and ut+1) is O(1/T ), where T is
the number of iterations (Deng and Yin 2012; He and Yuan
2012). In other words, it takes O(1/ε1) iterations to reach
accuracy ε1. In each iteration, the time complexities of up-
dating vt+1 and ut+1 are both O(Np). Assuming the time
complexity of updating wt+1 is O(Tw), then time complex-
ity of the whole algorithm is O(

Tw+Np

ε1
).

When loss function f is squared loss or log loss, and Al-
gorithm 1 is applied to update wt+1, then the convergence
rate of Algorithm 1 is O(1/k2), where k is the iteration
number (Beck and Teboulle 2009). Denote the desired ac-
curacy for wt+1 is ε2, then the number of iterations needed
is O(1/

√
ε2). The major time complexity in each iteration

of Algorithm 1 lies in updating search point (Step 6), gra-
dient (Step 7) and approximate point (Step 8). The cost for

updating search point and approximate point is O(D), and
updating gradient needs O(N ·D +Np ·D) float-point op-
erations. Thus the total time complexity of Algorithm 1 is
O(

(N+Np)D√
ε2

). In this case, the overall time complexity of

the whole algorithm is O(
(N+Np)D/

√
ε2+Np

ε1
).

If loss function f is hinge loss and subgradient method is
applied to update wt+1, then O(1/ε22) iterations are needed
to achieve accuracy of ε2. In each iteration of subgradi-
ent method, it needs O(N · D + Np · D) float-point op-
erations. So the time complexity of updating wt+1 here is
O(

(N+Np)D

ε22
) and the total time complexity of the whole al-

gorithm is O(
(N+Np)D/ε

2
2+Np

ε1
).

Experiments
In this section, we present the experimental results on
three Twitter sentiment classification benchmark datasets.
The first dataset is Sanders Twitter sentiment dataset1. This
dataset contains 3,727 hand-labeled tweets related to four
companies: Apple, Goolge, Twitter and Microsoft. The sec-
ond dataset is the test data in Stanford sentiment corpus2

(denoted as STS-manual) which was labeled manually. This
dataset consists of 498 tweets in total and was obtained
by crawling Twitter API using queries related to people,
products, and companies. The third dataset is Twitter senti-
ment classification dataset provided by SemEval 2013 con-
ference3 (denoted as SemEval). This dataset contains 8,258,
1,654 and 3,813 manually annotated tweets in the origi-
nal training, development and test sets. However, some of
them were non-existent now and we finally crawled 6,237,
974 and 2,465 tweets in training, development and test sets.
In this paper, we focus on sentiment polarity classification.
Only positive and negative tweets in these datasets were used
in our experiments. Neutral tweets were filtered out. The de-
tailed statistics of these datasets are shown in Table 1.

Table 1: Dataset Statistics
Dataset Positive Negative Total
Sanders 570 654 1,224

STS-manual 182 177 359
SemEval-train 2,282 879 3,161
SemEval-dev 356 182 538
SemEval-test 988 333 1,321
STS-emoticon 800k 800k 1.6m

Several preprocessing steps were taken according to the
suggestions in (Liu, Li, and Guo 2012). For example, stop-
words were removed and all words were stemmed to terms
and converted to lower cases. We didn’t conduct any com-
plex feature engineering and only unigram features were
used in all of our experiments. Five-fold cross-validation
was used for STS and Sanders datasets. For SemEval
dataset, the original splitting was used. Parameters were

1http://www.sananalytics.com/lab/twitter-sentiment/
2http://help.sentiment140.com/for-students
3http://www.cs.york.ac.uk/semeval-2013/task2/
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Figure 1: Word-word association examples. Words in green
ellipses convey positive sentiment, and words in red rectan-
gles have negative sentiment. The value on each line is the
PMI score between the words connected by the line.

tuned on the validation sets. Each experiment was repeated
10 times independently and average results on test set were
reported.

Contextual Knowledge Extraction
In order to extract the contextual knowledge from unlabeled
data, we used a large dataset, i.e., the training data in Stan-
ford sentiment corpus4 (denoted as STS-emoticon). It con-
tains 1.6 million tweets crawled via Twitter API with emoti-
cons as queries, among which half contain positive emoti-
cons such as “:)” and half contain negative emoticons such
as “:(”. Word-word and word-sentiment associations were
extracted from this dataset.

Figure 1 illustrates the PMI scores between several repre-
sentative words with clear sentiment polarity. We kept all the
positive links and the negative links whose values are less
than -0.8. Others were omitted for clarity. Figure 1 shows
that words with the same sentiment have positive PMI scores
and words with different sentiments share negative PMI
scores. This indicates that words with the same sentiment
are more likely to co-occur together, while the words with
different sentiments are unlikely to appear together. When
training a classification model, if the training data have a
relatively large number of samples containing “hate” but few
samples containing “worst,” then we can learn a more accu-
rate weight for “worst” by using the weight of “hate” and
the knowledge of association between “hate” and “worst.”

Table 2 illustrates the examples of word-sentiment asso-
ciations with highest SentiScores (defined in Eq. (2)). We
can see that words with high positive or negative SentiS-
cores convey strong sentiment. In addition, we compared the
sentiments of words extracted here with existing state-of-
the-art sentiment lexicons, such as MPQA5 (Wilson, Wiebe,
and Hoffmann 2005) and SentiWordNet6 (Esuli and Se-
bastiani 2006). Words whose absolute SentiScores greater
than 0.5 were kept and others were filtered out. We de-

4http://help.sentiment140.com/for-students
5http://mpqa.cs.pitt.edu/
6http://sentiwordnet.isti.cnr.it/

Table 2: Word-sentiment association examples.
Word congratulate kindly feat whee

SentiScore 2.59 2.26 2.09 2.06
Word sadden condole toothache sad

SentiScore -3.33 -2.97 -2.87 -2.86

fine consistency between two lexicons as the ratio of shared
words having the same sentiment label in both lexicons.
Then the consistencies of our word-sentiment associations
with MPQA and SentiWordNet are 79.2% and 79.9% re-
spectively. These results indicate that word-sentiment as-
sociations extracted here match general sentiment lexicons
quite well. At the same time, our word-sentiment associa-
tions contain a large number of popular informal words, such
as “tnx” and “wooohooo”, which express clear sentiment in-
formation but are not contained in traditional sentiment lex-
icons.

Performance
In this subsection, we compare our method with baseline
methods on the three benchmark datasets. The methods to
be compared are: 1) LS: Least squared method; 2) Log: Lo-
gistic regression; 3) SVM: Support vector machine; 4) NB:
Multinomial naive Bayes with Laplace smoothing; 5) Dist-
Sup: Distant supervision method, where emoticons are used
as sentiment labels (Go, Bhayani, and Huang 2009). Laplace
smoothed naive Bayes was used as the classifier in DistSup
here because it performs similarly with SVM and Maximum
Entropy according to the original paper and is fast to train;
6) ESLAM: Emoticon smoothed language model, which lin-
early combines two naive Bayes classifiers, one built from
manually labeled data and the other built using associations
between words and emoticons (Liu, Li, and Guo 2012); 7)
FeaLex: Extracting additional features, such as the numbers
of positive and negative words in a message, using a tweet-
specific sentiment lexicon, i.e., Sentiment140 (Kiritchenko,
Zhu, and Mohammad 2014)7. SVM was used as classifier in
FeaLex; 8) Contextual knowledge regularized least squared
method (CK-LS), logistic regression (CK-Log) and support
vector machine (CK-SVM), which are our methods under
different types of loss function.

The results are shown in Table 3. We can see that our
methods perform best on all the three datasets. The results of
DistSup indicate that emoticons from Twitter are noisy sen-
timent labels and the performance of the sentiment classifier
trained on emoticons directly is unsatisfactory. By combin-
ing the contextual knowledge mined from massive unlabeled
data with the manually labeled data, our methods outperform
their original counterparts significantly. Note that although
ESLAM and FeaLex also use both manually labeled data
and emoticons, our methods can still outperform them. This
implies that our method using contextual knowledge as soft

7Here we only incorporate unigram features and lexicon-related
features, and do not incorporate other features such as POS tags, for
the sake of fair comparison with other methods. Besides, features
like POS tags have little influence on this method according to the
original paper (Kiritchenko, Zhu, and Mohammad 2014).
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Table 3: Accuracies of different methods.
STS Sanders SemEval

LS 0.8228 0.8338 0.8191
Log 0.8218 0.8366 0.8229

SVM 0.7969 0.8218 0.7850
NB 0.8375 0.8207 0.8123

DistSup 0.7673 0.7297 0.7699
ESLAM 0.8698 0.8275 0.8251
FeaLex 0.8120 0.8350 0.8123
CK-LS 0.8642 0.8541 0.8388
CK-Log 0.8721 0.8579 0.8448

CK-SVM 0.8745 0.8530 0.8441

Figure 2: Effect of different kinds of contextual knowledge.

constraints is better than directly combining the manually la-
beled data with the emoticons as a new label set or extracting
additional features from sentiment lexicons.

We also tested the contribution of different kinds of con-
textual knowledge to the performance of our method. The
loss function used here is log loss and patterns of other loss
functions are similar. The results are shown in Figure 2. We
can see that both word-word and word-sentiment associa-
tions can help improve the classification. In addition, the
performance of our method can be further improved when
both kinds of contextual knowledge are used, which means
that different kinds of contextual knowledge can cooperate
with each other under the framework of our method.

Parameter Analysis
In this subsection, we explore the influence of the parame-
ters. Here we concentrate on two important parameters, i.e.,
α and β, which control the importance of word-sentiment
and word-word knowledge in the model. Here we take the
results of CK-Log on SemEval dataset for example, which
are shown in Figure 3. The patterns on other datasets or us-
ing other loss functions are similar. When α and β are small,
the information of contextual knowledge is not fully used
and the performance is improved when the parameters in-
crease. However when α and β are too large, the informa-
tion of contextual knowledge is overemphasized. The model
will be overwhelmed by the contextual knowledge, which is
not as accurate as the manually labeled data. Thus the per-

(a) α (b) β

Figure 3: The influence of parameters.

Figure 4: Time complexities of our methods.

formance will be harmed.

Efficiency

We conducted experiments to validate the time complexity
of our method. Here we take the results on SemEval dataset
for example, which are shown in Figure 4. We can see that
the running time of all our methods is approximately lin-
ear with the data size, which validates the discussions in the
Complexity Analysis section. In addition, CK-Log and CK-
LS run much faster than CK-SVM, showing that the acceler-
ated method in Algorithm 1 is useful for improving the time
efficiency. Besides, CK-Log and CK-LS can finish training
in 1 second on 3,000 samples, which is quite efficient.

Conclusion
This paper presents a way to incorporate the contextual
knowledge mined from large scale unlabeled data into a reg-
ularization framework for microblog sentiment classifica-
tion. We defined two kinds of contextual knowledge: word-
word association and word-sentiment association. Word-
word association indicates similar sentiment polarity be-
tween pairs of words, and word-sentiment association indi-
cates the prior knowledge of the sentiment polarity of words.
We also proposed an efficient algorithm to solve the opti-
mization problem for the contextual knowledge regulariza-
tion framework. Experimental results on three benchmark
datasets show that our method can significantly improve the
microblog sentiment classification performance.
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