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Abstract 

Unsupervised discovery of synonymous phrases is useful in 
a variety of tasks ranging from text mining and search en-
gines to semantic analysis and machine translation. This pa-
per presents an unsupervised corpus-based conditional 
model: Near-Synonym System (NeSS) for finding phrasal 
synonyms and near synonyms that requires only a large 
monolingual corpus. The method is based on maximizing 
information-theoretic combinations of shared contexts and 
is parallelizable for large-scale processing. An evaluation 
framework with crowd-sourced judgments is proposed and 
results are compared with alternate methods, demonstrating 
considerably superior results to the literature and to thesau-
rus look up for multi-word phrases. Moreover, the results 
show that the statistical scoring functions and overall scala-
bility of the system are more important than language spe-
cific NLP tools. The method is language-independent and 
practically useable due to accuracy and real-time perfor-
mance via parallel decomposition. 

 Introduction   

Synonymy is recognized as having various degrees that 
range from complete contextual substitutability or absolute 
synonymy through to near-synonymy or plesionymy (Cur-
ran 2004). Hirst (1995) summarizes the definition of ple-
sionyms (near-synonyms) as words that are close in mean-
ing, not fully inter-substitutable but varying in their shades 
of denotation, connotation, implicature, emphasis or regis-
ter. The above definition can be extended to multi-word 
phrases, for example the pair “extremely difficult” and 
“very challenging”. In particular, synonymy is a much nar-
rower subset as compared to the general task of paraphras-
ing, as the latter may encompass many forms of semantic 
relationships (Barzilay and McKeown 2001). 

Phrasal near-synonym extraction is extremely important 
in domains such as natural language processing, infor-
mation retrieval, text summarization, machine translation, 
and other AI tasks. Whereas finding near-synonyms for in-
dividual words or possibly very common canned phrases 
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may involve no more than a thesaurus lookup, the general 
case of finding near-synonymous multi-word phrases re-
quires a generative process based on analysis of large cor-
pora. For instance our method finds the following syno-
nyms/near-synonyms for “it is fair to say”: “it’s safe to 
say”, “we all understand”, “it’s pretty clear”, “we believe”, 
“it’s well known”, “it’s commonly accepted”, and so on. 
The meanings of these phrases are quite close, yet that is 
not the case for many of their corresponding words indi-
vidually. Moreover, for proper nouns our method finds or-
thographic variants (after all they are the best synonyms) 
as well as descriptive near-synonyms, e.g. for “Al Qaeda” 
it finds: “Al Qaida”, “Al-Qaeda network”, “jihadist group”, 
“terrorist organization”, “Bin Laden’s followers”. It is 
clear how near-synonym phrases help in text mining, such 
as finding occurrences of entities of interest in text corpora 
or text streams, and discovering relations expressed in dif-
ferent ways in large and diverse natural language corpora. 

The importance of near-synonymy has been noted by 
many researchers, such as Metzler and Hovy (2011) in 
many tasks such as processing Twitter feeds.  It is also cru-
cial in information retrieval, especially if recall truly mat-
ters, where searching for synonyms of queries may be of 
high value. For instance if one wants “cheap housing” then 
also searching for “affordable homes” might prove useful. 
Or if typing “heart attack” one might also want “cardiac 
arrest” or “heart failure” to also be searched via query ex-
pansion. Search engines are starting to offer expanded 
search automatically, but in so far as one can observe, only 
via highly-related single-word substitutions. Moreover, to 
emulate a phrasal thesaurus, a live (scalable) system is es-
sential since a precompiled database (Ganitkevitch et al. 
2013) no matter how large, cannot achieve full coverage. 

This paper develops a new method for discovering near 
synonym phrases based on common surrounding context 
relying on an extension of Harris’ Distributional Hypothe-
sis (Harris 1985) – the more instances of common context, 
the more specific said context, and the longer the shared 
contexts, the stronger the potential synonymy relation, re-
lying only on a large monolingual corpus, and thus can be 
applied to any language without the need of pre-existing 
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linguistic or lexical resources. Human judgments confirm 
that the method is able to extract some absolute synonyms 
and larger numbers of near-synonyms.  

Single Word Phrases 

Some distributional approaches cluster contexts into a set 
of induced “senses” (Schütze 1998; Reisinger and Mooney 
2010), others dynamically modify a word’s vector accord-
ing to each given context (Mitchell and Lapata 2008; 
Thater et al. 2009). Therefore, in addition to traditional 
word similarity, they also try to address polysemy. For ex-
ample, Reisinger and Mooney (2010) use an average proto-
type vector for each cluster to produce a set of vectors for 
each word. Extending statistical language models, neural 
language models (Bengio et al. 2003; Mnih and Hinton 
2007; Collobert and Weston 2008) predict the next word 
given the previously seen words, based on 2-10 grams. 
Huang et al. (2012) rely on neural networks and use the 
ranking-loss training objective proposed by Collobert and 
Weston (2008), but also incorporate additional context to 
train word embeddings. They account for homonymy and 
polysemy by learning multiple embeddings per word 
(Reisinger and Mooney 2010). We compare directly with 
their well-developed word embedding method via our scor-
ing functions (see section Experiments).  

Most of the vector-based models used to represent se-
mantics in NLP are evaluated on standard datasets such as 
WordSim-353 (Finkelstein et al. 2001), Miller and Charles 
(1991), and the SemEval 2007 Lexical Substitution Task 
by McCarthy and Navigli (2007). Typically, cosine simi-
larity is used to rank the data, and these ranks are then cor-
related with human judgments and/or gold standards using 
for instance the Spearman correlation. Whereas these mod-
els may improve the performance on supervised NLP tasks 
such as named entity recognition and chunking (Dhillon et 
al. 2011), they are unable to extract (or represent) absolute 
synonymy (Zgusta 1971) and perform far inferior to our 
methods in extracting (or representing) plesionymy (Hirst 
1995) even at the individual word level. 

Multi-Word Phrases 

The NLP literature addressing semantic similarity at the 
phrasal level is fairly sparse. Compositional distributional 
semantic methods attempt to formalize the meaning of 
compound words by applying a vector composition func-
tion on the vectors associated with its constituent words 
(Mitchell and Lapata 2008; Widdows 2008; Reddy et al. 
2011), but they do not address phrasal synonymy, and in-
stead focus on tasks such as forming NN-compounds. 
More importantly, the phrases (compounds) are treated as 
consisting of individual constituent words rather than as 
distinct entities, thus ignoring an essential fact that seman-
tics of the whole might be quite different from that of its 
constituents.  

A few approaches address phrases without breaking 
them into the constituting words. Barzilay and McKeown 
(2001) use parallel resources to construct paraphrase pairs. 

They include a wide variety of semantic relationships as 
paraphrase categories, such as siblings or hyperonyms. 
Ganitkevitch et al. (2013) use the bilingual pivoting tech-
nique (Bannard and Callison-Burch 2005) along with dis-
tributional similarity features to extract lexical, and phrasal 
paraphrases. Some other approaches (Paşca 2005; Lin and 
Pantel 2001; Berant et al. 2012) differ from ours in that, 
they use manually coded linguistic patterns to align only 
specific text fragment contexts to generate paraphrases 
(Paşca 2005), and require language specific resources such 
as part-of-speech taggers (Paşca 2005) and parsers (Lin 
and Pantel 2001). Furthermore, the latter two only find al-
ternate constructions with the same content words, such as 
“X manufactures Y” infers “X’s Y factory” (Lin and Pantel 
2001). Near-synonyms with a distinct set of words such as 
“makes ends meet” and “pay the bills” are undetectable by 
their methods.  

Perhaps the most relevant prior work is Carbonell et al. 
(2006) and Metzler and Hovy (2011). Carbonell et al. 
(2006) briefly introduce a heuristic approach for the same 
problem to aid their context-based MT system. That work 
used the number of distinct contexts and their length to es-
timate near-synonymy. Meltzer and Hovy (2011) use simi-
lar methods and point-wise mutual information but also 
distribute the process using Hadoop. Our work expands on 
these, relying on information theory and statistics. Moreo-
ver, NeSS is the first method to reach practical usability 
due to higher accuracy and real-time on-line performance 
via its efficient parallel algorithms. 

NeSS: Near-Synonym System 

The Near Synonym System (NeSS) introduces a new 
method which differs from other approaches in that it does 
not require parallel resources, (unlike Barzilay and McKe-
own 2001; Lin et al. 2003; Callison-Burch et al. 2006; 
Ganitkevitch et al. 2013) nor does it use pre-determined 
sets of manually coded patterns (Lin et al. 2003; Paşca, 
2005). NeSS captures semantic similarity via n-gram dis-
tributional methods that implicitly preserve local syntactic 
structure without parsing, making the underlying method 
language independent. NeSS is a Web-server, which func-
tions as a live near-synonym phrasal generator.  

NeSS relies on suffix arrays, and parallel computing for 
real-time performance with massive corpora. Suffix arrays 
(Manber and Myers 1993) use an augmented form of bina-
ry trees to seek all occurrences of a string pattern within a 
corpus. They address queries such as, “Is   a substring of 
 ?” in time          , where   = |   and      . 
Given a large text              , of length N, let 
               denote the suffix of   that starts at po-
sition  . A suffix array is then a lexicographically sorted ar-
ray,    , such that        is the start of the    lexico-
graphically smallest suffix in the set                . 
That is: 

                            

is the lexicographical ordering. Since it is sorted, it can  
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Figure 1: An overview of the NeSS run-time process design given an input phrase (sea change in the example) 

 
locate all occurrences of a string pattern   within   by 
searching for the left and right boundaries of   in    , 
which takes two augmented binary searches, i.e.,    
          time. In our case,   is a sequence of word 
tokens, and     since   is a phrase and   is a corpus.  

NeSS Run-Time Architecture 

We use the term “query phrase” to denote the input phrase 
for which we want to find synonyms or near synonyms as 
illustrated in Figure 1. At run-time, NeSS goes through two 
phases of development which we describe below. 

 Phase I, Context Collection and Filtering: NeSS uses 
the local contexts surrounding the query phrase as features 
to the conditional model to capture both semantic and syn-
tactic information. A local context consists of: 

1. Left context which we call “left”, is a 3 to 4-gram 
token to the immediate left of the query phrase, 

2. Right context which we call “right”, defined similar-
ly (longer n-grams may further improve results), 

3. Paired left & right context which we call “cradle”, 
combining left and right contexts of the same query. 

 

We iterate over each occurrence of the query phrase in 
the data and collect the corresponding local context at each 
instance to form three sets of distinct lefts, distinct rights 
and distinct cradles, respectively. To compute contextual 
query phrase relevance (see subsection Model Elements), 
during iteration we also store the frequency of each context 

 
with the query phrase as well as the frequency of the query 
phrase in the data using multi-threaded suffix arrays. 

Phase II, Candidate Collection and Filtering: We it-
erate over all the instances of each left, right and cradle in 
the data to collect a set of near-synonym candidate phrases, 
subject to minimum and maximum candidate lengths: 
        ,                  , where    is query 
phrase length,    and    are constant parameters. To com-
pute candidate contextual strength and normalization fac-
tors (see subsection Model Elements), we also store the 
frequency of each candidate with each context, and their 
independently occurring frequencies, again using multi-
threaded suffix arrays to expedite the process. 

Computational Complexity: Considering a single suf-
fix array, given a query phrase  , if   is the number of 
word tokens in the data,      the frequency of  ,   the set 
of contexts (lefts, rights and cradles) of  ,   the set of 
mined near-synonyms candidates of  ,         the high-
est frequency context in  , and        the maximum per-
mitted one-sided context length (in our case 4), then a tight 
upper bound on the run-time complexity of NeSS for   
when only the shared feature gain function (see next two 
subsections) is used, can be expressed as: 

 (                                 
                                 )    

With parallel suffix arrays, the only difference in the 
above expression would be that,  ,     , and         
would be defined local to the data corresponding one suffix 

QUERY PHRASE 

. . . has undergone a major sea change in the last five  . . . 

. . .   admitted , without a sea change in public opinion ,  . . . 

. . . airlines would undergo a sea change in their thinking and . . . 

. . . market would mark a sea change in how the government . . . 

. . . table would create a sea change in behavior , “ . . . 

. . . in Florida reflects a sea change in public opinion against . . . 

. . . the beginning of a sea change in their own move . . .                    

 

  

   

   

 

                                           

   

. . . has undergone a major ______  . . . 

. . .  ______ in the last five  . . . 

. . . undergo a ______ in their . . . 

. . . would mark a ______ in how the . . . 

. . .  beginning of a ______ . . . 

. . .  ______ in public opinion . . . 

. . . would create a ______ in behavior ,  . . . 

 

 

 

 

  

   

   

 

                                           

   

. . . has undergone a major shift   . . . 

. . . fundamental shift  in the last five  . . . 

. . . undergo a , significant shift in their . . . 

. . . would mark a turning point in how the . . . 

. . .  the beginning of a sea-change . . . 

. . .  lot of volatility in public opinion . . . 

. . . would create a new trend  in behavior ,  . . . 
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array instead of the entire data. This run-time complexity is 
faster than other competing methods, for example, Meltzer 
and Hovy’s (2011) method was       slower. 

Model Elements 

We propose a new conditional model to construct a proba-
bilistic combination function, essentially measuring simi-
larity between two entities based on a function over shared 
(common) set of features, as discussed below: 

Contextual Query Phrase Relevance (CQR): Contex-
tual Query Phrase Relevance (CQR) is a measure of how 
important the query phrase is to its contexts as compared to 
other phrases occurring together with them: 

                    
      

    
 

      

    
 

where p    and      are probability and frequency points, 

respectively, in the distribution. 
Candidate Contextual Strength (CCS):  Candidate 

Contextual Strength (CCS) is a measure of how strongly 
related the query phrase contexts are to the potential near 
synonym candidate phrases as compared to other local con-
texts surrounding them: 

                    
      

    
 

      

    
 

Normalization: In order to address base-level frequency 

variation among candidate phrases we introduce a normali-

zation factor:        (    )
  

, where   is a constant. 

Contextual Information (Inf): Some contexts still car-
ry more semantic information than others based on their 
content (e.g., type and/or number of words) and our model 
tries to take that into account. Therefore,            
                 , where      is the number of con-
tent words in context  ,       is the length of  , and  ,   
and   are coefficients.  

Shared Feature Gain Scoring Fuction 

Combining the concepts described above, we compute the 

score, first for left contexts       : 

         ∑                            

      

 

The model also accounts for displaced contextual 
matches, that are essentially cradle matches but with the 
left and right matching at different instances of the query: 

  
       ∑ {

                             
                            

      

 

where       is a subset of      which qualifies as dis-
places lefts. Similarly, we compute scores for rights and 
cradles and combine the three to get the final score: 

                        (1) 

    
  

   
 

  
     

  

where     > 1 to boost the score for cradle matches   .  

Kullback-Leibler Divergence Scoring Function 

KL divergence (Cover and Thomas 1991) is measure of the 
difference between two probability distributions. We use it 
to measure the information lost when the contextual distri-
bution given a candidate is used to approximate the same 
contextual distribution given the query phrase: 

        ∑       

      

     
      

      
  

       
          

             
          

           

               
 

       
     

      
            

     

      
 

where      represents the combined set of lefts for the 
query phrase and the candidate. As before, the ratio of the 
probabilities      and     , can be interpreted as the ratio 
of frequencies. We apply smoothing and also compute the 
scores for the combined rights and combined cradles, then 
combine the three to get the final score: 

                                 (2) 

We re-score and re-rank the top 1000 scoring candidates 
generated by the shared feature gain using Equation 2. 

Parameter Training 

Equation 1 contains the parameters  ,  ,  , and   separate-
ly for   

 ,   
  and    each along with the cradle boosting pa-

rameter    , for a total of 13 parameters. One possible pa-
rameter training scheme, is to generate training data con-
sisting of query phrases ( ), and pick near-synonym can-
didates rated as highly synonymous by human judges. A 
natural optimization objective would then be: 

∑ ∑ ‖                 ‖
         

  

with the constraint that all the parameters > 0.        is a 
product of two nonnegative convex functions, and is there-
fore convex. This makes the optimization objective a dif-
ference of two convex functions (DC class) and its direct 
optimization is reserved for future work. For the present 
we relied on multi-start coordinate ascent with binary 
search instead of increasing the linear step size increase. 
The parameters were trained on a set of 30 query phrases, 
separate from the ones used in the evaluation (see section 
Experiments).  

Experiments
 

 
The Gigaword Corpus 

We selected the very large English Gigaword Fifth Edition 
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Method MRȘ(5) MRȘ(10) MRȘ(15) MRȘ(20) 

SF 2.35 2.19 2.12 2.00 

KL 2.45 2.28 2.17 2.08 

PPDB 1.97 1.80 1.62 1.48 

Mavuno 2.04 1.83 1.75 1.64 

Thesaurus 1.18 1.09 1.00 0.95 

Table 1: Significant MRȘ improvements for both scoring func-

tions (SF and KL) over PPDB, Mavuno and Roget’s Thesaurus, 

for 23 two word query phrases 

Method MRȘ(5) MRȘ(10) MRȘ(15) MRȘ(20) 

SF 2.15 1.99 1.85 1.76 

KL 2.10 1.99 1.89 1.84 

PPDB 1.65 1.57 1.48 1.38 

Mavuno 1.85 1.76 1.71 1.65 

Thesaurus 0.50 0.47 0.43 0.43 

Table 2: Significant MRȘ improvements for both scoring func-

tions (SF and KL) over PPDB, Mavuno and Roget’s Thesaurus, 

for 16 greater than two word query phrases 

(Parker et al. 2011), a comprehensive archive of newswire 
text data, for our experiments. The corpus was split into 32 
equal parts with a suffix array constructed from each split. 
Since, the server hardware can support up to 32 (16x2) thr- 
eads in parallel, each suffix array operates on a separate 
thread of its own. We used 37.5% of the data (12 suffix ar-
rays, ~1.51 billion words) for our experiments. The full 
Gigaword may have yielded better results, but would have 
run slower. 

Rank-Sensitive Evaluation 

For our experiments, we chose a set of 54 randomly select-
ed query phrases including 15 single word, 23 two word 
phrases, and 16 longer phrases

1
. For each query phrase, 20 

near-synonym candidates were generated using each of the 
two scoring functions and baselines. The annotators (6 
human judges) were asked to provide ratings on each query 
phrase-synonym candidate combination. The ratings scaled 
from 0-3 (Rubenstein and Goodenough 1965), where 3 in-
dicates absolute synonymy (Zgusta 1971), 2 indicates near- 
synonymy (Hirst 1995), 1 indicates some semantic correla-
tion such as hypernymy, hyponymy or antonymy and 0 in-
dicates no relationship. The inter-annotator agreement was 
measure to be        (Fleiss 1971), using binary catego- 
ries for ratings 2, 3, and 0, 1, respectively, which is moder-  

                                                 
1 The query phrases, annotations and other results can be downloaded at 
http://www.cs.cmu.edu/~dishang/. 

Method MRȘ(5) MRȘ(10) MRȘ(15) MRȘ(20) 

SF 2.22 2.00 1.90 1.79 

KL 1.98 1.84 1.76 1.65 

PPDB 1.42 1.30 1.23 1.16 

Mavuno 2.00 1.79 1.64 1.55 

Thesaurus 2.88 2.83 2.81 2.80 

H&S 0.27 0.29 0.28 0.26 

Table 3: Significant MRȘ improvements for both scoring func-

tions (SF and KL) over PPDB, Mavuno and H&S Model, for 15 

single word query phrases 

ate. When the two categories were modified to 1, 2, 3 vs 0, 
it measured        which is almost perfect agreement 
(Landis and Koch 1977). 

We extended the standard performance measures: Mean 
Average Precision (MAP) and Normalized Discounted 
Cumulative Gain (nDCG). We did not use MAP directly 
because it is rank-insensitive, and is valid only for binary 
(0 or 1, relevant or irrelevant) rating scale. In the case of  

nDCG, even though it does take ordering into account it 

does not penalize for inferior results. For example, in our 

experiments the rating sequence 2, 2, 2 for the top 3 re-

trieval results of a query phrase would get a higher score as 

compared to the sequence 3, 2, 3, whereas the latter is 

clearly superior in quality. Besides this, nDCG does not 

penalize for missing results (recall) either. Our normalized 

metric, the mean rank-sensitive score      , which deval-

ues the annotated scores for lower ranks (further from top 

rank) is: 

       
 

   

 

   
∑ ∑

∑                    
   

∑                  
   

       

 

where    is the annotated score,   is the cutoff at the     
rank,   is the rank of the candidate and   is the set of 
raters.     takes into account missing results by padding 
the rating sequence with zeros for the missing values. Also, 
due to normalization     is insensitive to the length of the 
rating sequence, i.e.,        for 2, 2, 2 is equal to 
       for 2, 2, 2, 2, 2. 

Multi-Word and Single Word Comparisons 

Can NeSS really perform better than thesauri, at least for 
multi-word phrases, and other systems in the literature?  

Roget’s Thesaurus: To show the inadequacy of thesauri 
lookup for phrasal synonyms, we compare our model to a 
baseline from the Roget’s Thesaurus. Since, like all other 
thesauri it primarily contains single words, we combine el-
ements in the synonym sets of individual words in the que-
ry phrase to construct candidates for each of the 54 query 
phrases. For instance, in “strike a balance” we randomly 
select “hammer” and “harmony” as synonyms for “strike” 
and “balance”, respectively, to form “hammer a harmony” 
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Figure 2:        plots for 2 word (left), > 2 word (middle) and single word (right) phrases, using shared feature gain function, for 

18.75%, 37.50% and 71.88% of the Gigaword corpus. NeSS’s retrieval quality improves with increasing corpus size.  

 
as a candidate. We assume 100% thesaurus precision for 
single word thesaurus entries (it is a published thesaurus), 
and for the rest we again employ 3 human judges. Tables 
1, 2 and 3 compare the     scores for shared feature gain, 
KL divergence and the thesaurus for two word, greater 
than two word and single word query phrases, separately. 
We can clearly see the performance advantage of our ap-
proach increases in query phrase length. Like the rating 
scale,     ranges from 0 to 3 and thus, a difference of 
more than 1 and 1.3 at each cutoff for two word and great-
er than two word query phrases, respectively, further signi-
fies the considerable superiority of our methods over the-
sauri composition. Note that both functions peak at the two 
word level, and shared feature gain performs stronger for 
single word queries whereas KL divergence takes the lead 
for longer ones. 

Since     is insensitive to cutoff point due to normali-

zation, the observation that both our scoring functions pro-

duce greater scores at stricter cutoffs (i.e. lower values of 

 ) implies that our model is able to discriminate stronger 

semantic matches from relatively weaker ones and ranks 

the highly synonymous candidates higher.  

The Paraphrase Database: We also compare our 

methods to the machine translation technique by Ganit-

kevitch et al. (2013), PPDB 1.0. The English portion of 

PPDB 1.0 contains over 220 million paraphrases. We ex-

tracted the top 20 near-synonyms for our 54 query phrases 

from the 73 million phrasal and 8 million lexical para-

phrase pairs, using the Annotated Gigaword distributional 

similarity scores provided in the database for ranking the 

candidates. Again, 6 human judges provided the ratings. 

Again, from Tables 1, 2 and 3, it is clear that our methods 

are better at ranking and recall at every cutoff point as well 

as phrase length. Considering the fact that NeSS operates 

on a monolingual corpus, does not require any NLP specif-

ic resources, and is a live retrieval system, as compared to 

PPDB which is none of the above, this is quite a significant 

result.  
Mavuno: We also compare with Mavuno, an open-

source Hadoop-based scalable paraphrase acquisition 
toolkit developed by Meltzer and Hovy (2011). Specifical-

ly, they define the context of a phrase as the concatenation 
of the n-grams to the immediate left and right of the 
phrase, and set the minimum and maximum lengths of an 
n-gram context to be 2 and 3, respectively, but they use 
point-wise mutual information weighted (Lin and Pantel 
2001) phrase vectors, to compute cosine similarity as a 
measure of relatedness between two phrases. That is, 

where      represents the context vector of phrase  . 
We re-implemented the above scoring function in NeSS 

on our data (37.5% of the preprocessed English Gigaword 
Fifth Edition). The results shown in Tables 1, 2 and 3 
demonstrate that both our scoring functions are superior. 

Word embedding: Recently, “word embedding” neural 
network approaches have been quite popular in building 
vector representations that capture semantic word relation-
ships. To gauge their effectiveness, we compare with the 
single prototype word embeddings trained by Huang and 
Socher (2012). From the     comparisons in Table 3, it is 
clear that the H&S model is inadequate for the task of syn-
onym extraction. We are unable to make comparisons to 
their multi-prototype model because they trained it only for 
6162 most frequent words in the vocabulary. We also tried 
to train the word embedding model on 10% of the Giga-
word corpus, but the task proved to be infeasible, since it 
would take about 2-years. 

Concluding Remarks 

We introduced a new unsupervised method for discovering 
phrasal near synonyms from large monolingual unannotat-
ed corpora and an evaluation method that generalizes pre-
cision@k for ranked lists of results based on multiple hu-
man judgments, weighing more heavily the top of the 
ranked list. Our methods in NeSS are based on combining 
elements of frequentist statistics, information theory, and 
scalable algorithms. NeSS significantly outperforms previ-
ous automated synonym finding methods on both the lexi-
cal and phrasal level, and outperforms thesaurus-based 
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methods for multi-word (phrasal) synonym generation. 
Suggested future work includes:  

 Testing NeSS on multiple languages, since it contains no 
English-specific assumptions or knowledge. 

 Fully parallelizing NeSS as an efficient cloud-based 
phrasal synonym server. 

 Task based evaluations, such as web search. 
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