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Abstract

Latent author attribute prediction in social media provides
a novel set of conditions for the construction of supervised
classification models. With individual authors as training and
test instances, their associated content (“features”) are made
available incrementally over time, as they converse over dis-
cussion forums. We propose various approaches to handling
this dynamic data, from traditional batch training and test-
ing, to incremental bootstrapping, and then active learning
via crowdsourcing. Our underlying model relies on an intu-
itive application of Bayes rule, which should be easy to adopt
by the community, thus allowing for a general shift towards
online modeling for social media.

Introduction
The recent explosion of social media has led to an interest
in predicting hidden information from the large amounts of
freely available content. As compared to the earlier explo-
sion of documents arising from the web, social media con-
tent is significantly more personalized, i.e., written in the
first person, informal, and often revealing of latent proper-
ties of the author. This has become known alternatively as
constructing: user demographic models, personal analytics
or customer profiling services. Researchers have explored
the prediction of latent attributes including gender (Rao et
al. 2010; Filippova 2012; Bergsma et al. 2013), age (Nguyen
et al. 2013), political preferences (Conover et al. 2011b; Co-
hen and Ruths 2013; Volkova, Coppersmith, and Van Dume
2014), personality traits (Bachrach et al. 2012), and so on.

However, the majority of this work treats the modeling
task much as prior work on non-social media: construct a
corpus of labeled materials, and perform supervised classifi-
cation in a batch setting. This ignores one of the primary dis-
tinguishing characteristics of social media content: it is dy-
namically generated over time, and usually centered within
the context of a social network (i.e., friends or other types
of associates of the author). Further, different users of the
medium contribute to greater or lesser extent: a given user
may send one tweet a week, or one tweet an hour, etc. Prior
work tends to gloss over this fact by building controlled col-
lections with a large, fixed amount of content assumed per
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Figure 1: An example of political preference prediction over
a dynamic stream of communications. R stands for Repub-
lican and D for Democratic users. As time τ goes by, both
labeled and unlabeled users generate tweets t1 . . . tm. Boxes
outline the amount of train and test data available at each τk.

user e.g., 1K tweets. (Zamal, Liu, and Ruths 2012) or even
5K tweets (Rao et al. 2010).

In contrast, Burger et al. and Volkova, Coppersmith, and
Van Dume showed the intuitive importance of the amount
of content available per user at test time: the more content
you have, the better your predictions. This was followed
by Van Durme who proposed a model that allowed for in-
cremental updating of classifier predictions over time, as
users continued to author new content. This model treated
each user as a sort of dynamic feature vector that evolved
over time, and assumed access to a pre-trained classification
model based on labeled data available a priori, akin to ear-
lier work in the purely batch setting.

Here we go beyond the existing work and propose two
novel contributions in mining streaming social media: (1)
contrasting Van Durme, we treat each new message as in-
dependent evidence which is combined into an incremen-
tal user-prediction model as a straightforward application
of Bayes Rule; (2) we explore model training in parallel
to its application, rather than assuming a previously exist-
ing labeled dataset. Also, distinct from Van Durme, but pre-
viously explored in the batch-setting by (Zamal, Liu, and

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

2325



Ruths 2012) and (Volkova, Coppersmith, and Van Dume
2014) we make use of the local user neighborhood in our
dynamic model.

Our approach captures the same incremental intuitions as
the work by Van Durme, but we situate it within the well
understood framework of Bayesian inference: we hope this
will encourage others to build upon this effort in construct-
ing more complicated models. Further, by recognizing that
both training as well as testing materials are dynamically
generated in social media, then possibly coupled to dynamic
model feedback via crowdsourcing, this suggests latent au-
thor attribute prediction as a rich source for methodological
challenges in online and active learning. This work means to
give perspective on the various ways this dynamism may be
incorporated into an experimental framework. Future work
may then choose a particular path and focus on models with
further complexity and larger datasets.

Approach
Data
Our approach is relevant generally to multi-class prediction
problems in social media. Here we focus on a binary predic-
tion task, specifically the prediction of political preference
as captured by the dominant two American political par-
ties: Democratic and Republican. We rely on a dataset pre-
viously used for political affiliation classification by (Pen-
nacchiotti and Popescu 2011), then (Zamal, Liu, and Ruths
2012) and (Volkova, Coppersmith, and Van Dume 2014).1
The original data consists of 200 Republican and 200 Demo-
cratic users associated with 925 tweets on average per user.
Each user has on average 6155 friends with 642 tweets per
friend. Sharing restrictions2 and rate limits on Twitter data
collection only allowed us to recreate a subset of that collec-
tion. Based on the subset we were able to obtain we formed
a balanced collection of 150 Democratic and 150 Republi-
can users. For each user, we randomly sampled 20 friends
with 200 tweets per friend.

Models
We assume a set of independent users U = {ui}, and neigh-
bors N = {nj}, with N (u) the neighbors of u.3 We are con-
cerned with models over data that changes over time: let τ
be an index over discrete time-steps, where at each time-step
τk we observe zero or more tweets from each user, and each

1The original Twitter users with their political labels extracted
from http://www.wefollow.com as described by (Pennacchiotti and
Popescu 2011). The user-friend data was collected by (Zamal, Liu,
and Ruths 2012) and expanded with other neighbors by (Volkova,
Coppersmith, and Van Dume 2014). User/tweet IDs and user-friend
relations can be found at http://www.cs.jhu.edu/∼svitlana/.

2Twitter only allows to share user and tweet IDs. The actual
content e.g., tweets or user meta data can be download by querying
Twitter API. However, as of Aug. 2013, a certain portion of user
profiles were deleted or became private: this is a standard issue in
reproducing prior results on Twitter and is not specific to this work.
Moreover, note that Twitter API restricts queries to 720 per hour.

3In our experiments those neighbors will be the friends of a user
on Twitter.

Figure 2: Active learning classification setup: nodes repre-
sent Twitter users, edges stand for friend relationships be-
tween the users; dark red and blue nodes represent labeled
R and D users; light red and blue nodes represent friends of
R and D users; ΦU (τ1) and ΦN (τ1) are the models trained
exclusively on user or neighbor (friend) content.

user-neighbor, on which we base our predictions. A user is
labeled at time τ if we know the value of the attribute func-
tion A(u) ∈ {al}.

For example, in our experiments we will model the
(American) political preference attribute, defined as: A(u) ∈
{R, D}, with R standing for Republican and D for Democratic.
Let Lτ ⊆ U be the labeled users at time τ , and Lτ = U\Lτ
the unlabeled users. Our goal is to predict the attribute value
for each user in Lτ at every τ given the evidence available
up to τ .

Unlike previous models for latent user attribute classifica-
tion, we: (1) consider updating the initial model learned at τ0
as new evidence becomes available at τk, and (2) reestimate
decision probabilities for the unlabeled users given the up-
dated model and new content generated by these users and
their neighbors by τk.

We define two models Φ(u, τ) and Φ(n, τ) learned from
dynamically growing streams of tweets T (U) and T (N). The
user model Φ(u, τ) is learned exclusively from user commu-
nications to be applied to user tweets t(u)1 , t

(u)
2 , . . . , t

(u)
m ∈

T
(u)
τ . Φ(u, τ) is then a function mapping a user to the most

likely attribute value assignment at τ :

Φ(u, τ) =argmaxaP(A(u) = a|T (u)
τ ). (1)

Neighbor model Φ(n, τ) is learned from neighbor com-
munications of Democratic and Republican users. It is
defined similarly to Eq. 1 and is applied to classify
friend tweets within friend or joint user-friend stream
t
(n)
1 , t

(n)
2 , . . . , t

(n)
m ∈ T (n)

τ .
A user is labeled at time τ if we predict the value of the

attribute function A(u). We apply Bayesian rule updates to
dynamically revise posterior probability estimates of the at-
tribute value P(A(u) = R | Tτ ) given a prior e.g., in our case
we start with a balanced prior P(R) = P(D) = 0.5.

P(A(u) = R | Tτ ) =

P(A(u) = R) · P(Tτ |A(u) = R)∑
a∈A P(A(u) = a) · P(Tτ |A(u) = a)

.
(2)
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We will assume tweets to be independent conditioned on
attribute, which means our model factors across individual
messages Tτ = (t1, . . . , tm), allowing for simple posterior
updates on a tweet by tweet basis:

P(A(u) = R | t1 . . . tm) =

P(A(u) = R) ·∏m P(tm|A(u) = R)∑
a∈A P(A(u) = a)

∏
m P(tm|A(u) = a).

(3)

The conditional probability of a given tweet is determined
by a log-linear model trained on observations from Lτ . We
show the example updated posterior probabilities for politi-
cal preference prediction P(R | t1 . . . tm) in Figure 2.

The final decisions about label assignments can be made
at any time τk e.g., if P(R | t1 . . . tm) = 0.9 one can la-
bel the user as R with an associated 90% model confidence
given the evidence available by τk. We analyze the differ-
ence in precision and recall by making decisions based on
high or low probability assignments using different thresh-
olds θ: 0.55 and 0.95. When P(A(u) = a | t1 . . . tm) ex-
ceeds θ we make a decision about the label for a user at τk.

Experimental Setup
We design a set of classification experiments from three
types of data streams including user (U), neighbor (N) and
user-neighbor (UN). We aim to explore the following predic-
tion settings: Iterative Batch (IB), Iterative Batch with Ra-
tionale Filter (IBR), Active without Oracle (AWOO), Active
with Oracle (AWO), Active with Rationale Filter (AWR).

For all settings we perform 6-fold cross validation and use
a balanced prior:4 50 users in the train split and 250 users in
the test. For all experiments we use the LIBLINEAR pack-
age integrated in the JERBOA toolkit (Van Durme 2012a).
The log-linear models with dynamic Bayesian updates de-
fined in Eq.1 and Eq.3 are learned using binary word uni-
gram features extracted from user or neighbor content.

Iterative Batch We learn tweet-based models at each
time stamp τ from the set of labeled users Lτ and their
neighbors e.g., friends. We apply these models using Eq.3
to U, N and UN streams to label all unlabeled users Lτ over
time. The set of labeled users is constant across all values of
τ : we have labels on some users before hand, and no new
labels are gathered; only the amount of content available for
the users and their neighbors is increasing over time.

Iterative Batch With Rationale Filtering Prior work
by (Zaidan and Eisner 2008) and (Yessenalina, Choi, and
Cardie 2010) explored the utility of asking annotators to
choose rationales, explicitly highlighted words or phrases in
provided content, that best justified why the annotator made
their labeling decision. Our batch setup with rationale filter-
ing is equivalent to the iterative batch setup, except at every
time stamp τ we modify our training data to include tweets
with the rationales exclusively. For that, at every τ we esti-
mate predictive unigrams – potential rationale words w ∈ V
for Democratic and Republican users in Lτ :

V a∈A(u) = {w | P(w | A(u) = a) ≥ 0.55} (4)
4Our framework generalizes to non-balanced class priors for

train and test, but does assume that the prior is known a priori;
estimating class priors in social media is an element of future work.

Train Lτ

Test Lτ

Φ(u, τ),
Φ(n, τ)

Rationales

∀u ∈ Lτ ,
P(A(u)=aj) ≥ θ

(a) AWR

Train Lτ

Test Lτ

Φ(u, τ),
Φ(n, τ)

P(A(u)=aj) ≥ θ,
∀u ∈ Lτ

Oracle

(b) AWO

Figure 3: Active setting with: (a) rationales and (b) oracle.
Active setting without oracle (AWOO) is similar to (a) AWR
except the rationale filtering step is omitted.

The conditional probabilities of each word P(w|A(u) =
D) and P(w|A(u) = R) are calculated as the empirical es-
timates over tweets, where w was constrained to have a
minimum count of three. We then ask annotators on Me-
chanical Turk to select rationales from the strongest ranked
candidates for D and R by showing them potential ratio-
nales and a subset of tweets up to τ . We ask three redun-
dant annotations for each unigram w and take the major-
ity vote to determine if the unigram truly reveals political
preferences. For example, the Democratic rationales with
P(w | A(u) = a) > 0.9 and 100% annotator agreement
include: immigrants, students, unemployment and Republi-
can: #teaparty, dental, obamacare, arts.5

Active Without Oracle Unlike our batch setup applied
iteratively over a stream of tweets, we propose to update
the Φ(u, τ) and Φ(n, τ) models by moving users from the
test set labeled at τk to the training set at τk+1 as shown
in Figure 2. The final decisions about class labels for the
unlabeled users are made based on posterior probability es-
timates P(A(u) | Tτ ) to exceed the threshold θ. Similarly
to the batch setting we experiment with two values of θ and
three data streams: U, N and UN. This bootstrapping ap-
proach we refer to as active without oracle (AWOO).

Active With Oracle Alternatively, the final label assign-
ments can be judged by an oracle e.g., annotators on Me-
chanical Turk. For example, we might show m tweets pro-
duced by the user by time τ to one or more annotators. And
only if one or more independent annotator judgments agree
with Φ(u, τ), then we assign a corresponding label to this
user at τk, and move this user to the training set at τk+1.
Here, since we know the labels we simulate turker judg-
ments (so the oracle is 100% correct). Thus, this setup mea-
sures the upper bound for classification. But in the future, we
would like to engage real turkers to make class label judg-
ments in the loop. We refer to this setup as active with oracle
(AWO) and show it in Figure 3b.

Active With Rationale Filtering The rationale filtering
step used for IBR setup is also applied to AWOO setup at
every τ as shown in Figure 3a. The difference between batch
and active models with rationale filtering is that the poten-
tial rationales are estimated on a different set of training data
using Eq. 4. In the active case tweets from previously unla-
beled users that exceed θ at τk are added to the tweets of
labeled users at τk+1.

5Complete rationale lists for political preference as well as
other attributes e.g., gender and age can be downloaded from
http://www.cs.jhu.edu/∼svitlana/rationales.html
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Evaluation
We are concerned with accuracy when operating at differ-
ent confidence thresholds. Let Accτ,θ be the accuracy at τ ,
when considering just users for which the posterior proba-
bility exceeds θ. At a given value of τ and θ, let:

Accτ,θ =
TR+ TD

R+D
, (5)

where TR = true Republicans, TD = true Democrats, and
R, D are the number of users labeled as Republicans or
Democrats, respectively.6 We abbreviate this as: Accτ,θ =
Cτ,θ/Aτ,θ, with Cτ,θ being the number of correctly classi-
fied users, andAτ,θ being the number of users above a given
threshold θ. We also estimate Qτ,θ which is the total num-
ber of active users who tweeted at least once by τ (note that
Cτ,θ ≤ Aτ,θ ≤ Qτ,θ). The performance metric Accτ,θ de-
fined in Eq. 5 can be effectively used for targeted online ad-
vertising where one would like to send the advertisements
as early as possible to only active users at time τ for whom
labels are assigned with a reasonable confidence θ.

Results
We first confirm that our incrementally batch-trained ap-
proach performs as would be expected. In Figure 4 (a - b),
consider model U (based only on user tweets): the difference
between decision thresholds 0.95 and 0.55 shows a classic
precision versus recall tradeoff; at 0.95 less users are clas-
sified (x-axis) but at higher precision (y-axis), as compared
to 0.55 which instead has higher recall. This pattern repeats
for all models U, N and UN, trained and tested with less
data (a: Jan - Apr) as well as more data (b: Jan - Sep). With
more data (b), performance improves for all scenarios. U is
outperformed by N and UN: having access to the content of
neighbors improves performance considerably in all cases
(affirming the conclusions of (Zamal, Liu, and Ruths 2012)
and (Volkova, Coppersmith, and Van Dume 2014)).

Next we contrast those results to AWOO: not only do we
retrain the model each month as in batch, but now we boot-
strap by taking our most confident (0.95 or 0.55) predictions
for users and add them into our labeled set as if their labels
were known. We found that our AWOO model yields higher
performance than IB model in early months (up to 1-Jul-
2011), and insignificantly lower results after that. It happens
because in the active setting the model accumulates noisy
predictions for some users over time. In contrast, the AWO
model does not have this issue and yields consistently better
results over time as we show latter. In Figure 5 we present
more detailed classification results for batch and active set-
ting for two thresholds 0.55 and 0.95. These results allow us
to analyze (a) the threshold and (b) data stream type influ-
ence on classification performance as shown below.

Analyzing Threshold Influence
The results in Figures 4 and 5 demonstrate that for higher θ,
when the models are more constrained and, therefore, more

6This generalizes standard language of (True) Positive and
(True) Negative to allow for non-binary scenarios, such as if adding
Libertarian (L), Green Party (G), etc., to the attribute set: Acc=
(TR+ TD + TG+ TL)/(R+D +G+ L).

(a) IB, τ3=1-Apr-2011
Train: 3K user, 6K
neigh

(b) IB, τ8=1-Sep-2011
Train: 11K user, 20K
neigh

(c) AWOO, τ3=1-Apr-
2011
Train: 18K user, 34K
neigh

(d) AWOO, τ8=1-Sep-
2011
Tr: 61K user, 125K
neigh

Figure 4: The comparison of batch (IB) vs. active (AWOO)
setting using U, N and UN data streams and different con-
fidence thresholds: θ = 0.55 (bold) and θ = 0.95 (light)
markers.

confident about their predictions, less users A are above the
threshold θ. Consequently, the number of correctly classi-
fied users C is lower for 0.95 compared to 0.55. Therefore,
one has to make a decision about θ taking into account this
precision-recall tradeoff: models with higher θ are more pre-
cise but yield lower recall vs. models with lower θ are less
precise but yield higher recall over time τ .

Moreover, for our active setting threshold θ has another
important objective – to control the amount and quality of
the data labeled at τk and used to update the model at τk+1.
The results in Figure 5 show that the active models outper-
form the iterative batch models in terms of recall in early
months. This results are very important for targeted adver-
tising scenario when more ads need be sent to more users as
early as possible.

Studying Data Stream Type Influence
We observe that in all settings when the probability es-
timates are updated from N, UN streams compared to U
stream the # of correctly classified users Cτ,θ at each τ is
significantly higher. The reason for UN, N streams yielding
better results is that more tweets associated with the user
e.g., friend tweets that carry a substantial signal for predic-
tion become available.7 However, relative gains over time
for N and UN are lower compared to U stream. It is be-
cause “less difficult to classify” users are easily classified

7Many authors don’t tweet often e.g., 85.3% of all Twitter users
post less than one update per day. Thus, less tweets are generated
by random users by time τ compared to the number of tweets gen-
erated by a set of their friends.
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(a) IB (b) IBR (c) AWOO (d) AWR

Figure 5: Comparing iterative batch IB, IBR vs. active models AWOO, AWR with and without rationale filtering for political
preference prediction with two thresholds θ = 0.55 and θ = 0.95 applied to user, neighbor and user-neighbor communication
streams. Starting on 1-Jan-2011, at each time stamp τ e.g., τ2=1-Mar-2011, . . . , τ11=1-Dec-2011 we measure Cτ,θ = the # of
correctly classified users, Aτ,θ = the # of users above the threshold θ, Qτ = the # of users who tweeted at least once by time τ .

using UN (N) streams earlier at τk and only “more difficult
to classify” users are left to be classified later at τk+1.

Utilizing Oracle Annotations
In Figure 6 we demonstrate the upper bound for political
preference classification performance with θ = 0.95 using
our active with oracle (AWO) experimental setup. Similar
to other experiments, we report classification performance
Accτ,θ at every τ with the number of user and neighbor
tweets available for training when predictions are made over
U and N data streams. We find that Accτ,θ is monotonically
increasing over time and is significantly higher then for IB
and AWOO settings. To give a cost estimate of requesting it-
erative oracle annotations, we outline the number of requests
to the oracle aggregated over time in Figure 6 (top).

Active learning with iterative oracle annotations demon-
strate the highest performance compared to all other classifi-
cation settings. For instance, 226 out of 250 users (90%) are
correctly classified by June using N stream and 230 (92%)
using UN stream using AWO setup compared to 191 (76%)
and 203 (81%) users using AWOO setup. Similarly, 112
(45%) users are correctly classified by June using U stream
using AWO model compared to 80 (32%) using AWOO.

Applying Rationale Filtering
Here we analyze the impact of rationale filtering on predic-
tion performance in batch: IB vs. IBR and active: AWOO
vs. AWR settings over time. In Figure 5 we report results
for models with and without rationale filtering. As before,
we present the results for two thresholds 0.55 and 0.95 and
three data streams: U, N and UN. For IBR and AWR models
with rationale filtering we observe similar precision-recall
trends to IB and AWOO models shown in Figure 4.

During rationale filtering we select training examples with
highly predictive norms (a.k.a. rationales) at every τ . This
filtering step reduces the number of training examples L, vo-
cabulary size V and feature space for both user Φ(u, τ) and
neighbor Φ(n, τ) models over time as shown in Tables 1 and

Figure 6: Active with oracle (AWO) classification results us-
ing U, N and UN streams and θ = 0.95 (U and N stand for
thousands of tweets used to train user and neighbor models).

2. We observe that the size of the training data L is reduced
at least in half at every time stamp. Therefore, we consider
rationale filtering as a dimensionality reduction step for our
batch and active models with incremental Bayesian updates.

Nevertheless, the size of the training data is significantly
lower at every τ the quality of batch and active models
trained with filtered data is better for IBR vs. IB and AWR
vs. AWOO. In other words, selecting tweets with highly pre-
dictive feature norms for training leads to consistent per-
formance improvements over time. We show the empirical
results for the relative percentage gain ∆Acc,% for batch
and active models with vs. without rationale filtering in Ta-
bles 1 and 2, respectively. Models with rationale filtering
yield higher precision but lower recall compared to the mod-
els without rationale filtering when the predictions are made
using N or UN stream. Except we observe higher precision
but comparable or higher recall when U stream is used.

To summarize, rationale filtering significantly improves
classification accuracy and can be effectively used for at-
tribute prediction that require high precision e.g., prod-
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Mar Jun Sep Dec

U
∆Acc0.55 +21.7 +20.9 +14.2 +21.6
∆Acc0.95 +27.7 +18.5 +7.8 +15.1
∆Lθ 1.1 2.4 4.2 9.0
∆Vθ 0.8 1.3 1.9 3.0

N

∆Acc0.55 +5.6 +10.6 +5.8 +3.0
∆Acc0.95 +13.2 +11.7 +5.6 +3.0
∆Lθ 2.5 6.9 12.5 24.9
∆Vθ 1.7 3.4 4.8 7.0

U
N ∆Acc0.55 +19.2 +9.9 +4.4 +10.3

∆Acc0.95 +21.5 +9.1 +4.0 +10.8

Table 1: The difference between IBR and IB settings.

Mar Jun Sep Dec

U

∆Acc0.55 +20.6 +19.7 +18.5 +20.1
∆Acc0.95 +19.0 +18.7 +18.0 +20.6
∆L0.95 3.5 11.9 16.3 32.4
∆V0.95 2.5 3.8 6.3 11.2

N

∆Acc0.55 +14.1 +13.9 +13.7 +13.7
∆Acc0.95 +11.7 +11.7 +11.9 +11.9
∆L0.95 7.9 19.1 36.5 81.4
∆V0.95 2.7 4.6 7.3 13.0

U
N ∆Acc0.55 +11.5 +10.8 +10.7 +10.7

∆Acc0.95 +9.5 +9.4 +9.4 +9.4

Table 2: AWR vs. AWOO settings: ∆Accθ represents rela-
tive percentage gain between AWR and AWOO, ∆Lθ is the
difference in the # of tweets available for training, ∆Vθ is
the difference in feature space (vocabulary) size at τk.

uct likes or personal interests. For batch setting, IBR
setup yields much better results than IB setup as high as
AccMar,0.95 = 27.7%. For active setting, AWR setup yields
as high as AccMar,0.55 = 20.6% gain over AWOO using
U stream. Moreover, for both batch and active setting: the
higher ∆Accτ,θ reported when predictions are made from U
compared to N or UN streams; the incremental relative gains
for Accτ,θ are higher for 0.55 compared to 0.95 models.

Applications

Our approaches for making predictions over dynami-
cally evolving social media streams based on incremental
Bayesian online updates can be effectively used in: (1) real-
time streaming scenarios for dynamically growing social
networks; (2) limited resource training conditions e.g., it-
erative retraining and active learning (bootstrapping) will
allow exploring new understudied attributes e.g., life satis-
faction, relationship status for which no or limited labeled
data exists; (3) low-resource prediction settings e.g., when
no or limited user data is available at any given time, neigh-
bor streams can be used to make predictions about the user;
(4) low-cost annotation models that rely on iterative in-
stance (assigning class labels to users) or feature annotations
(highlighting predictive words in tweets) via crowdsourcing.
Moreover, our batch and active models with iterative ratio-
nale filtering help to reduce storage and memory require-
ments when processing large feature vectors and iterative
re-training models for real-world prediction in social media.

Related Work
Batch Models for Personal Analytics The vast majority
of works on predicting latent user attributes in social media
apply supervised batch models trained on large amounts of
user generated content except (Burger et al. 2011; Volkova,
Coppersmith, and Van Dume 2014). These models are
learned using lexical bag-of-word features for classifying
user: gender (Rao et al. 2010; Filippova 2012; Ciot, Son-
deregger, and Ruths 2013; Bergsma and Van Durme 2013);
age (Goswami and Shishodia 2012; Nguyen et al. 2013;
Schwartz et al. 2013a); political orientation (Conover et al.
2011a; Pennacchiotti and Popescu 2011; Zamal, Liu, and
Ruths 2012; Cohen and Ruths 2013); personality (Golbeck
et al. 2011; Bachrach et al. 2012; Schwartz et al. 2013b).
Some works use unsupervised approaches to learn user de-
mographics in social media including large-scale cluster-
ing (Bergsma et al. 2013) and probabilistic graphical mod-
els (Eisenstein et al. 2010).

Streaming Models for Personal Analytics Van Durme
proposed a streaming model with incremental updates for
iteratively predicting user attributes over a stream of com-
munications (Van Durme 2012b). Unlike Van Durme’s ap-
proach, our model suggests more straightforward applica-
tion of incremental tweet-level online Bayesian updates. In
addition, we explore batch vs. online retraining for incre-
mental updates of our models. Finally, we take advantage
of Twitter network structure and experiment with friend
streams in addition to the user stream of communications.
Moreover, our active models with iterative oracle and ra-
tionale annotations are similar to active learning techniques
where the learner is in control of the data used for learn-
ing as described in details here (Olsson 2009; Settles 2010;
Laws 2012; Settles 2012).

Summary
We proposed novel approaches for making predictions over
dynamically evolving social media streams based on incre-
mental Bayesian online updates. We studied an iterative in-
cremental retraining in batch and active settings with and
without iterative oracle annotations. Moreover, we applied
interactive feature annotation (rationale) technique as a fil-
ter for iterative retraining of the proposed models. Finally,
we took advantage of a network structure by making predic-
tions from neighbor and joint user-neighbor streams.

Our key findings include: I. Active retraining with cor-
rectly classified users from test data added to the training
data at every time stamp significantly outperforms iterative
batch retraining setup. II. Making predictions using a joint
user-neighbor or neighbor stream is more effective than us-
ing only user stream. III. Models with higher confidence
yield higher precision and models with lower confidence
yield higher recall for both batch and active setting. IV. Ra-
tionale annotation and filtering during iterative retraining
leads up to 27.7% relative improvement in iterative batch
and 20.6% in active setting. V. Active retraining with oracle
annotations yields the highest recall: 85% of test users are
correctly classified after the second iteration using a joint
user-neighbor stream.

2330



References
Bachrach, Y.; Kosinski, M.; Graepel, T.; Kohli, P.; and Still-
well, D. 2012. Personality and patterns of facebook usage.
In Proceedings of the 3rd Annual ACM Web Science Confer-
ence, WebSci ’12, 24–32.
Bergsma, S., and Van Durme, B. 2013. Using conceptual
class attributes to characterize social media users. In Pro-
ceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (ACL), 710–720.
Bergsma, S.; Dredze, M.; Van Durme, B.; Wilson, T.; and
Yarowsky, D. 2013. Broadly improving user classifica-
tion via communication-based name and location cluster-
ing on Twitter. In Proceedings of the Conference of the
North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies (NAACL-
HLT), 1010–1019.
Burger, J. D.; Henderson, J.; Kim, G.; and Zarrella, G.
2011. Discriminating gender on Twitter. In Proceedings of
the Conference on Empirical Methods in Natural Language
Processing (EMNLP), 1301–1309.
Ciot, M.; Sonderegger, M.; and Ruths, D. 2013. Gender in-
ference of twitter users in non-english contexts. In EMNLP,
1136–1145.
Cohen, R., and Ruths, D. 2013. Classifying Political Ori-
entation on Twitter: It’s Not Easy! In Proceedings of the
International AAAI Conference on Weblogs and Social Me-
dia (ICWSM), 91–99.
Conover, M. D.; Ratkiewicz, J.; Francisco, M.; Gonc, B.;
Flammini, A.; and Menczer, F. 2011a. Political polariza-
tion on Twitter. In Proceedings of Fifth International AAAI
Conference on Weblogs and Social Media (ICWSM), 89–96.
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