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Abstract

Easy-first, a search-based structured prediction ap-
proach, has been applied to many NLP tasks including
dependency parsing and coreference resolution. This
approach employs a learned greedy policy (action scor-
ing function) to make easy decisions first, which con-
strains the remaining decisions and makes them easier.
We formulate greedy policy learning in the Easy-first
approach as a novel non-convex optimization problem
and solve it via an efficient Majorization Minimization
(MM) algorithm. Results on within-document corefer-
ence and cross-document joint entity and event coref-
erence tasks demonstrate that the proposed approach
achieves statistically significant performance improve-
ment over existing training regimes for Easy-first and is
less susceptible to overfitting.

Introduction
Easy-first is a general search-based structured prediction
framework that has been successfully applied to a vari-
ety of natural language processing tasks including POS
tagging (Shen, Satta, and Joshi 2007), dependency pars-
ing (Goldberg and Elhadad 2010), and coreference resolu-
tion (Stoyanov and Eisner 2012; Ratinov and Roth 2012;
Hajishirzi et al. 2013). In this framework, the output is con-
structed incrementally by making the easiest (most confi-
dent) decision at each decision step to gather more evi-
dence for making hard decisions later. Consider the follow-
ing example from the EECB corpus for joint entity and event
coreference resolution across documents (Lee et al. 2012).

(a) A 4.2 magnitude earthquake struck near a remote
area of eastern Sonoma County.

(b) A tremor struck Sonoma County.
The coreference resolution decisions for the two verb

mentions “struck” and for the two noun mentions contain-
ing “Sonoma County” are easy. In contrast, the decision on
the two noun mentions “A 4.2 magnitude earthquake” and
“A tremor” is hard based on the lexical, syntactic, and se-
mantic constraints or features (Haghighi and Klein 2010;
Ng 2010). Once we resolve the coreference of the two verbs
and the two “Sonoma County” mentions, we have stronger
evidence to help resolve the other two noun mentions.
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The Easy-first approach performs greedy search accord-
ing to a learned policy (scoring function), which plays a
critical role in its effectiveness. The focus of this paper is to
study principled ways of learning policies to ensure the suc-
cess of Easy-first. In particular, we propose a novel online
learning algorithm that learns a linear policy for the Easy-
first approach. Our contributions are as follows:
• We formulate greedy policy learning as optimizing a non-

convex objective consisting of two parts. The first part
employs hinge loss to ensure that the learned policy ranks
at least one good action higher than all the bad actions.
The second part regularizes the weight vector to avoid
overly-aggressive updates and over-fitting.

• We develop an efficient majorization-minimization al-
gorithm to optimize the proposed non-convex objective,
which iteratively minimizes a convex upper-bound of the
objective.

• We evaluate our approach in two NLP domains:
within-document entity coreference resolution and cross-
document joint entity and event coreference resolution.
Our results demonstrate that the proposed approach
achieves statistically significant performance improve-
ment over the baseline training approaches for the Easy-
first framework and is less prone to overfitting.

Easy-first Framework and Baseline
This section first formally introduces the Easy-first frame-
work and presents a generic online training procedure. We
then describe a popular online learning algorithm for Easy-
first, which serves as our baseline.

Easy-first: inference and training
Given structured inputs x ∈ X and outputs y ∈ Y , we as-
sume a task-specific non-negative loss function L. The loss
function L(x, y′, y) : X × Y × Y 7→ R+ associates a
loss with labeling an input x with y′ when its true output
is y. There are two key elements in the Easy-first frame-
work: 1) the search space Sp, whose states correspond to
partial structured outputs, and 2) an action scoring function
f , which is used to construct the complete structured output.

The search space, Sp is a 2-tuple 〈I, A〉, where I is the
initial state function, and A(s) is a function that gives the
set of allowed actions from a given state. Given the actions
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Algorithm 1 Easy-first inference algorithm with learning
option. When the flag learn is set, the algorithm performs
one online training iteration on the given training example.
1: input : Structured input x, parameter-vectorw, learning option
learn with ground truth output y, cumulative weight wsum

2: s← I(x)
3: TERMINATE← False
4: while not TERMINATE do
5: ap ← argmaxa∈A(s) w · φ(a)
6: if learn is TRUE then
7: G(s)← O(s, y)
8: B(s)← A(s)−G(s)
9: if ap ∈ B(s) then

10: w ← UPDATE(w,G(s), B(s))
11: wsum+ = w
12: end if
13: ap ← ChooseAction(A(s), w)
14: end if
15: s← Apply ap on s
16: if Terminal(s) or ap = HALT then
17: TERMINATE = True
18: end if
19: end while
20: output: If learn is TRUE return w and wsum else return s.

A(s) from a state s, we consider any action a ∈ A(s) that
results in a state with less loss as a good action; otherwise, it
is a bad action. Within the Easy-first framework, it is typical
to encounter states that have more than one good action. We
denote the set of all good actions in state s as G(s) and the
set of all bad actions as B(s) (G(s) ∪B(s) = A(s)).

The second element, the action scoring function f , eval-
uates all actions in A(s) and guides the search to incremen-
tally produce the structured output. In this work, we consider
linear functions f(a) = w · φ(a), where w is the weight
vector and φ(·) is a predefined feature function. Given a
structured input x ∈ X and weight vector w, the Easy-
first inference procedure, illustrated in Algorithm 1 (learn =
FALSE), greedily traverses the search space Sp. In any state
s, the scoring function f is applied to evaluate the quality
of each action a ∈ A(s). The action with the highest score
is executed. This process is repeated until a terminal state
is reached (for problems with a natural notion of terminal
states, e.g., dependency parsing) or a HALT action is chosen
(for problems like coreference resolution where we need to
learn when to stop) and the predicted output is returned.

The success of the Easy-first framework hinges upon the
ability to choose a good action in each decision step. Hence,
the learning goal within the Easy-first framework is to learn
a weight vector w such that the highest scoring action in
each step is a good action. Toward this goal, a general on-
line training procedure is described in Algorithm 1 (learn =
TRUE). In any given state s, we assume that there exists an
oracle O that can identify G(s) (line 7), the set of all good
actions given the current state and the ground truth output y.
If the current highest scoring action ap is a good action, there
is no need to update weights. Otherwise, the weights are up-
dated (lines 9-12). A ChooseAction procedure is then called
to select the next action (line 13), and we transit to the next

search state. This is repeated until the termination condition
is met (line 16). Algorithm 1 (learn = TRUE) presents the
procedure for one training iteration on a single training ex-
ample (x, y). This is typically repeated for every training
example for multiple iterations, and the updated weights are
accumulated along the way (line 11) and averaged at the end
of training (to avoid overfitting) to be used for inference.

There are two elements that need to be specified in this
basic training procedure. First, how to perform the update
(line 10), which is the main focus of this paper. Second, how
to choose the next action, which determines the training tra-
jectories (line 13). Two types of approaches have been pur-
sued in the literature for this purpose: on-trajectory training,
which always chooses an action in G(s) (e.g., the highest-
scoring action in G(s)), and off-trajectory training, which
always chooses the highest-scoring action based on the cur-
rent scoring function even when it is a bad action. In this
work, we consider both types of training trajectories.

A baseline update strategy
Now we introduce a popular update strategy widely em-
ployed in prior Easy-first work (Goldberg and Elhadad 2010;
Stoyanov and Eisner 2012). This strategy aims to update the
weights so that one of the good actions will score the high-
est. To achieve this, it uses a simple heuristic by focusing
on the highest scoring good action, referred to as g∗, and
the highest scoring bad action, referred to as b∗, and adjust-
ing the weights to increase f(g∗) and decrease f(b∗). For
this reason, we refer to this method as Best Good Best Bad
(BGBB). The specific update rule for BGBB is:

w ← w − η · (φ(b∗)− φ(g∗)), (1)
where η is the learning rate. This update is typically done
repeatedly for a fixed number of iterations or until a good
action is scored the highest. In each iteration, g∗ and b∗ are
re-evaluated. While this heuristic update has been widely
applied (Goldberg and Elhadad 2010; Stoyanov and Eisner
2012), it has a number of problems. Although it updates the
weights in a direction that promotes a good action and de-
motes a bad action, there is no guarantee that the final goal
(ranking a good action above all bad actions) can actually
be achieved. Very frequently, even after a large number of
iterations, the updated weights can still choose a bad action.
In some cases, there may not exist a weight vector that ranks
a good action higher than all bad actions. In such cases, the
effect of the heuristic update rule is unclear, because it lacks
an explicit optimization objective.

Note that easy-first can be viewed as a greedy instantia-
tion of the LaSO framework (Daume III and Marcu 2005;
Xu, Fern, and Yoon 2009), a search-based structured predic-
tion framework that is applicable to both greedy and non-
greedy (beam search) search procedures. Most existing work
on application of LaSO considers a strict left-to-right or-
dering of the search space, but is equally applicable to an
unordered search space, which is used by Easy-first. LaSO
weight updates are commonly done by promoting an aver-
age good action against an average bad action, which we
empirically have observed to be inferior to BGBB, thus is
not considered in this work.
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Proposed Method
In this section, we formulate the learning problem within
Easy-first as an optimization objective and introduce a Ma-
jorization Minimization algorithm to optimize it. Our goal is
to learn a linear scoring function f such that in any given
state s a good action is scored higher than any bad action.
This goal can be captured by the following set of constraints:

max
a∈G(s)

f(a) > f(b) ∀b ∈ B(s) (2)

That is, the score of the highest scoring good action needs
to exceed the score of any bad action. If we identify a weight
vector w that enables f to satisfy these constraints for a
given s, then Easy-first would choose a correct action in state
s. Because it is not always possible to find a w that satisfies
all the constraints, we introduce the following average hinge
loss function to capture them as soft constraints.

Lh(w) =
1

|B(s)|
∑

b∈B(s)

[1− max
a∈G(s)

w·φ(a)+w·φ(b)]+ (3)

where [·]+ = max(0, ·), B(s) and G(s) denote the set of
bad and good actions in state s, and φ(·) returns the feature
vector representing the input action.

Additionally, the weights should be only updated as much
as necessary to satisfy the constraints. This is inspired
by passive-aggressive Perceptron training (Crammer et al.
2006) and avoids overly aggressive updates leading to over-
fitting. Combining the two parts, our objective can be de-
scribed as follows (w0 is the current weight prior to update):

argmin
w

λ‖w − w0‖2+

1

|B(s)|
∑

b∈B(s)

[1− max
a∈G(s)

w · φ(a) + w · φ(b)]+ (4)

where λ trades-off the two aspects of the objective.
While the hinge loss is convex, the negative max inside

makes the objective non-convex. To optimize this objective,
we devise an efficient Majorization Minimization (MM) al-
gorithm (Hunter and Lange 2004) to find a local optimal so-
lution, which is line 10 of Algorithm 1. We describe our MM
algorithm in Algorithm 2.

Our optimization algorithm works in iterations. In itera-
tion i, we create a convex surrogate objective by replacing
maxa∈G(s)w ·φ(a) withw ·φ(g∗), where g∗ is the best good
action based on the current weights wi:

argmin
w

λ‖w − w0‖2+

1

|B(s)|
∑

b∈B(s)

[1− w · φ(g∗) + w · φ(b)]+ (5)

This convex objective is then optimized via gradient de-
scent (line 7) to obtain a new weight vector wi+1, which is
then used to identify the g∗ for the convex surrogate in the
next iteration. This repeats until convergence (lines 9-11) or
for a fixed number of iterations (T ).

Algorithm 2 The MM algorithm to solve Equation 4
1: input : current parameter-vector w0, convergence threshold ε,
λ, good actions G(s), bad actions B(s), max number of itera-
tions T

2: output : wi

3: i← 0, convergence← false
4: pObj ← −∞
5: while i ≤ T and !convergence do
6: g∗ ← argmaxa∈G(s) wi · φ(a)
7: wi+1 ← solve Equation 5 via gradient descent
8: cObj ← evaluate the objective in Equation 4
9: if cObj − pObj ≤ ε then

10: convergence← true
11: end if
12: pObj ← cObj
13: i++
14: end while

It is easy to verify that Equation 5 is an upper bound to
the original objective and is tight at the current weights wi,
which guarantees that our algorithm will monotonically de-
crease the objective until converging to a local minimum.

We omit the details of the gradient descent subroutine for
solving Equation 5. However, it is worth noting that each
step of the gradient descent procedure corresponds nicely to
a single update step of the Best Good Best Bad approach
(Equation 1). In particular, each gradient descent step per-
forms the following:

w ← w − η

[
λ(w − w0) +

1

|B(s)|
∑
a∈V

φ(a)− φ(g∗)

]
,

(6)
where η is the learning rate and V is a subset of B(s) that
contains all the bad actions that scored higher than g∗.

Comparing to Equation 1, we note two key differences.
First, our update rule does not solely focus on the best bad
action. Instead, it tries to suppress all the bad actions that
incur constraint violations. We argue that by considering all
violated bad actions at once, we avoid the jumpy behavior
of BGBB from one iteration to the next and increase learn-
ing stability. The second key difference is that our update
rule has the added flexibility for explicit control of aggres-
siveness and overfitting in updates. By tuning parameter λ,
we can achieve a trade-off between aggressively satisfying
the given constraints and conservatively staying close to the
current weight. Hence, we refer to our update rule as Regu-
larized Best Good Violated Bad (RBGVB).

Note that we can capture the easy-first learning goal with
the following constraint as an alterative to Equation 2.

max
a∈G(s)

f(a) > max
b∈B(s)

f(b)

This naturally leads to the following alternative objective:

argmin
w

λ‖w−w0‖2+[1− max
a∈G(s)

w·φ(a)+ max
b∈B(s)

w·φ(b)]+
(7)

A similar MM procedure can be derived to solve this ob-
jective by introducing the following convex objective (fixing
g∗ = argmaxa∈G(s) wi · φ(a)) in each MM iteration:
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argmin
w

λ‖w−w0‖2+[1−w ·φ(g∗)+ max
b∈B(s)

w ·φ(b)]+ (8)

And the gradient descent update rule for this objective is:

w ← w − η
[
λ(w − w0) + max

b∈B(s)
φ(b)− φ(g∗)

]
(9)

In other words, in each MM iteration, we fix the best good
action g∗, and update it against the best bad action in each
gradient descent iteration. This update rule bears a strong
similarity with BGBB as we focus on only the best bad in
each update, but with passive-aggressive regularization in-
cluded. We refer to this variant as RBGBB and consider it
as an additional baseline in our experiments.

Experimental Evaluation
We conduct our evaluation on two NLP problem domains:
within-document entity coreference resolution and joint en-
tity and event coreference resolution across documents.

Baseline Methods
We compare our proposed Regularized Best Good Violated
Bad (RBGVB) approach with the commonly used Best
Good Best Bad (BGBB) update rule (Stoyanov and Eisner
2012). As discussed previously, RBGVB differs from BGBB
in two key ways: first, each update of RBGVB considers all
bad actions that incur constraint violations; second, it incor-
porates passive-agressive regularization. To understand the
impact of these two factors, we also include in our compar-
ison two additional methods: Regularized BGBB (RBGBB)
as described at the end of the previous section, and RBGVB
with no regularization (BGVB). Below we present our ex-
perimental results for each problem domain.

Entity coreference resolution within documents
We first consider the problem of entity coreference resolu-
tion within documents, which groups noun phrase mentions
into clusters corresponding to entities. Within-document en-
tity coreference resolution has been widely studied, and
there exist many successful systems, including the Easy-first
system (Stoyanov and Eisner 2012).
Data. For this problem, we conduct experiments on two en-
tity coreference resolution corpora.

• ACE04: (NIST 2004) We employ the same train-
ing/testing partition as ACE2004-CULOTTA-TEST (Cu-
lotta et al. 2007; Bengtson and Roth 2008). There are 443
documents in total, among which 268 documents are used
for training, 68 documents for validating, and 107 docu-
ments for testing.

• OntoNotes-5.0: (Pradhan et al. 2012) We employ the of-
ficial split for training, validation, and testing. There are
2802 documents for training; 343 documents for valida-
tion; and 345 documents for testing.

Our experiments use predicted mentions extracted by the
UIUC mention detector (Chang et al. 2012). We evaluate

the coreference results using the updated version1 (7.0) of
the coreference scorer. Experiments on gold mentions show
similar results and are not included in the paper.
Experimental setup. We implemented our learning algo-
rithm based upon the Easy-first coreference system (Stoy-
anov and Eisner 2012). We employ the same set of features,
which includes cluster features capturing cluster-level global
agreement and mention-pair features capturing local config-
urations signifying coreferences. We also follow the same
protocol for handling the “HALT” action (which serves as
the terminal state when selected) as (Stoyanov and Eisner
2012). In particular, we represent the HALT action by a fea-
ture vector of all zeros except for a halt feature that is set to
1. For all other actions, we set the halt feature to zero. The
learned weight of this halt feature operates as a threshold on
action scores. During inference, if no merge action scores
higher than this threshold, the search terminates.

We followed the setup of (Stoyanov and Eisner 2012) with
a few small changes. To ensure fair comparison of the differ-
ent update rules, we initialize all the methods with the zero
weight vector. Another difference is that we employ five-
fold cross-validation for parameter tuning for all methods.
For BGBB, we tune the learning rate (η ∈ {10−1, ..., 10−5})
and the maximum number of repeated perceptron updates
(k ∈ {1, 5, 10, 20, 50}) for each mistake step. For RBGVB
and RBGBB, we tune the regularization parameter (λ ∈
{10−4, 10−3, ..., 103}). For MM-based method including
BGVB, RBGVB, RBGBB, we tune the maximum number
of MM iterations (T ∈ {1, 5, 10, 20, 50}) and the maximum
number of gradient descent steps (t ∈ {1, 5, 10, 20, 50}).
Note that for gradient descent, our method sets the learning
rate to be one over the number of iterations. Finally, (Stoy-
anov and Eisner 2012) uses off-trajectory training. To re-
move the impact of the training trajectories, our experiments
consider both off-trajectory and on-trajectory training.
Results. Table 1 show the results on the OntoNotes 5.0 and
ACE2004 corpora. For evaluation, we compute MUC (Vi-
lain et al. 1995),B3 (Bagga and Baldwin 1998), CEAF (Luo
2005), and CoNLL F1 (Pradhan et al. 2011), all of which
were employed in the CoNLL Shared-task 2011. Note that
CoNLL F1 is simply the average F1 values of the other three
metrics.

From the results, we can see that our proposed approach
(RBGVB) consistently outperforms BGBB for both cor-
pora. In addition, we also observe that the unregularized
version of our method (BGVB) also outperforms BGBB, al-
though with a slightly smaller margin. Similarly, our pro-
posed method RBGVB also outperforms regularzied BGBB
(RBGBB). For these three comparisons, statistical signifi-
cance tests using the Paired bootstrap resampling approach
(Koehn 2004) indicate that the performance differences we
observe are statistically significant in all four measures.

These results collectively indicate that the performance
gain of our proposed method over baseline BGBB is not
dominated by a single factor of using regularization or con-
sidering all violated bad actions. Rather, both factors con-
tribute to the observed performance improvement. We no-

1http://code.google.com/p/reference-coreference-scorers/
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ALGORITHM MUC BCUB CEAFe CoNLL

Results on OntoNotes 5.0 corpus.
On-Traj-RBGVB 67.51 52.05 52.46 57.34
On-Traj-BGVB 67.12 52.11 49.79 56.34

On-Traj-RBGBB 66.93 51.71 47.92 55.52
On-Traj-BGBB 66.72 50.33 47.32 54.79

Off-Traj-RBGVB 69.71 52.75 52.05 58.17
Off-Traj-BGVB 69.35 51.31 50.07 56.91

Off-Traj-RBGBB 67.55 50.97 48.82 55.78
Off-Traj-BGBB 66.02 50.76 48.61 55.13

Results on ACE 2004 corpus.
On-Traj-RBGVB 51.09 69.97 48.08 56.38
On-Traj-BGVB 49.65 66.87 45.99 54.17

On-Traj-RBGBB 47.87 67.21 45.45 53.51
On-Traj-BGBB 47.71 64.67 41.55 51.31

Off-Traj-RBGVB 51.25 72.61 48.40 57.42
Off-Traj-BGVB 50.79 71.43 47.70 56.64

Off-Traj-RBGBB 49.23 70.14 46.77 55.38
Off-Traj-BGBB 48.91 68.21 46.47 54.53

Table 1: Results on within-document coreference corpora
with predicted mentions. Metric values reflect version 7 of
the CoNLL scorer.

ALGORITHM MUC BCUB CEAFe CoNLL

On-Traj-RBGVB 66.91 50.85 49.76 55.84
On-Traj-BGVB 65.58 49.78 49.13 54.83

On-Traj-RBGBB 64.49 49.04 47.58 53.70
On-Traj-BGBB 62.45 45.71 44.87 51.01

Off-Traj-RBGVB 66.67 51.8 51.21 56.56
Off-Traj-BGVB 66.19 50.87 50.43 55.83

Off-Traj-RBGBB 65.97 50.73 48.92 55.20
Off-Traj-BGBB 61.9 44.55 43.04 49.83

Lee et al. 66.4 50.99 49.83 55.74

Table 2: Results for cross-document joint entity and event
coreference resolution with predicted mentions.

ticed that the performance gains mostly came from improved
recall. In the next section, we further explore the perfor-
mance differences between RBGVB and BGBB.

Note that the best performance we achieved on OntoNotes
(58.17 as measured by CoNLL F1) is approximately 3%
lower than the current state-of-the-art on this corpus (Durrett
and Klein 2013). It is important to note that our results are
not directly comparable to that of (Durrett and Klein 2013),
which solves coreference resolution in a left-to-right order
and uses different feature designs. By incorporating more
advanced features, we expect our results to further improve.

Joint entity and event coreference across
documents
Cross-document joint entity and event coreference resolu-
tion is a challenging problem that involves resolving the
coreferences for entities (noun phrases) and events (verbs)
across multiple documents simultaneously.
Data. We employ the benchmark EECB corpus (Lee et al.
2012) for our experiments. EECB contains 482 documents

clustered into 43 topics. We use the same split for training,
validation, and testing as Lee et al. (2012). Out of 43 top-
ics, 12 topics are used for training, 3 topics for validation,
and 28 topics for testing. We conduct experiments on pre-
dicted mentions. The predicted mentions are extracted using
the same mention extraction system as Lee et al. (2012).
Features. We employ the same set of features as Lee et
al. (2012) with two minor distinctions. First, in addition to
the merge actions, we introduce the HALT action to serve
the role of a terminal state for Easy-first search, follow-
ing Stoyanov and Eisner (2012). Another minor distinction
is that due to non-availability we employed a different se-
mantic role labeling (SRL) system, which is trained on both
NomBank and PropBank (Johansson and Nugues 2008).
Comparison to state-of-the-art. In addition to the three
baselines (BGBB, RBGBB, BGVB) mentioned before, we
compare our RBGVB approach with the current state-of-the-
art cross-document joint entity and event coreference system
by Lee et al. (2012).
Experimental setup. We build our experiments on top of
the Stanford multi-pass sieve system (Raghunathan et al.
2010). For all methods, we employ the same set of fea-
tures and the same initial processing step to the noun-phrase
mentions as described by Lee et al. (2012). We set up our
experiments to closely resemble the experiments by Lee et
al. (2012). The parameters of RBGVB, BGVB, and RBGBB
(λ, MM iterations T , and gradient descent iterations t) and
BGBB (learning rate η and maximum updates per ieration k)
are tuned with five-fold cross-validation within the training
set using the same range of values specified for the within-
document coreference tasks. For all methods, we tune the
halt feature using the validation set to determine the stopping
condition for inference. For the method of Lee et al. (2012),
we employ the implementation provided by the authors and
follow the parameter setup suggested in the original paper.
Results. Our experiments consider both on-trajectory and
off-trajectory training. Lee et al. (2012) performs offline
training, where the training examples can be viewed as col-
lected in an off-trajectory fashion (not restricted to taking
good actions during training). Thus it is omitted from com-
parison for the on-trajectory setting. We measure the perfor-
mances using the same set of metrics as for within-document
entity coreference (MUC, B3, CEAF, CoNLL F1). We eval-
uate the results by employing the most up-to-date (Version
7) CoNLL evaluation software2.

We present the results for predicted mentions in Table 2
by evaluating both entity and event clusters jointly. First, we
observe that our proposed method (RBGVB) outperforms
the baseline BGBB on all measures for both on-trajectory
and off-trajectory training. We also observe that RBGVB is
consistently better than regularized BGBB (RBGBB). Com-
paring unregularized BGVB and BGBB, we again see a clear
win for BGVB. These differences are consistent with what
we have observed for the within-document tasks and are sta-
tistically significant according to paired bootstrap sampling
test. Finally, comparing the performance of RBGVB to that

2Lee et al. (2012) used V4 of the evaluation software. Thus our
results do not exactly match their reported numbers.
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of Lee et al. (2012), we see a very small improvement and
statistical testing indicates that the difference is only signif-
icant for the CEAF measure. This suggests that our method
is comparable to the current state-of-the-art on this corpus.

Approach Total Steps Mistakes Recoveries Percentage
RBGVB 50195 16228 4255 0.262
BGBB 50195 11625 4075 0.351

Table 3: Training statistics on the ACE 2004 corpus.

Summary of results
Our results on both domains demonstrate that our pro-
posed RBGVB achieves statistically significant improve-
ments over both BGBB and Regularized BGBB (RBGBB)
across the board. The performance difference is more pro-
nounced for the cross-document joint coreference prob-
lem for which our method consistently outperforms BGBB,
sometimes by a large margin. Additionally, removing the
impact of the regularizer, we observe that BGVB also
achieves statistically significant improvements over BGBB.

Discussion
There are two key distinctions between RBGVB and the
BGBB update rule. First, BGBB considers only the best-
scoring bad action in its update, whereas our method consid-
ers all bad actions that are causing constraint violations (in
Equation 2) in each update. Second, our method follows a
passive-aggressive strategy to discourage overly-aggressive
updates. Our hypothesis is that these distinctions allow us to
introduce more stability in learning and help avoid overfit-
ting to specific bad actions encountered during training.

Approach Mean Variance STDEV
RBGVB 0.87 0.0047 0.069
BGBB 0.82 0.0064 0.080

Table 4: Global performance of the learned weights on the
ACE 2004 training corpus.

To shed some light on this hypothesis, we take a closer
look at the effect of the updates during training. To avoid
the impact of noisy mentions, we conduct this set of ex-
periments on gold mentions and focus on within-document
coreference and on-trajectory training. We collected some
interesting statistics during five iterations of training for
RBGVB and BGBB on the ACE2004 corpus, which are pre-
sented in Table 3. The second column of the table records
the total number of search steps, which are the same for
both methods with on-trajectory training. The third column
shows the number of mistakes (bad actions chosen during
search) encountered during training, each incurring a round
of updates. The next two columns show the number and per-
centage of times that the update is successful (“recoveries”,
where the highest-scoring action is good after update).

We were surprised to note that our method (RBGVB) is
significantly less successful at correcting mistakes (26% for

BGVB vs. 35% for BGBB). How could it be less effective
in correcting the mistakes but more effective overall? The
explanation lies in the passive-aggressive element of our ob-
jective, which explicitly encourages small changes to the
weights, sometimes at the expense of not satisfying all the
constraints. This explains why our method tends to fail more
at correcting the mistakes, but does not provide an answer to
why its overall performance tends to be better.

To answer this question, we further examine the quality
of the weights obtained by both methods in a global setting.
That is, we recorded all the weights that are produced by the
two learning algorithms and evaluated how well each weight
can guide the greedy search on the training set. To do this,
we generated some sample search trajectories on the training
data, and at each search step evaluated the learned weights
to choose actions. If a weight-vector chose a good action,
it was considered a correct decision. For each method, we
computed the percentage of correct decisions made by all of
the learned weight-vectors, averaged across five randomly-
generated search trajectories. The mean and variance are re-
ported in Table 4. The results show that the weights learned
by RBGVB have consistently better global performance and
smaller variance. This suggests that by satisfying more lo-
cal constraints, BGBB is indeed suffering from overfitting,
to which our method is less prone.

Conclusions and Future Work

We proposed a novel online learning algorithm for the Easy-
first framework. By formulating the learning problem as an
optimization objective, we capture the essence of the learn-
ing goal for Easy-first: select the best scoring action at each
search state while avoiding overly-aggressive updates. Ex-
periments on two NLP domains, within-document corefer-
ence resolution and cross-document joint entity and event
coreference resolution, showed that our greedy learning
method outperforms an existing Easy-first training method
and is competitive with the current state-of-the-art for cross-
document joint entity and event coreference resolution.

Easy-first makes a series of greedy local decisions, some
of which can be hard without additional context, and errors
can propagate to downstream decisions. Some solutions we
intend to explore are to perform a search in the Limited Dis-
crepancy Search (LDS) space (Doppa, Fern, and Tadepalli
2014b; 2014a) induced by the learned greedy policy to fur-
ther improve the performance; and to improve the greedy
policy by leveraging learned pruning rules (Ma et al. 2014).
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