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Abstract

Recently, a new convex formulation of IBM Model 2
was introduced. In this paper we develop the theory fur-
ther and introduce a class of convex relaxations for la-
tent variable models which include IBM Model 2. When
applied to IBM Model 2, our relaxation class subsumes
the previous relaxation as a special case. As proof of
concept, we study a new relaxation of IBM Model 2
which is simpler than the previous algorithm: the new
relaxation relies on the use of nothing more than a
multinomial EM algorithm, does not require the tuning
of a learning rate, and has some favorable comparisons
to IBM Model 2 in terms of F-Measure. The ideas pre-
sented could be applied to a wide range of NLP and
machine learning problems.

Introduction
The IBM translation models (Brown et al. 1993) were the
first Statistical Machine Translation (SMT) systems; their
primary use in the current SMT pipeline is to seed more so-
phisticated models which need alignment tableaus to start
their optimization procedure. Although there are several
IBM Models, only IBM Model 1 can be formulated as
a convex optimization problem. Other IBM Models have
non-concave objective functions with multiple local op-
tima, and solving a non-convex problem to optimality is
typically a computationally intractable task. Recently, us-
ing a linearization technique, a convex relaxation of IBM
Model 2 was proposed (Simion, Collins, and Stein 2013;
2014). In this work we generalize the methods introduced
in (Simion, Collins, and Stein 2013) to yield a richer set of
relaxation techniques. Our algorithms have comparable per-
formance to previous work and have the potential for more
applications.

We make the following contributions in this paper:

• We introduce a convexification method that may be ap-
plicable to a wide range of probabilistic models in NLP
and machine learning. In particular, since the likelihood
we are optimizing and the metric we are testing against
are often not the same (e.g. for alignment tasks we want
to maximize F-Measure, but F-Measure is not directly in
the likelihood function), different relaxations should po-
tentially be considered for different tasks. The crux of

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

our approach relies on approximating the product function∏n
i=1 xi with a concave function and as a supplement we

present some theoretical analysis characterizing concave
functions h that approximate this function.

• As a specific application, we introduce a generalized
family of convex relaxations for IBM Model 2.1 Essen-
tially, the relaxation is derived by replacing the product
t(fj |ei)× d(i|j) with h(t(fj |ei), d(i|j)) where h(x1, x2)
is a concave upper envelope for x1x2. We show how our
results encompass the work of (Simion, Collins, and Stein
2013) as a special case.

• We detail an optimization algorithm for a particularly sim-
ple relaxation of IBM Model 2. Unlike the previous work
in (Simion, Collins, and Stein 2013) which relied on a
exponentiated subgradient (EG) optimization method and
required the tuning of a learning rate, this relaxation can
be approached in a much simpler fashion and can be opti-
mized by an EM algorithm that is very similar to the one
used for IBM Models 1 and 2. We show that our method
achieves a performance very similar to that of IBM Model
2 seeded with IBM 1.

Notation. Throughout this paper, for any positive integer
N , we use [N ] to denote {1 . . . N} and [N ]0 to denote
{0 . . . N}. We denote by Rn+ and Rn++ the set of nonnega-
tive and strictly positive n dimensional vectors, respectively.
We denote by [0, 1]n the n−dimensional unit cube.

Related Work
The IBM Models were introduced in (Brown et al. 1993)
and since then there has been quite a bit of research on
them and their variants (e.g. (Vogel, Ney, and Tillman 1996;
Och and Ney 2003; Toutanova and Galley 2011; Moore
2004; Liang, Taskar, and Klein 2006)). For example, (Dyer,
Chahuneau, and Smith 2013) recently proposed a (non-
convex) variant of IBM Model 2 that focuses on generat-
ing “diagonal” alignments, allows for very fast parameter
optimization, and empirically was shown to be superior to
IBM Model 4 in generating quality translations. Moreover,

1We note that there are negative results which show that certain
latent variable problems will have convex relaxations having the
uniform solution as optimal (Guo and Schuurmans 2007). How-
ever, for IBM Model 2, the data breaks such symmetries, so any
relaxation will be nontrivial.
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(Simion, Collins, and Stein 2013) introduced the first convex
relaxation of a model beyond IBM Model 1, design an algo-
rithm for its optimization, and showed that it gives the same
level of performance as IBM Model 2 (Simion, Collins, and
Stein 2014).

Background on Alignment Models
In this section we give a brief survey of IBM Models 1 and 2
and the convex relaxations of Model 2 , I2CR-1 and I2CR-2
(Simion, Collins, and Stein 2013). The standard approach in
training parameters for IBM Models 1 and 2 is EM, whereas
for models I2CR-1 and I2CR-2 an EG algorithm was devel-
oped.

We assume that our set of training examples is (e(k), f (k))
for k = 1 . . . n, where e(k) is the k’th English sentence and
f (k) is the k’th French sentence. The k’th English sentence
is a sequence of words e(k)

1 . . . e
(k)
lk

where lk is the length of

the k’th English sentence, and each e(k)
i ∈ E; similarly the

k’th French sentence is a sequence f (k)
1 . . . f

(k)
mk where mk

is the length of the k’th French sentence, and each f (k)
j ∈ F .

We define e(k)
0 for k = 1 . . . n to be a special NULL word

(note that E contains the NULL word). For each English
word e, we will assume that D(e) is a dictionary specifying
the set of possible French words that can be translations of e.
Finally, we define L = maxnk=1 lk and M = maxnk=1mk.

More details on the convex and non-convex IBM Mod-
els 1 and 2 optimization problems can be found in (Simion,
Collins, and Stein 2013). The IBM Model 2 optimization
problem is shown in Figure 1. We note that for this model
the constraints are convex but the objective is not concave,
causing the problem to be non-convex. IBM Model 1 has the
same lexical parameters t as IBM Model 2 but the distortion
parameters d are set to be uniform throughout, yielding a
model with constraints given by Eq. 1 - 2 and concave ob-
jective given by

1

n

n∑
k=1

mk∑
j=1

log

lk∑
i=0

t(f
(k)
j |e

(k)
i ) .

Since the objective function for IBM Model 1 is concave, the
EM algorithm will converge to a global maximum. A com-
mon heuristic is to initialize the t(f |e) parameters in EM op-
timization of IBM Model 2 using the output from the weaker
IBM Model 1. Although this initialization heuristic has been
shown to be effective in practice (Och and Ney 2003), there
are no formal guarantees on its performance and there are
non-convex IBM Model 2 variants which empirically do not
work well with this type of initialization (Dyer, Chahuneau,
and Smith 2013).

The I2CR-2 optimization problem is a convex relaxation
of IBM Model 2. The constraints for I2CR-2 are those of
IBM Model 2 while its objective is

1

2n

n∑
k=1

mk∑
j=1

log′
lk∑
i=0

t(f
(k)
j |e

(k)
i )

+
1

2n

n∑
k=1

mk∑
j=1

log′
lk∑
i=0

min{t(f (k)
j |e

(k)
i ), d(i|j)} ,

Input: DefineE, F , L,M , (e(k), f (k), lk,mk) for k =
1 . . . n, D(e) for e ∈ E.
Parameters:
• A parameter t(f |e) for each e ∈ E, f ∈ D(e).
• A parameter d(i|j) for each i ∈ [L]0, j ∈ [M ].
Constraints:

∀e ∈ E, f ∈ D(e), t(f |e) ≥ 0 (1)

∀e ∈ E,
∑

f∈D(e)

t(f |e) = 1 (2)

∀i ∈ [L]0, j ∈ [M ], d(i|j) ≥ 0 (3)

∀j ∈ [M ],
∑
i∈[L]0

d(i|j) = 1 (4)

Objective: Maximize

1

n

n∑
k=1

mk∑
j=1

log

lk∑
i=0

t(f
(k)
j |e

(k)
i )d(i|j) (5)

with respect to the t(f |e) and d(i|j) parameters.

Figure 1: The IBM Model 2 Optimization Problem.

where log′(z) = log(z + λ) and λ = .001 is a small pos-
itive smoothing constant. The I2CR-2 objective is a convex
combination of the concave IBM Model 1 objective and a
direct (concave) relaxation of the IBM2 Model 2 objective,
and hence is itself concave. The direct relaxation of IBM
Model 2 is known as I2CR-1; the only difference between
I2CR-1 and I2CR-2 is that I2CR-1 does not have an IBM
Model 1 objective appended to its objective.

A Class of Concave Functions based on the
Generalized Weighted Mean

In (Simion, Collins, and Stein 2013), model I2CR-2 is stud-
ied and, at a high level, the key component is to replace the
non-concave function f(x) =

∏n
i=1 xi by the concave func-

tion h(x) = minni=1 xi. This is only one possible convexifi-
cation; we now explore a much larger set of ways to convex-
ify a product.

Definition 1. Let (α1, . . . , αn) ∈ (0, 1)n be such that∑n
i=1 αi = 1. For p 6= 0 denote fp : Rn++ → R+ given

by

fp(x1, . . . , xn) =

(
n∑
i=1

αix
p
i

)1/p

(6)

as the generalized weighted mean function. For p = 0 de-
note f0 : Rn++ → R+ given by

f0(x1, . . . , xn) =
n∏
i=1

xαii (7)

as the generalized weighted geometric mean function.

Although the above definition restricts the domain to
Rn++, we extend the domain of fp to Rn by setting fp(x)
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to −∞ for any x /∈ Rn++. With this definition, fp is de-
fined everywhere and is a concave function (Boyd and Van-
denberghe 2004). The results we need on the generalized
weighted mean are detailed next along with some new mate-
rial that serves as supplement. Theorems 1-2 and Lemma 1
are implicit in several sources in the literature ((Boyd and
Vandenberghe 2004; Zalinescu 2002; Bullen, Mitrinovic,
and Vasic 1987)).

Theorem 1. If p ≤ 1 then any fp within the class of func-
tions in Definition 1 is concave.

Proof. See Appendix C.

Using Theorem 1 and extending fp to Rn, the generalized
mean function thus gives us a family of concave functions
defined everywhere. Interestingly, we note that the extremes

lim
p→0

fp(x) =
n∏
i=1

xαii = f0(x)

and

lim
p→−∞

fp(x) = min{x1, . . . , xn} = f−∞(x) ,

are both concave and belong to this family.

Lemma 1. Let fp(x) be defined as in Definition 1. We have

lim
p→0

fp(x) =
n∏
i=1

xαii ,

and
lim

p→−∞
fp(x) = min{x1, . . . , xn} .

Proof. See Appendix C.

Lemma 1 implies that fp(x) can be identified for any
p ≤ 1 and all x as being concave. Moreover, for x ∈ [0, 1]n,
fp(x) provides a monotonic concave upper envelope for∏n
i=1 xi.

Theorem 2. Let fp(x) be defined as in Definition 1. For
x ∈ [0, 1]n the generalized weighted mean function fp(x)
provides a monotonic concave envelope for

∏n
i=1 xi. In par-

ticular, we have
n∏
i=1

xi ≤ fp(x) ≤ fq(x)

for any p ≤ q ≤ 1.

Proof. See Appendix C.

We next show that f−∞(x) = minni=1 xi is a special func-
tion when used to bound

∏n
i=1 xi above by a positive-valued

concave envelope. Specifically, we have that minni=1 xi is
the tightest such upper bound, regardless of the class of
functions we consider.

Theorem 3. Consider any concave function h : Rn++ →
R+ such that

n∏
i=1

xi ≤ h(x)

for all x ∈ [0, 1]n. Then
n

min
i=1

xi ≤ h(x)

for all x ∈ [0, 1]n.

Proof. Due to space limitations, we consider only the case
n = 2. For a full proof, see Appendix D. Note that for any
point of the type (x1, 1), (x1, 0), (1, x2), or (0, x2) the result
follows easily, so without loss of generality consider x =
(x1, x2) ∈ (0, 1)2 with x1 ≤ x2 and suppose by way of
contradiction that h(x1, x2) < x1 and note that we have

x1 ≤ x2h

(
x1

x2
, 1

)
and

0 ≤ (1− x2)h(0, 0)
by the positivity of h and the fact that h bounds the prod-
uct of its arguments. Adding the above and using Jensen’s
inequality we then have

x1 ≤ x2h

(
x1

x2
, 1

)
+ (1− x2)h(0, 0) ≤ h(x1, x2) < x1 .

The above result yields a contradiction, and we now have
that min{x1, x2} is the tightest positive-valued upper bound
on x1x2.

Although several upper bounds for
∏n
i=1 xi with x ∈

[0, 1]n are detailed above, we note that bounding
∏n
i=1 xi

below by a nontrivial positive-valued concave function is not
possible, if n ≥ 2.
Theorem 4. Let n ≥ 2 and h : Rn++ → R+ be a concave
function such that

h(x) ≤
n∏
i=1

xi

for all x ∈ [0, 1]n. Then h(x) is identically equal to zero.

Proof. If x has a component which is zero then h(x) ≤ 0
and hence h(x) = 0 since h(x) ≥ 0. Choosing θ ∈ (0, 1)
and x ∈ (0, 1]n yields that

θh(x) + (1− θ)h(0) ≤ h(θx) ≤ θn
n∏
i=1

xi ,

and we note that the left hand side above is equal to θh(x).
Dividing both sides by θ we next have

h(x) ≤ θn−1
n∏
i=1

xi .

Letting θ → 0 in the last equation we get h(x) ≤ 0. Since
we also have h(x) ≥ 0, we now have h(x) = 0 for any
x ∈ [0, 1]n, as needed.

The main takeaway of the above is that positive valued
concave envelopes for

∏n
i=1 xi are limited to upper en-

velopes such as those provided by fp in Definition 1.
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Input: DefineE, F , L,M , (e(k), f (k), lk,mk) for k =
1 . . . n, D(e) for e ∈ E. A positive-valued concave
function h : R2

++ → R+ such that

x1x2 ≤ h(x1, x2) ,

∀ (x1, x2) ∈ [0, 1]2.
Parameters: Same as IBM Model 2.
Constraints: Same as IBM Model 2.
Objective: Maximize

1

n

n∑
k=1

mk∑
j=1

log

lk∑
i=0

h(t(f
(k)
j |e

(k)
i ), d(i|j)) (8)

with respect to the t(f |e) and d(i|j) parameters.

Figure 2: The I2CR (IBM 2 Convex Relaxation) Problem.
For any function h that is concave, the resulting optimiza-
tion problem is a convex problem. I2CR-1 results from us-
ing h(x1, x2) = f−∞(x1, x2) = min{x1, x2} in the above
while I2CR-3 arises from using h(x1, x2) = f0(x1, x2) =

xβ1x
1−β
2 with β ∈ [0, 1].

A Family of Convex IBM Model 2 Alternatives
(Simion, Collins, and Stein 2013) call their relaxations of
IBM Model 2 I2CR-1 and I2CR-2. Since our methods sub-
sume theirs, we use I2CR to denote the general optimiza-
tion problem class that arises by using a special concave
h instead of x1x2 in IBM Model 2; see Figure 2. I2CR-3
and I2CR-4 are based on the particular concave function
f0(x1, x2) = xβ1x

1−β
2 (with β ∈ [0, 1]) from Definition

1.2 Although the focus is on the special case I2CR-3, the
convexity proof we present is general and will imply that
I2CR is a family of convex optimization problems. For a
fixed h, any new relaxation of IBM Model 2 could then be
optimized using a mini-batch EG method as discussed in
(Simion, Collins, and Stein 2013). Because of the convexity
of the problems that result, the optimization methods above
are guaranteed to converge to a global solution.

The I2CR-3 Problem
The I2CR-3 problem is a special case of I2CR shown in Fig-
ure 2 using h = f0. The key difference between this model
and IBM Model 2 is that in the objective of IBM Model
2 we have replaced terms of the type t(fj |ei) × d(i|j) by
tβ(fj |ei) × d1−β(i|j), where β ∈ [0, 1]. We now state the
main result needed to show that the objective of I2CR-3 is
concave:

Lemma 2. Let T be a subset of [n] and consider h : Rn++ →

2Note that there is some similarity of the resulting objec-
tive function to methods that use deterministic annealing for EM
((Smith and Eisner 2004); (Rose 1998)) In annealing approaches
the objective would be (x1x2)

β where β is initially close to 0, and
is then progressively increased to a value of 1. This prior work does
not make the connection to convex objectives when β = 1/2, and
unlike our approach varies β between 0 and 1 within their algo-
rithm.

R+ given by

h(x1, . . . , xn) =
∏
i∈T

xαii ,

where αi ∈ (0, 1) ∀i ∈ T and
∑
i∈T αi = 1. Then h is

concave.

Proof. Let g : R|T |++ → R+ be given by

g(x1, . . . , x|T |) =

|T |∏
i=1

xαii

and note that g is concave by Theorem 4.1. Next we note
that h(x) = g(Ax + b) where b = 0 and A ∈ Rn×|T | is a
suitably chosen matrix which projects down from dimension
n to |T |. By the composition rule of a concave function with
a linear transformation, h is a concave function (Boyd and
Vandenberghe 2004).

Using the above Lemma, we can prove that functions such
as

h(x1, x2, x3) =
√
x1x2 +

√
x2x3

are concave since they are the sum of two concave functions.
We use this observation in the following theorem.
Theorem 5. The objective of I2CR-3 is concave.

Proof. Fix a specific training pair index k and target word
position j within the objective of I2CR-3 given by Eq. 8. We
first note that the log is an increasing concave function (we
define log(x) to be −∞ if x ≤ 0). Using Lemma 2 repeat-
edly the sum inside the logarithm in the objective of I2CR-3
(Eq. 8) is a sum of concave functions, and is hence itself
concave. It is a well known rule that composing a concave
increasing function (such as the logarithm) and a concave
function yield a concave function (Boyd and Vandenberghe
2004). Hence, for a fixed k and j, the objective of I2CR-3
is concave. Since the objective in Eq. 8 is a sum of concave
functions, the result now follows.

Theorem 5 implies that I2CR-3 is a convex optimization
problem since its objective is concave and the constraints
form a polytope. In fact, note that an analogous Lemma 2
would hold for any concave function h. With this obser-
vation we now have a recipe that can be carried out for
any positive-valued concave function h thus yielding our
main result: I2CR is a family of convex relaxations for IBM
Model 2. In particular, this recipe is more general than the
linearization technique in (Simion, Collins, and Stein 2013)
and can be carried out for any concave function h in Figure
2. By using h = f−∞ and applying Theorem 2 we have the
tightest such relaxation: I2CR-1 (Simion, Collins, and Stein
2013). Interestingly, we will see later that a tighter relaxation
does not necessarily give better alignment quality.

As a final comment, we remark that the new relaxation
is not strictly convex for all datasets. However, similar to
IBM Model 2, our sense is that the symmetries in the data
that would result in non-strict convexity will be rare in real
datasets — much more rare than the case of IBM Model
1, for which it is well known that the objective is not strictly
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convex for real-world datasets (Toutanova and Galley 2011).
We leave further study of this to future work.3

The I2CR-4 Problem
Our initial experiments with I2CR-3 lead to better perfor-
mance than IBM Model 1, but did not yield results as good
as those of Model 2. (Simion, Collins, and Stein 2013) ob-
tained better performance by appending an IBM Model 1
objective to the original convex relaxation I2CR-1 that they
derived, and we felt that this might work for our model as
well. To this end we call our new model I2CR-4 and note
that its objective is the sum of one likelihood which places
all its importance on the lexical terms (IBM1) and another
(I2CR-3) that distributes weight on the lexical and distortion
term via the geometric weighted mean:

1

2n

n∑
k=1

mk∑
j=1

log

lk∑
i=0

t(f
(k)
j |e

(k)
i )

+
1

2n

n∑
k=1

mk∑
j=1

log

lk∑
i=0

tβ(f
(k)
j |e

(k)
i )d1−β(i|j) ,

This new model is still a convex optimization problem since
its objective is concave (the sum of two concave functions is
concave).

An EM Algorithm for I2CR-4
We describe an EM algorithm for optimizing the I2CR-4
problem in Figure 3, and note that the memory and time re-
quirements are the same as those of IBM Model 2’s EM al-
gorithm. We find it appealing to introduce a relaxation based
on the weighted geometric mean specifically because a sim-
ple EM algorithm can be derived. For a proof and further
discussion of the algorithm, see Appendix E.

Decoding with I2CR-3 and I2CR-4
To obtain the highest probability alignment of a pair
(e(k), f (k)) using an IBM Model we need to find the
a(k) = (a

(k)
1 , . . . , a

(k)
mk) which yields the highest probabil-

ity p(f (k), a(k)|e(k)). There are various ways to use the es-
timated parameters from the IBM Models in decoding. For
one, we could find the optimal alignment for I2CR-4 using
IBM Model 2’s rule (this is the optimal rule for I2CR-3 as
well). On the other hand, using the same methods as pre-
sented in (Simion, Collins, and Stein 2014) we can find the
optimal vector a(k) by splitting the maximization over the
components of a(k) and focusing on finding a(k)

j given by

a
(k)
j = argmaxa{t

1+β(f
(k)
j |e

(k)
a )d1−β(a|j)} .

Finally, we also decode using IBM Model 1’s rule. Since the
EM updates for IBM Model 1 do not take position at all into

3Noting that for (α1, α2) ∈ (0, 1)2 with α1 + α2 < 1
f0(x1, x2) = xα1

1 xα2
2 is strictly concave ((Zalinescu 2002)), there

is an easy remedy to guarantee strict convexity. In particular, us-
ing a degenerate f0 we get the same EM algorithm as in Figure
3 (change (β, 1 − β) to (α1, α2)), but now have a strictly convex
relaxation. Besides this, we could also use an l2 regularizer. For
more, see Appendix F.

1: Input: Define E, F , L, M , (e(k), f(k), lk,mk) for k = 1 . . . n, D(e)

for e ∈ E. An integer T specifying the number of passes over the data. A
weighting parameter β ∈ [0, 1].

2: Parameters:
• A parameter t(f |e) for each e ∈ E, f ∈ D(e).
• A parameter d(i|j) for each i,∈ [L]0, j ∈ [M ].

3: Initialization:
• ∀e ∈ E, f ∈ D(e), set t(f |e) = 1/|D(e)|.
• ∀i ∈ [L]0, j ∈ [M ], set d(i|j) = 1/(L+ 1).

4: EM Algorithm:
5: for all t = 1 . . . T do
6: ∀e ∈ E, f ∈ D(e), count(f, e) = 0

7: ∀e ∈ E, count(e) = 0

8: ∀i ∈ [L]0, j ∈ [M ], count(i, j) = 0

9: ∀j ∈ [M ], count(j) = 0

10: EM Algorithm: Expectation
11: for all k = 1 . . . n do
12: for all j = 1 . . .mk do
13: δ1[i] = δ2[i] = 0 ∀i ∈ [lk]0

14: ∆1 = ∆2 = 0

15: for all i = 0 . . . lk do
16: δ1[i] = t(f

(k)
j |e

(k)
i )

17: δ2[i] = tβ(f
(k)
j |e

(k)
i )d1−β(i|j)

18: ∆1 += δ1[i]

19: ∆2 += δ2[i]

20: for all i = 0 . . . lk do
21: δ1[i] =

δ1[i]
∆1

22: δ2[i] =
δ2[i]
∆2

23: count(f
(k)
j , e

(k)
i ) += δ1[i] + βδ2[i]

24: count(e
(k)
i ) += δ1[i] + βδ2[i]

25: count(i, j) += (1− β)δ2[i]

26: count(j) += (1− β)δ2[i]

27: EM Algorithm: Maximization
28: for all e ∈ E do
29: for all f ∈ D(e) do
30: t(f |e) =

count(e,f)
count(e)

31: for all ∀i ∈ [L]0, j ∈ [M ], do
32: d(i|j) =

count(i,j)
count(j)

33: Output: t, d parameters.

Figure 3: Pseudocode for T iterations of the EM Algorithm
for the I2CR-4 problem.

account, any reasonable convex relaxation of IBM Model 2
should always beat IBM Model 1 in lexical parameter qual-
ity.

Experiments
In this section we describe experiments using the I2CR-3
and I2CR-4 optimization problems combined with the EM
algorithm for these problems. For our experiments we only
used β = 1

2 , but note that β can be cross-validated for opti-
mal performance.

Data Sets
For our alignment experiments, we used a subset of the
Canadian Hansards bilingual corpus with 247,878 English-
French sentence pairs as training data, 37 sentences of de-
velopment data, and 447 sentences of test data (Michalcea
and Pederson 2003). As a second corpus, we considered a
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training set of 48,706 Romanian-English sentence-pairs, a
development set of 17 sentence pairs, and a test set of 248
sentence pairs (Michalcea and Pederson 2003). For our SMT
experiments, we choose a subset of the English-German Eu-
roparl bilingual corpus, using 274,670 sentences for train-
ing, 1,806 for development, and 1,840 for test.

Methodology
For each of the models we follow convention in applying
the following methodology: first, we estimate the t and d
parameters using models in both source-target and target-
source directions; second, we find the most likely alignment
for each development or test data sentence in each direction;
third, we take the intersection of the two alignments as the
final output from the model.

For our experiments, we report results in both AER (lower
is better) and F-Measure (higher is better) (Och and Ney
2003). There is evidence (Fraser and Marcu 2007) that F-
Measure is better correlated with translation quality when
the alignments are used in a full system.

Model IBM2 IBM2 I2CR-3 I2CR-3 I2CR-4 I2CR-4 I2CR-4
Decoding Rule t t× d t t× d t t× d t×

√
t× d

Iteration AER
0 0.2141 0.2141 0.9273 0.9273 0.9273 0.9273 0.9273
1 0.2128 0.1609 0.3697 0.3786 0.3669 0.3790 0.3569
2 0.2013 0.1531 0.2614 0.2235 0.2408 0.2090 0.2038
3 0.1983 0.1477 0.2333 0.1879 0.2209 0.1769 0.1754
4 0.1950 0.1458 0.2116 0.1783 0.2153 0.1668 0.1646
5 0.1941 0.1455 0.2088 0.1753 0.2067 0.1632 0.1592
6 0.1926 0.1436 0.2063 0.1739 0.2058 0.1600 0.1559
7 0.1912 0.1436 0.2048 0.1726 0.2046 0.1566 0.1551
8 0.1904 0.1449 0.2044 0.1730 0.2044 0.1549 0.1540
9 0.1907 0.1454 0.2041 0.1727 0.2047 0.1527 0.1534

10 0.1913 0.1451 0.2042 0.1721 0.2045 0.1524 0.1524
11 0.1911 0.1452 0.2042 0.1718 0.2039 0.1515 0.1520
12 0.1901 0.1454 0.2040 0.1722 0.2035 0.1513 0.1514
13 0.1899 0.1462 0.2041 0.1721 0.2032 0.1510 0.1511
14 0.1898 0.1471 0.2041 0.1724 0.2032 0.1509 0.1508
15 0.1900 0.1474 0.2041 0.1727 0.2031 0.1505 0.1505

Iteration F-Measure
0 0.7043 0.7043 0.0482 0.0482 0.0482 0.0482 0.0482
1 0.7049 0.7424 0.5610 0.5446 0.5664 0.5455 0.5712
2 0.7127 0.7468 0.6603 0.6910 0.6818 0.7059 0.7149
3 0.7116 0.7489 0.6838 0.7201 0.6977 0.7302 0.7385
4 0.7130 0.7501 0.7036 0.7255 0.7020 0.7369 0.7471
5 0.7124 0.7495 0.7060 0.7252 0.7102 0.7394 0.7515
6 0.7121 0.7501 0.7079 0.7257 0.7103 0.7411 0.7531
7 0.7132 0.7493 0.7084 0.7260 0.7111 0.7443 0.7531
8 0.7132 0.7480 0.7085 0.7252 0.7113 0.7457 0.7541
9 0.7127 0.7473 0.7084 0.7254 0.7115 0.7476 0.7547

10 0.7116 0.7474 0.7082 0.7261 0.7113 0.7482 0.7559
11 0.7113 0.7466 0.7080 0.7261 0.7117 0.7493 0.7563
12 0.7123 0.7463 0.7081 0.7256 0.7118 0.7496 0.7568
13 0.7119 0.7460 0.7081 0.7257 0.7121 0.7497 0.7571
14 0.7122 0.7451 0.7081 0.7253 0.7121 0.7497 0.7575
15 0.7122 0.7447 0.7081 0.7250 0.7122 0.7501 0.7577

Table 1: Intersected results on the English-French data for
IBM Model 2, I2CR-3, and I2CR-4 trained for 15 EM using
either the IBM1 (t), IBM2 (t × d), or I2CR-4 (t ×

√
t× d)

decoding.

In training IBM Model 2 we first train IBM Model 1 for
5 iterations to initialize the t parameters, then train IBM
Model 2 for a further 15 iterations (Och and Ney 2003). For
the I2CR models, we use 15 iterations over the training data
and seed all parameters to uniform probabilities. Since the
development data we use is rather small, for all models con-
sidered we report F-Measure and AER results for each of
the 15 iterations, rather than picking the results from a sin-
gle iteration. Table 1 contains our results for the Hansards
data. For the Romanian data, we obtained similar behavior,
but we leave out these results due to space limitations.

From our experiments, we see that both I2CR-4 and
I2CR-3 converge to solutions which give better alignment

quality than those of IBM Model 1. Moreover, I2CR-3 is
strictly speaking worse than IBM Model 2 and its perfor-
mance lies in-between that of IBM Model 1 and IBM Model
2. On the other hand, extracting the alignments from I2CR-4
with its natural decoding rule (using t ×

√
t× d) produces

better F-Measure scores than those of IBM Model 2. We feel
that even though our convex models are not superior in every
way to IBM Model 2, their relatively easy structure and simi-
larity to IBM Model 2 offer some deep insights into what can
be accomplished with a convex relaxation. Lastly, we note
that it is possible that the balance between the t and d pa-
rameters in I2CR-3 should be more carefully chosen within
the weighted geometric mean (recall that we used β = 1/2)
to produce the optimal results. Indeed, if we had set β = 1
in I2CR-3 we get IBM Model 1; on the other hand, setting
β = 0 gives a model that ignores lexical parameters and has
weak performance.

So as to better understand the need for an IBM Model
1 objective within our convex relaxation, we also com-
pared I2CR-3 with I2CR-1 trained via the setup in (Simion,
Collins, and Stein 2013). Our analysis found that I2CR-1 got
AER and F-Measure scores that were very close to those of
IBM Model 1 (using the same setup as (Simion, Collins, and
Stein 2013), I2CR-1 has AER and F-Measure numbers that
hover around .19 and .71, respectively, while IBM Model
1 has AER and F-Measure numbers close to .21 and .70,
respectively). Since I2CR-3 performs better than I2CR-1,
what this says is that even though the min is a stronger relax-
ation of the product of two probabilities than the square root
(c.f. Theorem 2), the objective (value) difference between
a convex relaxation and the original problem it estimates is
not the most important feature when picking between vari-
ous relaxations.

Lastly, we also conducted SMT experiments using the
cdec system (Dyer et al. 2010) on a subset of the Europarl
English-German data using BLEU as our metric (Papineni
et al. 2002) along with the “grow-diagonal-final” heuristic
(Och and Ney 2003). In computing BLEU, we ran cdec three
times over the data and report the average test BLEU score
achieved. Using alignments generated by IBM Model 2 and
I2CR-4 we respectively obtained BLEU scores of 0.175202
and 0.1751417. With the default FastAlign system cdec ob-
tained 0.177983 BLEU.

Conclusions and Future Work

Generalizing the work of (Simion, Collins, and Stein 2013),
we have introduced a class of convex relaxations for the
unsupervised learning of alignments in statistical machine
translation with performance comparable to the commonly-
used IBM Model 2. Extending the convexity results of
(Simion, Collins, and Stein 2013) allows us to better under-
stand the old results and develop further applications. Future
work will consider different relaxations within the class we
have introduced, and apply our method to other NLP tasks
and problems beyond IBM Model 2.
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