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Abstract

Recent studies have demonstrated that specificity is an im-
portant characterization of texts potentially beneficial for a
range of applications such as multi-document news summa-
rization and analysis of science journalism. The feasibility
of automatically predicting sentence specificity from a rich
set of features has also been confirmed in prior work. In this
paper we present a practical system for predicting sentence
specificity which exploits only features that require minimum
processing and is trained in a semi-supervised manner. Our
system outperforms the state-of-the-art method for predict-
ing sentence specificity and does not require part of speech
tagging or syntactic parsing as the prior methods did. With
the tool that we developed — SPECITELLER — we study the
role of specificity in sentence simplification. We show that
specificity is a useful indicator for finding sentences that need
to be simplified and a useful objective for simplification, de-
scriptive of the differences between original and simplified
sentences.

1 Introduction
Sentences vary in the level of details they convey. Clearly
written texts tailor the specificity of content to the intended
reader and exhibit clear patterns in the flow of specificity
(Scanlan 2000; Higgins et al. 2004). Consider the following
two sentences, talking about test cheating:

[general] Evidence of widespread cheating has surfaced in
several states in the last year or so.
[specific] California’s education department suspects adult
responsibility for erasures at 40 schools that changed wrong
answers to right ones on a statewide test.

Both sentences convey the information that (exam) cheat-
ing is taking place. The first sentence is rather general: it
contains a vague piece of information on the extent of cheat-
ing (widespread), location of cheating (several states) and
time of the cheating (in the last year or so) and says noth-
ing about exactly what cheating consisted of. The second
is more specific, conveying that it was not students who did
the cheating and that 40 schools in California were suspected
and what activities constituted the cheating, making the ex-
tent, location and exact events much more precise.
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It is clear that the specificity of text is expressed on mul-
tiple levels, and can be quantified at the level of words (peo-
ple vs. students vs. Mary Smith) (Reiter and Frank 2010;
Krahmer and van Deemter 2012), sentences, as in the exam-
ple above (Mathew and Katz 2009; McKinlay and Markert
2011), or full texts or paragraphs, where the distinction boils
down to determining if the intended audience of a text are
lay people or experts (Elhadad et al. 2005).

For the work presented in this paper, we focus on the task
of predicting sentence level specificity. Indictors of word
specificity are used as features in the prediction task, and
overall text specificity can be computed as a function of
the specificity of the individual sentences in the text. This
framework was introduced by Louis and Nenkova (2011a).
In that work, specificity at the sentence level was already
indirectly labeled in a corpus originally developed for a
different type of analysis in discourse processing. Super-
vised methods for sentence specificity trained on this repur-
posed data, using a rich set of syntactic and lexical features,
yielded good accuracy on a test set of sentences manually
labeled for specificity (Louis and Nenkova 2012). These ex-
periments confirmed that predicting sentence specificity is a
viable task. The authors further used their automatic classi-
fier to show differences in content specificity in summariza-
tion, where human summaries are significantly less specific
than the original text being summarized but machine sum-
maries are significantly more specific (Louis and Nenkova
2011b). They also showed that considerations of sentence
specificity are at play in text quality assessment: science
journalism articles that were considered to be written excep-
tionally well were overall more general and contained fewer
stretches of contiguous specific sentences than other science
journalism pieces (Louis and Nenkova 2013).

Despite the positive findings, several crucial questions re-
main. First, it remains unclear if specificity can be computed
quickly so that it can become practical as a module in realis-
tic applications. The original method incorporated syntactic,
part of speech, named entity and language model features.
In our work we explore light features that can be computed
with string operations alone, possibly allowing look up in a
static dictionary. We present experiments to show that such
an impoverished feature set will still be able to achieve re-
sults better than chance but considerably inferior to the state
of the art approach. However, using co-training in a semi-
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supervised approach (Blum and Mitchell 1998), we can ex-
ploit unlabeled text corpora to increase the amount of avail-
able training data and significantly outperform the accuracy
of prediction of the state of the art system.

The second question concerns the value of lexical fea-
tures in predicting sentence specificity. The experiments
presented by Louis and Nenkova show that word identity
features are not robust. We separately study word iden-
tity features, dictionary look-up representation (polarity and
concreteness) and word embedding and clustering represen-
tations. Our experiments show that the two latter representa-
tions of lexical content are powerful and robust when trained
on a large dataset using a semi-supervised approach.

Finally, we turn to the question of validating the useful-
ness of sentence specificity prediction in a task-based man-
ner. Sentence simplification, the task of identifying sen-
tences that may be difficult for a target audience and reword-
ing them to make them more accessible for the target audi-
ence, is a suitable task. We applied our automatic predictors
of sentence specificity on sentence simplification data and
showed that specificity scores at the sentence level are use-
ful both for detecting sentences that need to be simplified
and as a component of the objective during simplification.

In sum, in this paper we describe and provide a simple, ac-
curate and practical predictor of sentence specificity: SPE-
CITELLER1. Furthermore, we investigate the relationship
between word properties and overall sentence specificity.
We demonstrate that generalized representations of lexical
identity are robust and useful representations for the task
when coupled with semi-supervised techniques that allow
us to considerably enlarge the training set. We also provide
sentence-level task-based analysis of the utility of predicting
sentence specificity in text simplification.

2 Data for sentence specificity
To train our semi-supervised model for sentence specificity,
we follow prior work (Louis and Nenkova 2011a) and use a
repurposed corpus of binary annotations of specific and gen-
eral sentences drawn from Wall Street Journal articles orig-
inally annotated for discourse analysis (Prasad et al. 2008).
We then make use of unlabeled data for co-training. The
unlabeled data is extracted from the Associated Press and
New York Times portions of the Gigaword corpus (Graff
and Cieri 2003), as well as Wall Street Journal articles from
the Penn Treebank corpus selected so that there is no over-
lap between them and the labeled training examples and the
testing data.

For evaluation, we use the set of manual annotation of
specificity by five annotators (Louis and Nenkova 2012).
Annotations cover 885 sentences from nine complete news
articles from three sources—Wall Street Journal, New York
Times and Associated Press. In this dataset, 54.58% of the
sentences are labeled specific. This is the same test data used
for evaluation of earlier work on predicting sentence speci-
ficity, thus comparisons with prior work are straightforward.

The annotated training data comes from adjacent sen-
tences in the same paragraph between which an implicit IN-

1http://www.cis.upenn.edu/∼nlp/software/speciteller.html

STANTIATION relation holds. In this relation the second sen-
tence describes in further detail a set (of events, reasons, be-
haviors or attitudes) introduced in the first sentence (Milt-
sakaki et al. 2008), as illustrated in the example below:

[S1 He says he spent $300 million on his art business this
year. ] [S2 A week ago, his gallery racked up a $23 million
tab at a Sothebys auction in New York buying seven works,
including a Picasso. ]

In our work we do not preserve any information on the
adjacency of sentences. We simply use the first argument as
an example labeled general and the second as an example
labeled specific. There are 2,796 training instances in total.

3 Light features for sentence specificity
Our goal is to develop a set of simple features which do not
incur much computational or memory overhead. For the pre-
diction we use only sentence splitting, descriptive statistics
of the sentence string, dictionary features and non-sparse
lexical representations.

3.1 Shallow features
Sentence surface features We use seven features capturing
sentence surface characteristics. Among these, the number
of words in the sentence is an important feature because on
average specific sentences tend to be longer. To approxi-
mate the detection of named entities, we introduce features
to track the number of numbers, capital letters and non-
alphanumeric symbols in the sentence as three features, nor-
malized by the number of words in the sentence. Symbols
include punctuation so this feature captures a rudimentary
aspect of syntactic complexity indicated by the presence of
commas, colons and parenthesis. We also include a feature
that is the average number of characters in the words that
appear in the sentence, with the intuition that longer words
are likely to be more specific. We also include as features the
number of stop words in the sentence normalized by the total
number of words, with the intuition that specific sentences
will have more details, introduced in prepositional phrases
containing prepositions and determiners. We use a pre-
defined list of 570 stop words provided by the NLTK pack-
age. We also include as a feature the count of the 100 words
that can serve as explicit discourse connectives (Prasad et
al. 2008) because explicit discourse relations within the sen-
tence, such as elaboration or contingency, may signal that
extra information is present for some of the clauses in the
sentence.
Dictionary features These are lexical features that capture
the degree to which words in the sentence have a given prop-
erty. Louis and Nenkova (2011a) observed that general sen-
tences tend to be more subjective. Like them, we also in-
clude the number of polar and strongly subjective words
(normalized by sentence length), according to the General
Inquirer (Stone and Hunt 1963) and MPQA (Wilson, Wiebe,
and Hoffmann 2009) lexicons to define two sentence fea-
tures.

We also include two other dictionary features that have
not been explored in prior work. We use the word norms
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from the MRC Psycholinguistic Database (Wilson 1988).
These are average ratings by multiple subjects of the famil-
iarity, concreteness, imageability and meaningfulness of the
word given by multiple people. We computed the cumula-
tive ratings for words in specific and general sentences in
the supervised portion of our training data. The familiarity
(how familiar the word was to the subjects) and imageabil-
ity (to what extent the word evoked an image according to
the subjects) were significantly higher for general sentences
compared to specific sentences in the “general” portion of
the training data. The difference with respect to the other
properties was small. So we record the average word famil-
iarity and imageability ratings in the sentence as features.

Finally, we capture the informational value of words as
approximated by their inverse document frequency (idf)
weight calculated on the entire set of New York Times arti-
cles from 2006 (Sandhaus 2008). Very common words have
low idf weight and fairly rare words have high idf. We com-
pute the minimum, maximum and average inverse document
frequency values of words in each sentence, accounting for
three new sentence features in this representation.

3.2 Non-sparse word representations
It stands to reason that lexical features would be helpful in
predicting sentence specificity, with general words charac-
terizing general sentences. However, prior work (Louis and
Nenkova 2011a) reported that word identity representations
gave very unstable results for the sentence specificity pre-
diction task. These findings can be explained by the fact
that their method is fully supervised and the training set con-
tains fewer than three thousand sentences. In that data, only
10,235 words occur more than three times. So in new test
data many sentences would have few non-zero representa-
tions other than function words because few of the content
words in the training data appear in them2. Overall there
will be only weak evidence for the association between the
feature and the specificity classes.

We explore two alternative representations that encode
lexical information in a more general manner, tracking the
occurrence of clusters of words or representing words in low
dimensional dense vector space.
Word identity For comparison with prior work and as a ref-
erence for the non-sparse representations, we train a predic-
tor for sentence specificity based on a word identity repre-
sentation. Each word that occurs in the training data more
than three times corresponds to a feature. The value of the
feature is the number of times the word occurs in the sen-
tence. When using the initial training data this representa-
tion is equivalent to the problematic one discussed in earlier
work. During co-training, the training set is augmented and
more words are included in the representation.
Brown clusters Brown clusters (Brown et al. 1992) are com-
pact representations of word classes that tend to appear in
adjacent positions in the training set. They were originally
proposed as a way of dealing with lexical sparsity for bi-

2About 40% of our test instances have fewer than 4 content
words that can be found in the labeled training data.

Features Accuracy Precision Recall

SF 71.53 66.52 75.12
WP 72.43 69.85 69.15

Shallow (SF+WP) 73.56 69.44 74.63

BC 70.85 66.59 71.89
WE 68.25 65.24 64.43

BC+WE 71.64 70.03 65.67
Word identity 63.39 58.48 66.92

Table 1: Supervised learning results: accuracy and preci-
sion and recall the general class, for sentence surface fea-
tures (SF), word properties (WP), combined shallow fea-
tures (SF+WP), brown clustering (BC), word embeddings
(WE), words (Word identity).

gram language models. In our work, we use the precom-
puted hierarchical clusters provided by Turian, Ratinov, and
Bengio (2010). The clusters are derived from the RCV1 cor-
pus which consists of about 34 million words. Each feature
in this representation corresponds to a cluster and the value
of the feature is the number of occurrence in the sentence of
any of the words in the cluster. The number of clusters is
a parameter of the representation which we tuned with 10-
fold cross validation on the labeled training data. We use
100 clusters for the results reported here.
Neural network word embeddings Real-valued word vec-
tors are a natural product from neural network language
models. In these models words are represented in low di-
mensional space that capture the distributional properties
of words (Mikolov, Yih, and Zweig 2013). In our experi-
ments we use the 100-dimensional word vector representa-
tions provided by Turian, Ratinov, and Bengio (2010). To
represent a sentence in this space, we average the represen-
tations of the words in the sentence, i.e, component i of the
sentence representation is equal to the average value of com-
ponent i for the representations of all words in the sentence.

3.3 Supervised learning results
First we evaluate the feature classes introduced above in
a standard supervised learning setting. We used the la-
beled training set to train a logistic regression classifier. We
choose logistic regression in order to use the posterior class
probability of an example being specific as a continuous
measure of sentence specificity in later experiments. The
models are tested on the human labeled test data.

In Table 1 we list the overall accuracy and the preci-
sion/recall for the general sentences achieved with each fea-
ture representation. For this test set, the majority baseline
would give a 54.58% accuracy.

The class of shallow features performs reasonably well,
achieving accuracy of 73.56%. This result is better than in-
dividually using surface features or word property dictionary
features alone. As reported in prior work, word identity fea-
tures work poorly and lead to results that are almost 10%
worse than the shallow features. The non-sparse represen-
tations perform markedly better. The Brown cluster rep-
resentation almost closes the gap between the lexical and
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shallow features with accuracy of close to 71%. Combining
this with the word embedding representation leads to further
small improvements. These results show that it is feasible
to predict specificity based on cheaply computable features
alone and that non-sparse representations of lexical informa-
tion are more suitable for the relatively small training set.

4 Semi-supervised learning via co-training
In co-training, two classifiers are trained on a labeled
dataset. Then they are used iteratively to classify a large
number of unlabeled examples, expanding the labeled data
on which they are re-trained. An important characteristic
that ensures improved performance is that the two classi-
fiers are independent relying on different views of the data to
make decisions about the class. In our work, the shallow fea-
tures and the non-sparse lexical representation provide such
different views on the data, as reflected by the different pre-
cision and recall values shown in Table 1.

4.1 Co-training
The co-training procedure for identifying general/specific
sentences is detailed in Algorithm 1. It aligns with the tra-
ditional algorithm, except that we have one additional con-
straint as how new labeled data are added. The procedure
can be viewed as a two-phase process: a supervised learning
phase and a bootstrapping phase.

During the supervised learning phase, two classifiers are
trained on the data from the implicit INSTANTIATION dis-
course relation: one with shallow features (C0), the other
with word representation features (C1).

For the bootstrapping phase, the classifiers will take turns
to label examples for each other. In each iteration, one clas-
sifier (Ci) will label each instance in the unlabeled examples.
Then, at most p positive examples and n negative examples
most confidently labeled are removed from the unlabeled set
and added to the labeled examples. Here we set the values
p = 1000, n = 1500. This 1:1.5 ratio is selected by tuning
the accuracy of prediction on the initial discourse training
data after 30,000 new examples are added.

We impose a further constraint that the posterior proba-
bility of a new example given by Ci must be greater than
a threshold αi. The value of αi is determined via 10-fold
cross validation on the labeled training data. We choose the
lowest threshold for which the prediction accuracy of the
classifier on sentences with posterior probability exceeding
the threshold is greater than 85%. This thresholds turned out
to be 0.8 for both classifiers. To prevent a highly imbalanced
data distribution, we use a procedure downsample(K, γ) in
each iteration when newly labeled data is added, in which
we restrict the number of samples added in the larger class
to be at most γ = 2 times the size of the smaller class.

The expanded labeled examples now contain the origi-
nal labeled data from discourse annotations as well as ini-
tially unlabeled instances that were confidently labeled by
Ci. Now, the other classifier C1−i will be re-trained using
the updated labeled examples, resulting in a new classifier
C ′1−i. C

′
1−i will then be used to label the remaining unla-

beled examples, to expand the labeled training set for Ci.

Algorithm 1 Co-training algorithm for predicting sentence
specificity
L← Labeled training examples
U ← Unlabeled examples
F1 ← shallow features
F2 ← word representation features
for i← 0 to 1 do

Train classifier Ci over L using features Fi

end for
while U 6= ∅ and |U | shrunk in the last iteration do

for j ← 0 to 1 do
i← 1− j
Ci labels each example in U
P ← p examples in U most confidently labeled +1
N ← n examples in U most confidently labeled −1
K ← {p ∪ n | Pri(1|p∈P ) > αi, P ri(−1|n∈N ) > αi}
K′ ← downsample(K, γ)
L← L+K′, U ← U −K′

Re-train Cj over L using features Fj

end for
end while

The two classifiers will alternate in this fashion to label ex-
amples for each other from the unlabeled data, until no more
unlabeled examples can be added.

The final prediction on the test data is decided based on
the average posterior probability of labeling the sentence
general from the two classifiers.

4.2 Experimental results
To illustrate the effect of the larger training set obtained in
co-training, we plot the classifier performance as a function
of the amount of unlabeled data used for the experiments.
In Figure 1 we show the accuracies of our semi-supervised
classifiers: i) the dotted line represents the classifier us-
ing word representation features (brown clustering and word
embeddings); ii) the dashed line represents the classifier us-
ing shallow features; and iii) the solid line represents the fi-
nal combined classifier. The number of unlabeled data added
increases from 0 to 50,000 examples, with a 2,000 step size.

The leftmost dots in Figure 1 correspond to accuracies
without adding any unlabeled data. Initially all three clas-
sifiers gain in performance as the size of the unlabeled data
grows. The performance peaks when 34,000 unlabeled ex-
amples and flattens out after this point; increasing the size
of the unlabeled data is not helpful beyond this point.

At first, in each iteration, the shallow classifier almost al-
ways outperforms the word representation classifier. How-
ever, as more unlabeled examples are added, the combined
classifier gains better performance as the word representa-
tion classifier becomes better and more stable. This may be
due to the fact that with more data, word representations cap-
ture more and more semantic information in the sentences.
Eventually, the combined classifier is much better than ei-
ther one of the individual classifiers.

We thus fix our final model as the combined classifier
when the benefit of adding more unlabeled data in the co-
training algorithm begins to diminishes (i.e., at 34,000 un-
labeled examples). In Table 3, we show the accuracy, pre-
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Newly labeled general sentences Newly labeled specific sentences

1. Edberg was troubled by inconsistent serves.
2. Demands for Moeller’s freedom have been a feature of leftist
demonstrations for years.
3. But in a bizarre bit of social engineering, U.S. occupation
forces instructed Japanese filmmakers to begin showing on-
screen kisses.
4. Although many of the world’s top track and field stars are
Americans, the sport has suffered from a lack of exposure and
popularity in the United States.

1. Shipments fell 0.7 percent in September.
2. Indian skipper Mohammed Azharuddin won the toss and de-
cided to bat first on a slow wicket.
3. He started this week as the second-leading rusher in the
AFC with 1,096 yards, just 5 yards behind San Diego’s Natrone
Means.
4. The other two, Lt. Gen. Cedras and Brig. Gen. Philippe Bi-
amby, resigned and fled into self-imposed exile in Panama two
days before Aristide’s U.S.-backed homecoming on Oct. 15.

Table 2: Examples of general and specific sentences newly labeled during the co-training procedure.
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Figure 1: Accuracies with increasing size of unlabeled data.

cision, recall and F measure of the model on the human la-
beled test set. Also listed is the performance of the model
proposed by Louis and Nenkova (2011a). A sign test was
conducted and showed that both the combined model and the
shallow model obtained via co-training is significantly bet-
ter than Louis and Nenkova (2011a) at 95% confidence level.
Furthermore, we observe a nearly 4% increase in F measure
for the combined model and higher F measure for both the
shallow and word representation model after co-training. At
the end of the co-training stage, with only surface features,
both shallow and word representation classifiers outperform
that in Louis and Nenkova (2011a).

Again, to demonstrate the effect of using word representa-
tions, we run the co-training procedure where we substitute
the word representation classifier with one that is trained
from word identity representations as described in Section
3.3. Even with more data added, lexical identity represen-
tation do not perform that well. The increased size of the
training data however helps to boost the performance of the
the word identity representations immensely from the condi-
tion when only the original labeled data is used for training.

In Table 2, we show several examples of sentences from
the unlabeled data that were labeled during co-training.

Classifier Accuracy Precision Recall F

Combined 81.58* 80.56 78.36 79.45
Shallow 80.45* 79.74 76.37 78.02
BC+NE 79.55 77.42 77.61 77.52

Word identity 69.83 65.10 72.39 68.55
L&N 77.40 74.40 76.62 75.49

Table 3: Accuracies for the best final stage of co-training.
An asterisk (*) denotes significantly better than the model
proposed by L&N (Louis and Nenkova 2011a) at 95% con-
fidence level according to sign test.

5 Sentence specificity and text simplification
In this section we present a form of task-based evaluation
for the accurate classifier for sentence specificity trained en-
tirely on fast-to-compute surface features. We discuss the
role of sentence specificity in text simplification applica-
tions. Specifically we wish to quantify the extent to which
specificity changes during sentence simplification and to de-
termine if sentence specificity is a useful factor for deter-
mining if a sentence needs to be simplified in the first place.

To give context to our findings, we also analyze the
relationship between simplification and sentence length,
automated readability index (ARI)3 and language model
perplexity4. We carry out analysis on two aligned cor-
pora: Simple Wikipedia/Wikipedia and Britannica Elemen-
tary/Encyclopedia Britannica.

The Wikipedia corpus (Kauchak 2013) features automatic
aligned sentence pairs from the Simple Wikipedia and the
original English Wikipedia. The dataset consists of 167,689
aligned pairs, among which about 50K are the same sen-
tences across Simple and original Wikipedia.

The Britannica corpus is created by (Barzilay and Elhadad
2003). People were asked to align sentences that share se-
mantic content from several articles in the Britannica Ele-
mentary and the original Encyclopedia Britannica. There is

3We also considered Kincaid, Coleman-Liau, Flesh Reading
Ease, Gunning Fog Index, LIX, SMOG and RIX. ARI was the
readability measure that showed biggest difference in readability
between original and simplified sentences.

4Our language model is trained on the New York Times articles
from 2006. It is a trigram model using Good-Turing discounting,
generated by SRILM (Stolcke and others 2002).
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%pairs µ-simplified µ-original

W
ik

ip
ed

ia ARI 73.60 9.76 12.94
specificity 70.86 0.57 0.70
perplexity 62.99 1272.61 1539.48

length 55.19 23.74 27.57

B
ri

ta
nn

ic
a ARI 82.14 8.82 14.13

specificity 77.12 0.45 0.70
perplexity 74.29 635.50 1038.36

length 73.42 19.75 30.10

Table 4: Mean values for each attribute and the percentage
of pairs with lower attribute values for simplified sentences.

attribute Wikipedia Britannica

ARI 0.6158 0.7019
specificity 0.6144 0.6923

length 0.5454 0.6154
perplexity 0.3966 0.3308

Table 5: Precision for identifying sentences to simplify.

only one pair where the two sentences are the same.

5.1 Specificity as simplification objective
First, we studied the extent to which simple and original
texts in the two corpora vary in terms of their automatically
predicted specificity. We contrast these with the differences
in average sentence length, average sentence readability and
perplexity. For both corpora, we excluded pairs where the
simplified version and the original are identical.

For both corpora, there can be more than one sentence on
each side of an aligned pair. So to measure specificity, we
first classify each sentence in each pair of the corpora us-
ing the final combined classifier obtained from co-training.
Following the definition in Louis and Nenkova (2011a), the
specificity of side i ∈ {simplified,original} of a pair p is
calculated as:

spec(pi) =
1∑

s∈pi
|s|

∑
s∈pi

|s| × Pr(specific|s) (1)

Here s denotes a sentence in pi, |s| denotes the length of the
sentence and Pr(specific|s) denotes the posterior probabil-
ity of the classifier assigning sentence s as specific.

In Table 4, we show the average value of the attributes for
simplified and original sides. For all attributes, we observe
a significant (p < 0.01) drop in their values for the simpli-
fied sentences. More importantly shown in Table 4 are the
percentage of pairs for each attribute where the simplified
side has a lower value than the original side. The higher
the percentage, the more one would expect that the attribute
needs to be explicitly manipulated in a procedure for sen-
tence simplification. Not surprisingly, the highest value here
is for ARI, as improved readability is the goal of simplify-
ing sentences for junior readers. Specificity score closely
follow ARI, with about 71% and 77% of the simplified sen-
tences showing lower specificity in the Wikipedia and Bri-

attribute A attribute B Wikipedia Britannica

length ARI 0.7897 0.7822
specificity length 0.6996 0.7669
specificity ARI 0.5975 0.6788
specificity perplexity 0.3695 0.5306
perplexity ARI 0.2454 0.3597

length perplexity 0.1073 0.2293

Table 6: Spearman correlation for the attributes.

tannica corpora respectively. The numbers are much higher
than those for sentence length and perplexity.

5.2 Identifying simplification targets
Now we analyze if specificity is an indicator that an indi-
vidual sentence should be simplified in the first place. We
train a predictor to detect a sentence that needs to be simpli-
fied with each of the sentence attributes in turn. Our posi-
tive training examples are those original sentences that have
been simplified. All other sentences, including all of the ex-
amples where the simple and the original sentences are the
same, serve as negative examples. We report the precision
of each single-attribute classifier in identifying sentences in
the original data that need to be simplified.

In Table 5 we show for each attribute, the precision for
identifying sentences that need to be simplified, obtained
by logistic regression via 10-fold cross-validation5. We also
record in Table 6 the Spearman correlation between the at-
tributes. For both corpora, sentence specificity is the second
best attribute, closely following ARI with less than 1% dif-
ference in precision. Sentence length itself is not that good
to identify which sentences require simplification. Perplex-
ity from language model is the least helpful for this task. The
correlation between specificity and ARI are not very high,
indicating that the two attributes complement each other,
each being useful as an indicator.

6 Conclusion
We presented a new model for identifying sentence speci-
ficity via co-training based on surface features that are easy
and fast to compute. We make use of complementary sur-
face features derived from sentence and word properties as
well as non-sparse word representations. The result is a
lightweight model free of heavy text-preprocessing require-
ments that significantly outperformed the model proposed
in prior work, which we make available in our tool SPE-
CITELLER. Using the model, we also analyze the impact of
sentence specificity on sentence simplification. We showed
that sentence specificity is not only a useful objective for
simplification, but also indicative in identifying sentences
that need simplification.
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