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Abstract

The n-gram model has been widely used to capture the
local ordering of words, yet its exploding feature space
often causes an estimation issue. This paper presents lo-
cal context sparse coding (LCSC), a non-probabilistic
topic model that effectively handles large feature spaces
using sparse coding. In addition, it introduces a new
concept of locality, local contexts, which provides a rep-
resentation that can generate locally coherent topics and
document representations. Our model efficiently finds
topics and representations by applying greedy coordi-
nate descent updates. The model is useful for discover-
ing local topics and the semantic flow of a document, as
well as constructing predictive models.

1 Introduction
Learning a representation that reflects word locality is im-
portant in a wide variety of text processing applications
such as text categorization, information retrieval, or lan-
guage model generation. The n-gram model, for example,
is popular because of its simplicity and efficiency, which in-
terprets a document as a collection of word sub-sequences.
Specifically, it models a word given the previous n − 1
words: p(wi|wi−1, . . . , wi−n+1). The larger n is, the longer
the contexts that the model can capture. A related ap-
proach is to model a symmetric window around a word
p(wi|wi+1, wi−1, wi+2, wi−2, . . .), as is done for example
by Mikolov et al. (2013).

Lebanon, Mao, and Dillon (2007) extended local depen-
dencies by applying different weights at each position of a
document and summing up the word presence near a par-
ticular location. Specifically, that approach, named “locally
weighted bag-of-words” (LOWBOW), uses a smoothing
kernel to generate a smooth curve in the probability simplex
that represents the temporal progression of the document.
LOWBOW allows examining much longer-range dependen-
cies than n-gram models, and it also allows tying word pat-
terns to specific document locations. The bandwidth of the
smoothing kernel captures the tradeoff between estimation
bias and estimation variance. Our approach extends their
work, but is different as it decouples local probabilities from
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their positions and it uses sparse coding to compress the pa-
rameter space.

Document models such as the n-gram and LOWBOW
suffer from intrinsic sparsity, an inevitable consequence of
capturing dependencies in sequences over a large vocabu-
lary. The larger the dependency range, the harder it is to esti-
mate the dependencies due to increased estimation variance.
Specifically, the number of possible combinations of n con-
secutive words grows exponentially, making the number of
observations for each combination extremely sparse, even-
tually causing not only computational difficulties but also a
high estimation error. As a result, in many cases where data
is limited, n-gram models with low n perform better than
n-gram models with high values of n.

Neural probabilistic language models such as Bengio et
al. (2006) are an attempt to handle this issue. They capture
long term relations over a large vocabulary by using a para-
metric model that compresses the parameter space. Since
the model estimates a compressed parameter vector rather
than the exponentially growing n-gram counts, it is an effec-
tive way of capturing word dependencies that n-gram mod-
els cannot. On the other hand, probabilistic topic models
such as Blei, Ng, and Jordan (2003) and matrix decompo-
sition models (Deerwester et al. 1990; Lee and Seung 1999;
Zhu and Xing 2011) estimate a compressed representation
of the vocabulary, usually termed latent space or topics. Un-
like the neural language model, these models are usually
based on the bag-of-words representation or bigram features
(Wallach 2006), limiting their potential to capture sequential
word dependencies (though some recent extensions general-
ize topic models to sequential models - see Section 2).

By efficiently estimating sparse and compact representa-
tions of local dependencies, our model extends the work of
Lebanon, Mao, and Dillon (2007) and Zhu and Xing (2011).
We first define the notion of a local context, which is a con-
ditional word probability given the word’s location in the
document. Similar to Lebanon, Mao, and Dillon (2007), we
use a smoothing kernel to estimate the local context. Each
kernel bandwidth examines a unique range of local resolu-
tions. As noted earlier, because of the huge number of local
contexts in our model, we apply a sparse-coding formulation
to compress the space.

Our model has several benefits. First, by introducing rich
local dependencies, it can generate highly discriminating
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features. Second, it produces a sparse and compact repre-
sentation of a document. Third, since it also models word
proximities, it can be used to generate locally coherent top-
ics that will be a useful tool for analyzing the topical flow of
a document.

2 Related Work
Recent studies on modeling document locality have focused
on variations of the n-gram model. For example, Mikolov
et al. (2013) connects a variant of the n-gram model with a
neural probabilistic language model. A different approach to
extending n-grams was taken by Lebanon, Mao, and Dillon
(2007), who used kernel smoothing on length-normalized
documents. Similar ideas were also explored in Mao, Dil-
lon, and Lebanon (2007); Lebanon and Zhao (2008) and
Lebanon, Zhao, and Zhao (2010). Our model conveys a
new concept of locality by combining n-gram and kernel
smoothing.

Text segmentation and parsing studies also focus on local
document features. For example, Chen et al. (2009) intro-
duced semantic segments using a hierarchical topic model.
Unlike our paper that focuses on spatial segments, these
studies focus on semantic segments resulting in a semantic
locality concept.

Our method adopts a topic-modeling approach to com-
press a large feature space, an unavoidable outcome of long-
range dependencies. Our approach extends Sparse Topi-
cal Coding (STC), a non-probabilistic approach, that was
shown to have state-of-the-art accuracy as well as rela-
tively fast training time. A detailed comparison between
STC and probabilistic topic models (Blei 2012) appears in
Zhu and Xing (2011). Unlike standard matrix factorization
methods such as non-negative matrix factorization (Lee and
Seung 1999), STC uses sparsity constraint explicitly. Our
model differs from STC in two ways: (i) it uses local con-
texts p(w|t) instead of single-word observations p(w) which
leads to a different loss function, and (ii) instead of using
pathwise coordinate descent, our model employs a new up-
date rule based on greedy coordinate descent.

Temporal topic models (Blei and Lafferty 2006; Wang,
Blei, and Heckerman 2009) are extensions of basic LDA
that model sequential word appearances. They are similar to
our model in that both approaches produce topics that vary
across different document locations. Our approach differs
from temporal topic models in that the sequential transitions
are based on specific locations in the document, as in locally
weighted bag-of-words, and our models feature the idea of
kernel smoothing from non-parametric statistics.

3 Local Context
Most document and topic modeling studies use sequential
features such as unigram or n-gram to model documents.
Instead, Lebanon, Mao, and Dillon (2007) modeled a doc-
ument as a joint distribution of words and their locations
p(w, t), where w is a word and t is the location. The joint
distribution p(w, t), estimated by kernel density estimation,
models the probability that a word will occur at a specific
index within the document. Although the approach is use-

ful for modeling document progression, it cannot model the
relative positioning of words. On the other hand, p(w|t) can
model the relative positioning of words.

A local context is the distribution of words that occurred
near a specific document position: p(w|t). We denote it by
φ(t):

φ : N→ R|V | where |V | is the size of vocabulary.

Given a length L document x = [w1, . . . , wL] and a posi-
tion i, we can estimate the local context φ(i) using a smooth-
ing kernel k(i, j) that is a real valued normalized function
that is monotonic decreasing in |i−j|. Intuitively, the kernel
defines the locality that we are interested in.

φ(i) =
[
φ1(i), . . . , φ|V |(i)

]>
φv(i) =

L∑
j=1

k(i, j)1{wj=v}.

s.t.
∑
v

φv(i) = 1, ∀v φv(i) ≥ 0

3.1 Choices of k(i, j)

There are several standard choices of a smoothing kernel
k(i, j) = g(i − j). We follow Lebanon, Mao, and Dillon
(2007) and use the Gaussian kernel, which is a normalized
Gaussian density. However, for illustration purposes, we use
below the constant kernel (for a support of 3 words)

k′(i, j) =

{
1/3 if |i− j| ≤ 1

0 else.

This kernel measures the existence of a word in the window
{wi−1, wi, wi+1}. It differs from the trigram representation
in that it ignores the ordering within the window.

Non-constant kernels such as Gaussian kernels allow em-
phasizing words closer to the center of the window while
discounting more remote locations.

3.2 Comparision with n-gram Models
The n-gram model and its variations fundamentally differ
from our model since they use a joint distribution of con-
secutive words, p(wi, . . . , wi−n+1), instead of a conditional
distribution between words and locations, p(w|t). The size
of the event space of an n-gram model expands exponen-
tially when either its vocabulary or the size of window (n)
grows. By contrast, the event space of our model is invari-
ant of the window size (or the kernel bandwidth) and only
linear in vocabulary size. In practice, the n-gram model per-
forms poorly when both the vocabulary and n are large. See
Section 5.3 for empirical results.

4 Local Context Sparse Coding (LCSC)
We now consider the bag of local contexts of a document,
Φ = {φ(i) : i = 1, . . . , L} (where L is the length of the
document). Since direct estimation of bag-of-local-contexts
statistics is intractable, we approximate each φ(i) using a
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Figure 1: Graphical model of local context sparse coding.
z denotes a document representation, and φ denotes a local
context in a document of length L. D is a shared dictionary
(topics), and β is a latent representation of a corresponding
local context using D. See Section 4.1 for details.

linear combination of a handful (sparse) of codes in a dictio-
nary of K codes (or topics).

φ(i) ≈ Dβ(i) where D ∈ R|V |×K , β(i) ∈ RK

s.t. β(i) is sparse, D ≥ 0, ∀i
∑
jDij = 1

Note in particular that the dictionary can be shared across
multiple documents, and as a result the β that corresponds
to different Φ (documents) are comparable.

We measure the approximation quality using the sum of
squared distances between each φ(i) and Dβ(i) and add a
L1 penalty on β(i) to enforce sparsity. This standard prac-
tice is equivalent to maximizing the penalized likelihood of
the model under a Gaussian distribution (regression) with
a Laplace prior p(β) ∝ e−λ|β| corresponding to the L1

penalty. Thus, we get the following objective function for
learning the dictionary D and the β parameters

L∑
i=1

‖φ(i)−Dβ(i)‖22 + λ‖β(i)‖1 (1)

subject to the constraints of D ≥ 0 and ∀i
∑
j Dij = 1.

When we have multiple documents, we combine multiple
squared error terms where the D matrix is shared and β pa-
rameters correspond to different documents as in (5).

Alternatively, we can use non-squared error loss func-
tions as in Lee et al. (2009). In our experiments, we used
the Hellinger distance ‖

√
φ(i) −

√
Dβ(i)‖22, which per-

formed the best. See Lebanon (2005a; 2005b), and Dillon
et al. (2007) for additional examples of using Hellinger dis-
tances in text modeling and interpreting it in terms of infor-
mation geometry.

We assume that the topic assignment parameters for
a specific document are normally distributed β(i)|z ∼
N (z, ρ−1 I) and consider its mean z as a document-specific
parameter, or a document representation. This leads to the
above objective function

L∑
i=1

ρ‖β(i)− z‖22 + ‖φ(i)−Dβ(i)‖22 + λ‖β(i)‖1 (2)

subject to D ≥ 0 and ∀i
∑
j Dij = 1. The equations above

assume a single document. In the case of multiple docu-
ments, we sum over them as described in Section 4.2. In this

case, D is shared across documents and β and z are docu-
ment specific.

4.1 Comparison with Probabilistic Topic Models
The proposed method forms a graphical model as described
in Figure 1, with the details appearing below. We follow
some of the ideas in Zhu and Xing (2011) and note the caveat
that the normalization in our model may not be consistent
with the true distribution generating the data due to the fact
that the parameters lie in a restricted domain (see comment
below).

1. The local probability of words (or a local context) follows
a distribution centered on Dβ where D contains topics
shared across multiple documents and β contains a cor-
responding topic assignment. For example, assuming a
Gaussian distribution, we have:

φ = p(w|t) ∼ N (Dβ, σφ I). (3)

2. Topic assignments parameters {β(i) : i = 1, . . . , L} that
correspond to a specific document follow a normal distri-
bution centered on z with a Laplace prior.

β|z ∼ N (z, ρ−1 I), β ∼ Laplace(0, λ−1) (4)

Traditional probabilistic topic models differ from our
model primarily in two ways. First, instead of a single word
observation p(w), we model word locality through the distri-
bution p(w|t). Second, we do not directly compute the nor-
malization terms of each probabilistic distribution. We only
compute the numerator, for example ‖β(i) − z‖22, which is
consistent with a Gaussian distribution but ignores the fact
that β cannot achieve all values in a Euclidean space. This
relaxation reduces the overall computation when compared
to standard probabilistic topic models.

4.2 Estimation
The training procedure of our model is similar to the one of
standard sparse coding models. Assuming we have multiple
documents X = [x(1), . . . , x(N)], we minimize the aggre-
gated loss function of (2),

min
β,z,D

` = min
β,z,D

N∑
n=1

L(n)∑
i=1

[
ρ‖β(n)(i)− z(n)‖22+

‖φ(n)(i)−Dβ(n)(i)‖22 + λ‖β(i)‖1

]
(5)

subject to the following constraints on the shared dictionary
D: D ≥ 0 and ∀i

∑
j Dij = 1. It is a biconvex problem that

can be iteratively solved for β, z and D. We additionally in-
clude non-negativity constraint on β for better interpretabil-
ity, similar to Zhu and Xing (2011).

Solving for β and z By repeatedly optimizing each di-
mensions of β (coordinate descent), the lasso problem can
be solved in closed form and have a unique solution under
the non-negativity constraint. Specifically, using the short-
hand notation β(n)(i) → β, z(n) → z, φ(n)(i) → φ, mini-
mizing a single component of β(n)(i) gives the following:
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min
βj

K∑
k=1

ρ(βk − zk)2 +
|V |∑
v=1

(
φv −

K∑
k=1

Dvkβk

)2

+

K∑
k=1

λ|βk|

= min
βj

[ (
ρ+ ‖D:j‖22

)︸ ︷︷ ︸
a

β2
j

− 2

ρzj + |V |∑
v=1

Dvj

φv −∑
k 6=j

Dvkβk


︸ ︷︷ ︸

b

βj + λ|βj |

]
.

The corresponding optimal solution is

βj =
1

a
min

(
0, b− λ

2

)
. (6)

The corresponding document representation z(n) also can
be solved in closed form since we are minimizing L2 dis-
tances between z(n) and β(n)(1), . . . , β(n)(L(n)).

z(n) =
1

L(n)

∑
i

β(n)(i). (7)

We would normally iterate the dimensions of β in a se-
quential order (j = 1, 2, . . . ,K) until convergence, which
is called pathwise coordinate descent as was done in the
training of STC (Zhu and Xing 2011). Greedy coordinate
descent (Li and Osher 2009), however, updates one dimen-
sion at a time by choosing the dimension that reduces the
loss the most (∆`). This results in faster training than path-
wise method with the same accuracy level. See Li and Osher
(2009) for detailed discussion.

By applying greedy coordinate descent and exploiting the
factorization of the loss function, we developed an efficient
algorithm for β and z (see Algorithm 1). Since greedy coor-
dinate descent ensures the difference between βt+1 and βt is
exactly βt+1

j − βtj (j is the updated dimension), b and z can
be updated efficiently using the previous values of those. In
addition, β and z of a document are independent from those
of other documents, and {β(i) : i = 1, . . . , L} in a single
document only shares z during the update, which allows par-
allelization. Note that we approximate the loss decrease ∆`
by |β̃(i)− βt(i)| (see Algorithm 1 for details.)

Solving for D Projected gradient descent method effi-
ciently optimizes the dictionary D under the simplex con-
straint (D ≥ 0, ∀i

∑
jDij = 1).

min
D

`(D) = min
D

N∑
n=1

L(n)∑
i=1

‖φ(n)(i)−Dβ(n)(i)‖22 (8)

∇`(D) = −2

N∑
n=1

L(n)∑
i=1

(
φ(n)(i)−Dβ(n)(i)

)
β(n)(i)>

(9)

Specifically, we take a gradient step based on the gradient
above and then project back to the simplex using a simplex
projection Π.

Dt+1 = Π(Dt − ηt∇). (10)

Algorithm 1 Greedy coordinate descent for β and z

Input: local contexts of x(1), . . . , x(N) and D
for all x ∈ {x(1), . . . , x(N)} do in parallel

Φ = [φ(1), . . . , φ(L)] in x
[b(1), . . . , b(L)] = D>Φ
z = 1

L

∑
i b(i)

while
∑
i |β(i)t+1 − β(i)t| > ε do

zt+1 = zt

for all i ∈ {1, . . . , L(n)} do in parallel
β̃(i) = 1

a min (0, b(i)− λ/2)

j = arg maxk |β̃(i)k − β(i)tk|

β(i)t+1 =

{
β̃(i)j at jth dimension
β(i)t else

zt+1
j = ztj + (βt+1

j − βtj)/L
b(i)t+1 = b(i)t− (β(i)t+1

j −β(i)tj)(D
>D)ej

# wait for others to finish updating z
b(i)t+1

j = b(i)tj + ρ(zt+1
j − ztj)

end for
end while

end for
Output: z(1), . . . , z(N) and all β for all local contexts.

The projection Π can be computed efficiently, see for exam-
ple Duchi et al. (2008) for details. We estimate the step size
η by a line search that minimizes the dictionary related loss
minη

∑
‖φ−Dt+1β‖22.

5 Experiments
5.1 Illustrating Example
We illustrate the proposed method (LCSC) using a synthetic
example of four documents with two different types of word
locality: {a, b} vs {a, c}.

x1 = [a, b, a, b, a, b, c, c, c], x2 = [b, a, b, a, b, a, c, c, c]

x3 = [a, c, a, c, a, c, b, b, b], x4 = [c, a, c, a, c, a, b, b, b]

While a and b accompany together in x1 and x2, a and c are
together in x3 and x4, resulting in the topics of x1 and x2
being different from the topics of x3 and x4.

Bag-of-words representation, a common feature for topic
models, generates exactly the same representations [3, 3, 3]
or [0.33, 0.33, 0.33] (normalized) for all documents. By con-
trast, the bigram model distinguishes all four documents al-
though it strictly separates two locally similar pairs ([a, b]
and [b, a]) at the same time. Despite the fact that the strict
separation might be a preferable choice, this will eventu-
ally lead to an explosion of the feature space (especially
when trying to account for long-range dependencies). See
Section 3.2 for detailed discussion.

Unlike n-gram models, LCSC easily captures two top-
ics corresponding to two distinct types of locality. Figure 2
shows the result of LCSC in a simplex using a dictionary
of size K = 2 (number of topics) and a Gaussian smooth-
ing kernel with bandwidth of 0.7. The smoothing kernel
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Figure 2: Result of LCSC on the synthetic example of Sec-
tion 5.1 in a simplex, each corner of which represents the
probability of one of the corresponding character. Filled
shapes (Dz) denote document representations on the sim-
plex; unfilled shapes (φ) are for local contexts of each docu-
ment; filled squares are for two topics D1, D2. We see clear
separation between {Dz1, Dz2} vs {Dz3, Dz4}.

covers an effective width of about 5 words (weighted non-
uniformly).

Figure 2 visualizes the characteristics of the dataset. First,
two topicsD1 andD2 capture two different types of locality.
D1 is located between a and b denoting the mixture topic
of a and b; D2 is located between a and c. Second, docu-
ment representations on the simplex (Dz) form two separate
groups. The first group consists of Dz1 and Dz2 and the
second group consists of Dz3 and Dz4. The positions of the
document representations discriminate documents by its lo-
cal word distribution p(w|t). Note that n-gram model cannot
easily achieve this.

5.2 Local Topics
In contrast to the topics of traditional topic models, LCSC
topics reflect the word locality. For instance, Latent Dirich-
let Allocation (LDA) (Blei, Ng, and Jordan 2003) will fail
to capture any meaningful topics on the synthetic example
of Section 5.1 because all four documents have the same
uniform word distribution. Unlike LDA, LCSC discovered
two topics corresponding to two distinct types of locality in
the previous section. In addition, as each local context con-
tains its neighborhood information, LCSC eventually forms
locally coherent topics, which are useful in practice since
most text in general have locally coherent contents.

We compare LCSC with a well known topic-modeling
technique, LDA, on a real world data: a Wikipedia article
“Paris.” We chose the article because it contains common
knowledge and is well structured, albeit we do not use any
structural information.

Figure 3 shows topic assignments at each position of the
Paris article by LDA and LCSC (K=15 for both). The doc-
ument progresses from left to right and each position corre-
sponds to a word. The top figure (LDA) does not show any
locally coherent structure, which is rather fragmented into
pieces. In the bottom figure (LCSC), the topic assignments
are locally coherent and illustrate the semantic flow of the
document; it starts with the introduction of the city: general
information (topic 1 on Table 1) and its reputation (topic 2),
which are followed by several aspects of Paris: history (topic

2000 4000 6000 8000 10000 12000 14000
.

2000 4000 6000 8000 10000 12000 14000

3
4

5 7
6

.

1
2

Figure 3: Topic assignments at each position of Wikipedia
article “Paris” by LDA (top) and LCSC (bottom). The left-
most edge indicates the beginning of the document and the
rightmost edge for the end. LCSC topics are more locally
distributed than LDA. Numbers on the bottom figure indi-
cate topic IDs; Table 1 has the detail of each topic.

1 mi km sq area population kilometres bois city north
paris river climate arrondissements vincennes south

2 world fashion paris international high cent largest
manufacturing business million europe region global

3 roman bc parisii century found seine bank romans
lutetia ad left le site cit soldiers age excavations built

4 king national government july commune paris sans
culottes city army guard palace festival revolution

5 exposition champs universal visitors eiffel tower
mars meters held world palais million iii hosted place

6 theatre arrondissement des tel du located musee dis-
trict ra including centre op paris place theatres lies

7 library paris arrondissement libraries le biblioth uni-
versity public located sorbonne mitterrand ois fran

Table 1: Top words of selected topics using LCSC on a
Wikipedia article “Paris.” See text for details.

3,4), exposition (topic 5), art (topic 6), and education (topic
7). In addition, top words of each topic are indeed highly
indicative of each local subject (Table 1).

We also tried other types of documents that are not struc-
turally written, such as novels (“The Metamorphosis” by
Kafka, “The Last Leaf” by O. Henry), a speech (“I Have
a Dream” by MLK), and an editorial (a Watergate article),
and they all demonstrated an ability to learn locally coher-
ent topics.

5.3 Classification
We examine in this section using features generated by
LCSC in classification. We used a standard classifier, sup-
port vector machine1, with different sets of features. Specif-
ically, we used ν-SVM whose ν value was selected from 10
candidate values using cross-validation.

Our classification task was the standard 20 newsgroup2

classification data with the official train-test split and stan-
dard preprocessing: lowercasing, stripping non-english char-
acters, tokenizing sentences and words, Porter stemming,
and removing rare features and stop words. The preprocess-
ing resulted in 18846 documents, 20 classes, and vocabulary

1http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
2http://qwone.com/∼jason/20Newsgroups/
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Figure 5: Test set classification accuracies of LCSC with var-
ious smoothing bandwidths

of size |V | = 6328. In the following two subsections, to
examine the effect of parameters, we handle a subset of the
dataset (5 classes, comp.*). In the last subsection, we evalu-
ate overall performance on both the subset of the dataset and
the whole dataset.

Effect of the Number of Topics (K) Figure 4 shows test
set classification accuracies with various methods and sizes
of dictionaries (from 50 to 8000). In the case of n-gram mod-
els, we selected the most frequent K features from the train-
ing set. For the other methods LDA3, STC4, and LCSC, we
specify the size of a dictionary as a parameter. The band-
width of LCSC was fixed to h=1, which covers about 7
words (±3h). We tried a set of candidates for the remaining
parameters and chose the best performing one (for example,
λ = {10−4, 10−2, 10−1, 0.5, 1} for STC).

LCSC performs similar to unigram with small dictionar-
ies, but it eventually achieves superior performance with a
dictionary of sufficient size (from K=4000), that is, the per-
formance of LCSC keeps improving even afterK>|V | (uni-
gram model reaches maximum performance when K<|V |).
STC performs well with relatively small dictionaries, but its
maximum performance is not as good as other methods.

Figure 4 partially confirms Section 3.2. Bigram, trigram
and 4-gram model do not perform well even with a large dic-
tionary. It is because the number of features grows rapidly
(bigram generates 23|V | features, trigram for 35|V |, and 4-
gram for 37|V |) and thus will drastically lower the num-
ber of observations for each feature. On the contrary, even
though LCSC covers approximately 7 neighboring words,
it does not seem to suffer from sparsity and shows superior
performance.

3FastLDA: http://www-users.cs.umn.edu/∼shan/mmnb code.
html

4http://www.ml-thu.net/∼jun/stc.shtml

n-gram LDA STC LCSC MedSTC
comp.* 74.53 40.67 60.97 78.01 77.70
* 74.10 34.43 61.14 80.76 79.81

Table 2: Comparision of test set classification accuracy for
various methods on 5 classes (comp.*) and full 20 classes
(*) of 20 newsgroup dataset

Effect of Bandwidth (h) Figure 5 shows test set classifi-
cation accuracies of LCSC with various bandwidths while
other parameters are fixed (K=4000, ρ=10−4, λ=10−2).
The best performance was obtained at h=1. Using narrower
bandwidth (h=0.5) led to faster convergence to poor perfor-
mance, which is caused by lack of variability of local fea-
tures. Using broader bandwidth (h=4) slowed down the con-
vergence and ruined the performance, which is attributed to
including unnecessary local dependencies for this task. The
diverse results of various bandwidths confirms that locality
features makes a notable difference in classification perfor-
mance.

Comparision of Overall Performance We finally com-
pare the overall performance of LCSC with other methods
including a local-dependency model, n-gram, and unsuper-
vised topic models: LDA and STC. We additionally included
a top performing supervised topic model, MedSTC (Zhu and
Xing 2011). Note, however, that MedSTC uses auxiliary su-
pervised information (labeled data) during its topic learn-
ing, and cannot be directly compared to our method. We
tried various sets of parameters and choose the best perform-
ing one (K: [50,...,8000], λ, ρ: [10−4,...,10−1]). For n-gram
models, we tried n: [1,...,4] and chose the best.

LCSC outperforms all other competitors on the subset as
well as the full set (Table 2). The performance gain with
respect to n-gram models shows that modeling long-range
dependencies can be beneficial in classification. The bet-
ter performance of LCSC compared to other methods in-
cluding MedSTC (significant at p-value: 0.002) is notable
since MedSTC directly optimizes for its discriminative per-
formance whereas LCSC is a purely unsupervised coding
method.

6 Summary
This paper presents a non-probabilistic topic model for local
word distributions. Our model employed kernel smoothing
to capture sequential information, which granted a flexible
and efficient way to handle a wide range of local informa-
tion. Our sparse-coding formulation leads to efficient train-
ing procedures, and a sparse representation that is locally
coherent and has stronger discrimination capacity.
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