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Abstract

With the rise of social media, learning from informal text has
become increasingly important. We present a novel seman-
tic lexicon induction approach that is able to learn new vo-
cabulary from social media. Our method is robust to the id-
iosyncrasies of informal and open-domain text corpora. Un-
like previous work, it does not impose restrictions on the lex-
ical features of candidate terms – e.g. by restricting entries to
nouns or noun phrases – while still being able to accurately
learn multiword phrases of variable length. Starting with a
few seed terms for a semantic category, our method first ex-
plores the context around seed terms in a corpus, and identi-
fies context patterns that are relevant to the category. These
patterns are used to extract candidate terms – i.e. multiword
segments that are further analyzed to ensure meaningful term
boundary segmentation. We show that our approach is able to
learn high quality semantic lexicons from informally written
social media text of Twitter, and can achieve accuracy as high
as 92% in the top 100 learned category members.

Introduction
For many Natural Language Processing tasks (e.g., Infor-
mation Extraction, Sentiment Analysis), understanding the
meaning of a phrase is profoundly important. Semantic lex-
icons allow us to associate an “is-a” relation between a se-
mantic category and its members (e.g., “burger” is a FOOD
and “football” is a SPORT), and sits at the heart of many
business analytic tools. Although there exist knowledge re-
sources like WordNet (Miller 1995), building such resources
require extensive human effort, making it difficult to keep
up with neologism (e.g., “cronut”, a FOOD term, did not ex-
ist before 2010). Additionally, increasing popularity of so-
cial media over the last decade has given rise to new chal-
lenges when knowledge needs to be acquired from infor-
mally written text. For example, in Twitter microblogging
platform, it is common to use informal or abbreviated words
like “bball” to mean “basketball” which is a SPORT, or
“cod” to refer to “Call of Duty”, which is a VIDEO GAME.

One of the prominent characteristics of social media text
is informal writing style and often unconventional grammar.
General-purpose language parsers and parts-of-speech tag-
gers have been found to perform poorly when applied on

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tweets (Gimpel et al. 2011; Foster et al. 2011). Special-
purpose language parsers exist (e.g., (McClosky and Char-
niak 2008)), but do not often adapt well to other text genres,
domains or natural languages. As a result, lexicon induc-
tion approaches that are dependent on lexico-syntactic con-
text patterns (e.g., (Riloff and Jones 1999; Thelen and Riloff
2002)) are less flexible and more susceptible to upstream
errors. Moreover, previous work that limits their learning
scopes to single nouns or head nouns (Thelen and Riloff
2002), inherently limits their effectiveness for multiword
terms. For example, “nugget” is not generally considered a
FOOD item, but “chicken nugget” clearly is. Likewise, while
“game” is considered a SPORT EVENT, other phrases like
“blame game” or “waiting game” are not. Many terms may
also consist of other parts-of-speech (e.g., “falls asleep fre-
quently” is a MEDICAL SYMPTOM). This emphasizes the
need for strategies that are able to discover meaningful mul-
tiword terms, and are not confined within the scope of learn-
ing terms with specific parts-of-speech only.

Other approaches have used N-gram based context pat-
terns and learned multiword terms. But many limited their
scopes to either title-case N-grams, bigrams that already ex-
ist in WordNet (Murphy and Curran 2007) or multiword lex-
emes from Wikipedia article names (Kolb 2008). As a re-
sult, informally written longer phrases like “hide n go seek”,
which refers to a CHILDREN’S GAME or “mac and cheese”
referring to a FOOD DISH are beyond their learning scopes.

We present a novel semantic lexicon induction approach
that is more flexible and accurate than previous work. Our
approach is rooted on the ability to extract and prioritize N-
gram context patterns that are semantically related to the
categories. It does not depend on syntactic dependencies in
a sentence, and is able to discover and classify multiword
terms without restrictions on their lexical features. Curran
(2004) also observed that not all patterns are equally reli-
able. For example “I ate ()”1 in “I ate pizza” is a more re-
liable pattern for learning FOOD terms, than the pattern“I
want ()” in “I want pizza”. But unlike Curran (2004) who
used only verb contexts (e.g., “wear” for CLOTHES) and
required a target word to be syntactically tied as the sub-
ject, direct object or indirect object to a verb, we hypoth-

1Henceforth, we use this construction to indicate context pat-
terns where “()” indicates an empty slot that can be filled by a term.
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esize that any semantically related word regardless of its
parts-of-speech and syntactic ties is capable of providing
dependable context when the same context is also found
with known category terms. Budanitsky and Hirst (2006)
defined semantically related entities as either semantically
similar (e.g., “bank”-“trust company”), or dissimilar (e.g.,
“paper”-“pencil”) entities, that are associated with each
other by any functional, meronymy, antonymy, frequent as-
sociation, etc. relations. We use this definition for words in-
stead of entities (e.g., “restaurant”, “baked”, “delicious”,
“chef”, etc. for learning FOOD terms).

The second observation we make is that the patterns that
appear on the left, right or around a potential category term
are often also frequent with other members of the same cat-
egory. For example, we would expect to find contexts such
as “I ate ()” and “() were delicious” with “chicken wings”
and “pizza slices” alike. But while “I ate (chicken wings at)
...” will likely be found in a sentence, “(chicken wings at)
were delicious” will be unlikely, and this can help us elimi-
nate “chicken wings at” as a FOOD term. Based on this hy-
pothesis, we introduce a method to select candidate category
terms that have more probable term boundaries than others.

We show that our novel contribution of using the seman-
tically related words to find and rank candidates along with
the method for term selection with suitable boundary yield
accuracy as high as 92% in the top 100 learned category
members, and is able to learn many multiword terms that
were beyond the scope of previous work.

Related Work
One of the important considerations in lexicon induction2 re-
search is the discovery of new candidate terms. Non-iterative
methods experimented with noun phrase chunks and distri-
butional similarity (Pantel et al. 2009), exploited list struc-
tures in text (Sarmento et al. 2007) and web pages (Wang
and Cohen 2007), and also used N-gram context patterns
from web search query logs (Paşca 2007).

Another line of work which uses iterative bootstrapped
learning techniques, starts with a few seed words for a
semantic category and iteratively adds new terms to the
learned lists. For discovering new candidates, these meth-
ods have considered nouns that appeared near seeds (Riloff
and Shepherd 1997) or utilized compound nouns and other
syntactic constructions (Roark and Charniak 1998). Other
works exploited syntactic heuristics (Phillips and Riloff
2002), lexico-syntactic patterns (Riloff and Jones 1999;
Thelen and Riloff 2002), weighted context N-grams of
seeds (Murphy and Curran 2007; McIntosh and Curran
2008), pre-designed and automatically learned context pat-
terns (Pasca 2004), domain-specific extraction patterns (Et-
zioni et al. 2005) and doubly anchored hyponym patterns
(Kozareva, Riloff, and Hovy 2008). Although many fo-
cused solely on learning single nouns (e.g., (Thelen and
Riloff 2002)), some approaches also learned multiword
terms using pre-designed context patterns and exploiting
web as a corpus (e.g., (Kozareva, Riloff, and Hovy 2008;
Paşca 2007)) and list structures (e.g., (Sarmento et al. 2007;

2Also sometimes addressed as Set Expansion.

Wang and Cohen 2007)) in Wikipedia or web pages. In
other cases, researchers also learned multiword terms using
title-case N-grams or bigrams that already exist in WordNet
(Murphy and Curran 2007), or multiword lexemes that ex-
ist in other resources or can be found as Wikipedia articles
names (Kolb 2008). These approaches primarily benefited
from the vast information in the web, or special structures
expected in corpus. As a result, these approaches may not
directly apply to tweets which are short in nature, and are
well known for informal writing practices.

A well acknowledged concern about the iterative learning
methods is that noisy inclusion of new category members af-
fects successive iterations and may result in semantic drift.
Thelen and Riloff (2002) learned multiple categories simul-
taneously to restrict candidate term space of each category.
Murphy and Curran (2007) used mutual exclusion bootstrap-
ping to minimize semantic drift for both terms and contexts.
McIntosh and Curran (2009) reduced semantic drift with
bagging and distributional similarity. McIntosh (2010) intro-
duced negative categories when semantic drift has occurred.
Carlson et al. (2009) simultaneously learned classifiers con-
strained with entity relations. Qadir and Riloff (2012) de-
signed an ensemble of component learning systems to learn
only the category members that have consensus of the com-
ponents. Although iterative learning is beyond the scope of
our current research, it is a potential extension to our ap-
proach, and we consider it as a promising future work direc-
tion.

Kolb (2008) presented DISCO, a distributional similar-
ity based method to determine semantic similarity be-
tween a pair of words using second order word co-
occurrences, and semantic relatedness, using first order word
co-occurrences.3 Our work differs as we use semantically
related words for the task of semantic lexicon induction.
More recently, De Benedictis, Faralli, and Navigli (2013)
presented GlassBoot, a minimally-supervised bootstrapping
algorithm that acquires domain glossaries from the web, and
exploits learned glosses to extract term hypernyms. Their
method is web specific and leverages html block elements to
determine boundaries for term glosses. The method also in-
herently expects that the gloss of a term is explicitly written
in the web by someone. As such characteristics are unlikely
to be frequent for tweets, it may not directly apply. Addi-
tionally, one may not always expect to find explicitly written
glosses for informal terms with creative spelling, as can be
commonly found in Twitter short messages.

While many research used domain specific text corpora
to expand their domain specific lexicons, others used cross-
domain text such as Wikipedia or used the Web as a corpus.
To the best of our knowledge, we are the first to learn se-
mantic lexicons from tweets where many category terms are
informally expressed, and so are their contexts where the
terms appear. Coden et al. (2012) used N-gram context pat-
terns and learned drug lexicons from clinical progress notes,
which are also expected to contain text that does not always

3Kolb (2008) defined semantically similar words as words that
can be substituted in the same context, which they mentioned must
not be true for semantically related words.
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follow formal English grammar, contains misspellings and
abbreviations, much like tweets. However, our approach is
substantially different from previous work as we use seman-
tically related words to determine which context patterns are
more reliable for better candidate discovery. Additionally,
we do not impose restriction on lexical features (e.g., parts-
of-speech) of terms, and present a novel method to automat-
ically select candidates with suitable term boundaries based
only on context patterns learned from seed terms.

Semantic Lexicon Induction
Our goal is: given a semantic category C and a set of seed
terms s ∈ Sc such that every s is associated with C with an
“is a” relation, we expand Sc by learning new terms t ∈ T
where T is the set of all terms in a corpus, such that t is also
associated with C with an “is a” relation. Each of s and t
is comprised of a sequence of words w1...n where n is not
pre-determined. That is, n is a parameter to the algorithm so
that the algorithm can learn terms of size 1, 2, 3, up to length
n. Although in our experience n = 6 has been sufficient in
most cases, it can be set arbitrarily high.

Semantic Categories
For this research, we experimented with 3 semantic cate-
gories4 that we expect people to generally talk about in Twit-
ter among other topics. These 3 categories are:

Food & Drinks: General food terms (e.g., pizza, cake)
and drinks (e.g., water, wine). We also include food ingredi-
ents (e.g., salt), food nutrients (e.g., carbohydrates, proteins)
as well as common food metonyms by nationality (e.g., mex-
ican, chinese) and brand names (e.g., nutella, cheetos). We
do not include possible metonymic terms that are more am-
biguous in the context of FOOD & DRINKS, such as, restau-
rant names (e.g., McDonalds, Taco Bell)5.

Games & Sports : Indoor and outdoor sports (e.g.,
soccer, baseball, table tennis), as well as different types
of games such as board games (e.g., chess), card games
(e.g., poker, uno), video games (e.g., tomb raider, call of
duty), etc. We also include sports events (e.g., olympics,
marathon), but exclude possible metonyms that are ambigu-
ous in the context of SPORTS & GAMES such as league
names (e.g., NFL) and general outdoor activities that are not
normally considered as sports (e.g., camping, hiking).

Vehicles: General vehicle terms (e.g., car, bus, train) as
well as automobile brands and manufacturing companies
(e.g., toyota, honda). We also include well known trans-
portation systems that are commonly used to refer to the
vehicle itself (e.g., subway, metro).

For each of our categories, we manually selected 10 seed
terms that are frequent in our corpus. Table 1 presents the
seed terms we selected for these categories.

4The selection of these 3 semantic categories was driven by
business need, and we leave other more general or specific seman-
tic categories for future work.

5It is common to say “I bought nutella at the grocery” to mean
“nutella chocolate spread”. Similarly, “I am having McDonalds
for lunch” is also common. But “McDonalds” in “I am eating at
McDonalds” will not be a metonymy reference.

FOOD & DRINKS GAMES & SPORTS VEHICLES
food soccer car
water cricket truck
wine basketball vehicle

drinks hockey vehicles
pizza tennis nissan

beverage volleyball van
cheese table tennis ford

fish baseball chevy
chicken american football honda

chocolate rugby suv

Table 1: Seed terms for categories.

Corpus Description & Pre-processing
For learning our semantic lexicons from informally writ-
ten text, we use tweets as our dataset. Tweets are short
messages with a maximum length of 140 characters, sup-
ported by the Twitter microblogging platform. Tweets are
well known for informal grammar, abbreviated expressions,
and misspellings, which make them challenging to apply
well known Natural Language Processing tools. For this re-
search, we collected 114 million English tweets published
in Twitter during February and March, 2013, using Twit-
ter 10% decahose stream. For pre-processing, we tokenized
each tweet using an in-house tokenizer and normalized with
respect to case.

Context Pattern Selection
For each seed term s ∈ Sc for semantic category C, we first
extract all N-gram context patterns containing up to 6 words,
and store them in our pattern pool Pc. For each pattern p ∈
Pc, we calculate pattern confidence from the percentage of
unique seed terms that a pattern matches6.

confidence(p) = Num. unique seed terms matched by p

Num. all terms matched by p

We then remove any p ∈ Pc that has a confidence thresh-
old lower than 10−6 to limit the initial pattern space. We set
this threshold arbitrarily low so as to take into account the
majority of the seed matching patterns and discard patterns
that rarely appear with a seed term.

The objective of context pattern selection is to determine
which context patterns are more reliable for learning cate-
gory terms. Our hypothesis is that when a context pattern
contains a semantically related word, it is more likely to
discover better category terms. For example, consider the
following 3 patterns7: “I played ()”, “the () stadium was
full”, and “I love watching ()”. Because “played” and “sta-
dium” are semantically related to SPORTS & GAMES, intu-
itively, the first two patterns are more likely to match terms
like “football”, “baseball”, etc, whereas the third pattern
can match a wide range of terms like “movies”, “birds”,

6A “match” happens when a term is found in the placeholder
position “()” of a context pattern.

7Note that actual context patterns are not always as well formed
in tweets.
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“football”, etc. It is also important to note that having a se-
mantically related term does not always guarantee a relevant
candidate. For example, “I played (violin)” and “the (Liver-
pool) stadium was full” are both likely matches. However,
we expect that the patterns that contain a semantically re-
lated term will substantially restrict the candidate space.

Finding semantically related terms is a different research
problem in itself, and is out of our research scope. In prin-
ciple, any semantic similarity tool should work, and in this
research we do not intend to compare how well different se-
mantic similarity tools perform. We use a freely available
tool, DISCO (Kolb 2008), to provide us with semantically
related words, generated from first order word collocations.
For each seed term s ∈ Sc for our category C, we obtain
the first 200 semantically related words using DISCO. We
then take a union of the generated words, and create the set
of semantically related words Wc for category C. For each
pattern p ∈ Pc, we then keep p in Pc only if p contains any
w ∈Wc.

Candidate Term Discovery
For the next stage of our learning, we search our entire tweet
corpus to find any term that is matched by a pattern p ∈ Pc,
and extract all terms tw1...wn. As the resulting set of candi-
dates is too large to consider all of them for our subsequent
stages of lexicon induction, we select a smaller subset of
candidates within our budget that we want to further evalu-
ate with more expensive computations. To select this smaller
subset, we score all the candidates by counting the number
of unique patterns in Pc that extract them, and rank the can-
didates based on this score in descending order. We then take
the top 2000 candidates as our initial set of candidates Tc for
category C.

Candidate Term Boundary
One of the novel contributions of our research is to select
candidates with more appropriate term boundaries. To illus-
trate the challenge, consider the context pattern “I ate ()”.
While at a first glance, it may seem like a reliable context
pattern to extract FOOD terms, in reality, this context pattern
may potentially extract terms like “sandwich”, “sandwich
today”, “sandwich today at”, “sandwich today at lunch”,
“sandwich today at lunch with”, “sandwich today at lunch
with ketchup”, etc. Moreover, all these extracted terms may
also potentially match many other semantically related pat-
terns such as “I was eating ()”, “it was a delicious ()”,
“Went to McDonalds and had a ()”, etc.

Even when terms are surrounded by context patterns from
two sides, with indefinite or large term lengths, the patterns
are not guaranteed to extract terms with suitable boundaries.
For example, the context pattern “I was eating () yesterday”
may potentially extract candidates such as “I was eating
(sandwich with a friend) yesterday” or “I was eating (sand-
wich when my friend called) yesterday”, etc. This issue is
less likely to occur when noun phrase chunks or only head
nouns are used as can be seen in related work (e.g., (Thelen
and Riloff 2002; Pantel et al. 2009)). However, since such
linguistic tools work less reliably for tweets (Gimpel et al.

2011; Foster et al. 2011), we propose the following novel
solution in this research.

We classify context patterns based on their position rela-
tive to term matches: rightmost-patterns include patterns for
which seeds match only on the right-hand side (e.g., , “I was
eating ()”), leftmost-patterns are those where seeds match
only on the left side (e.g., “() for dinner”), and middle pat-
terns have text on both sides of matching seeds (e.g., “eat-
ing () for dinner”). Our hypothesis is that term candidates
with good term boundaries will match left, right and middle
patterns, while terms with unsuitable boundaries will not al-
ways match all three. For example, a non-ideal term such as
“sandwich today with” will match left-patterns like “I ate
()”, “I was eating ()” or “It was a delicious ()”, but it will
be less likely to also match right-patterns like “() for din-
ner”, “() with cheese”, etc.

To validate this hypothesis, we built a pattern pool (length
1 to 6 words) from a random selection of 10,000 tweets for
each seed and candidate term. We then create 3 pattern sub-
sets Pc,t,l, Pc,t,r and Pc,t,m, where l, r or m indicates the
leftmost, rightmost or middle position in a pattern where the
candidate term t is matched. Similarly, we also create Pc,S,l,
Pc,S,r and Pc,S,m, depending upon the position in a pattern
where a seed term s ∈ Sc is matched.

We rate how well a candidate’s boundary “fits” by look-
ing for respective seed matching patterns that also match the
candidate to the left, right and middle. The position score
PS, at positions pos ∈ {l, r,m} for a candidate term t is
computed by the number of patterns that match both t and
any given seed in S. Scores are compressed in logspace to
make them less sensitive to small differences in counts.

PSc,t(pos) = log(
∣∣Pc,S,pos ∩ Pc,t,pos

∣∣)
Finally, the term boundary score TBSc,t is computed by

taking the harmonic mean of the position scores. The intu-
ition is that a candidate with suitable term boundary should
have high scores for all three positions, whereas candidates
with fewer patterns in common with the seeds at any of the
positions will get a lower score.

TBSc,t =
3∗PSc,t(l)∗PSc,t(m)∗PSc,t(r)

PSc,t(l)∗PSc,t(m)+PSc,t(l)∗PSc,t(r)+PSc,t(m)∗PSc,t(r)

We keep only the candidates that pass a minimum score
threshold. We use the average term boundary score for all
t ∈ Tc to only keep the candidates that has a TBS greater
than the average.

Candidate Term Ranking
The last stage of our lexicon induction is the candidate rank-
ing. To rank the candidate terms, we use only the most re-
liable patterns that extract them. Although we initially se-
lected the patterns in Pc by exploiting semantically related
words (top 200 words for each seed s ∈ S) obtained using
DISCO (Kolb 2008), the generated word sets are far from
perfect, and do not always guarantee semantically related
words. To overcome this issue, we only keep a smaller sub-
set of the patterns from Pc that we feel confident about. To
do that, first we score each context pattern p ∈ Pc by count-
ing how many unique seeds from S are extracted by each
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pattern p. Then we rank the patterns by this score in de-
scending order, and keep only the top 20% of the patterns
ranked by the score.8

To rank the candidates, our hypothesis is that if a can-
didate term t actually belongs to the semantic category C,
then among all the patterns that extract t, the percentage of
semantically related reliable unique patterns will be much
higher. To approximate this ratio for t, we use our larger
pattern pool P ∗c,t created from the randomly selected 10,000
tweets for each candidate term t ∈ Tc . We then score t by
counting how many of the patterns in Pc occurs among the
patterns in P ∗c,t and then taking the ratio.

score(t) =
num patterns in Pc that appears in P ∗c,t

num patterns in P ∗c,t
Finally, we create a ranked list of the candidate terms for

category C based on this calculated score, and take the top
200 terms for evaluation. Table 2 presents examples of the
category terms taken from top 30 lexicon entries generated
by our approach.

FOOD & DRINKS SPORTS & GAMES VEHICLE
cornbread basket ball golf cart

grilled chicken field hockey jeep
mac n cheese flag football snowmobile
chicken wings water polo first car

asparagus vball lorry
hotdogs quidditch motorbike

tofu footie minivan
hot wings high school football school bus

lucky charms frisbee race car
sausages ice hockey moms car
porridge scrabble hummer

buffalo chicken snooker tractor
ramen noodles hide and seek motorcycle

chocolate chip cookies dodgeball limo
fried rice netball lexus

pizza rolls guitar hero ferrari
chocolate covered- high school- motor-

strawberries basketball vehicle
grits beer pong benz

hot dogs club penguin bentley
crawfish paintball porsche

Table 2: Example of category terms taken from the top 30
learned terms.

Evaluation
Baselines
To compare the quality of our lexicons with previous work,
we used two widely cited approaches: DISCO (Kolb 2008)
and BASILISK (Thelen and Riloff 2002). In order to directly
evaluate scoring functions and control for potential differ-
ences in implementation details, we provided both systems
with the same list of 2000 candidates Tc, and used the sys-
tems to score and rank the list.

8This threshold is determined from empirical observation of the
ranked context patterns in our study.

For our first comparison, we use DISCO, which allows to
retrieve semantic similarity between arbitrary words using
methods that leverages distributional similarity. Kolb (2008)
showed that second order word collocations improve over
first order for finding semantically similar terms. Therefore,
for each term t in Tc, we retrieve the similarity scores from
DISCO using second order word collocations with our cate-
gory names9, and keep the highest similarity score for each
term t ∈ Tc. We then rank the list with this score and take
the top 200 terms. For a second comparison, we retrieve sim-
ilarity scores with the seed words of each category. We refer
to these lists as “Disco SimCat” and “Disco SimSeed”.

For our next comparison, we use BASILISK – an iter-
ative bootstrapping algorithm that learns a few words per
iteration to incrementally expand categories. We first pro-
vided BASILISK with all context patterns in our P∗c,t for
all candidate term t ∈ Tc for category C, which we previ-
ously generated by collecting 10,000 tweets for each t ∈ Tc.
Since BASILISK only learns head nouns, we presented to
BASILISK all multiword terms of our candidate list as single
token terms by replacing whitespaces with underscore. We
then ran BASILISK in multi-category mode with improved
conflict resolution for a single iteration.

It is important to mention that BASILISK was originally
designed as a bootstrapping algorithm to iteratively build
lexicons, and using BASILISK for a single iteration limits
its capabilities. However, as iterative learning is beyond the
scope of this research, for the sake of comparison we only
compare with a single iteration of BASILISK. By design,
to limit candidate space, BASILISK chooses only 20 seed-
matching patterns in the first iteration, and only evaluates
candidate terms that are matched by these 20 patterns. As a
result, the generated list of candidates in the single iteration
from BASILISK was very small compared to ours – they only
contained 30, 18 and 17 terms for our 3 categories. There-
fore, we also reimplemented and evaluated AvgLog and Diff,
BASILISK’s two candidate scoring function on the candi-
dates generated by our approach.

AvgLog(t) =
∑

p log2(Fp+1)

|P∗
c,t|

Here, |P ∗c,t| is the number of patterns that extract term t for
category C, and Fp is the distinct number of seeds extracted
by each pattern p ∈ p∗c,t.

Diff(t) = AvgLog(t, c)−maxc6=co AvgLog(t, co)

We then rank the candidates based on both of these
scores separately and take the top 200 terms for each cat-
egory. We refer to these learned lexicons as Basilisk 1-iter,
Basilisk AvgLog, Basilisk Diff.

Gold Standard
For each semantic category, we combined the 200 candi-
date terms generated by each of the methods, and provided
them to two annotators without indication to which method
produced which candidate. The annotators were then given
clear annotation guidelines along with category definitions

9We use both singular and plural forms (e.g., “vehicle” and
“vehicles” for the category VEHICLE)
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FOOD & DRINKS SPORTS & GAMES VEHICLE
Lexicon Sizes 25 50 75 100 25 50 75 100 25 50 75 100

Basilisk
Basilisk 1-iter .75 .63 (30) .78 (18) .65 (17)
Basilisk AvgLog .56 .70 .77 .76 .48 .66 .73 .75 .04 .10 .12 .19
Basilisk Diff .88 .86 .83 .86 .68 .74 .79 .76 .04 .20 .28 .35

Disco
Disco SimCat .80 .76 .79 .78 .88 .70 .56 .45 .84 .74 .56 .46
Disco SimSeed .76 .78 .81 .84 .88 .64 .49 .41 .80 .68 .57 .50

RelW
RelW .64 .74 .79 .79 .52 .74 .79 .80 .04 .12 .27 .35
RelWBound 1.00 .98 .95 .92 .96 .92 .88 .83 .88 .78 .67 .57

Table 3: Accuracy of the induced lexicons up to top 100 terms.

and examples, and were asked to assign category member-
ship to each term. The annotators were also instructed to
only assign a semantic category to a term if the term had a
right term boundary. Cohen’s Kappa (κ) was 0.86, indicat-
ing high agreement between the annotators. We then used
the annotated lists as our gold standard for evaluating the
generated lexicons.

Results
To compare the lexicons, we use accuracy as our evaluation
metric where a term is considered “accurate” only if it has
been assigned the right semantic class and it has the right
term boundary. Table 3 shows the accuracy of the lexicons
up to first 100 terms. Basilisk 1-iter, although very short,
shows that it learned terms in all three categories with rea-
sonable accuracy, but the accuracy is still much lower com-
pared to the other systems. Comparatively, Basilisk AvgLog
ranked more terms with good accuracy for FOOD & DRINKS
and SPORTS & GAMES. Basilisk Diff performed substan-
tially better than Basilisk AvgLog in all three categories.
Both methods performed poorly for VEHICLE. An analy-
sis of the lexicons suggested that many terms were selected
earlier in the lexicon that did not have the right term bound-
aries. Some of the example terms with incorrect term bound-
aries that Basilisk Diff selected are: “want some chicken”,
“chocolate right now” under FOOD & DRINKS and “bro-
ken legs after motorcycle”, “car lol”, etc. under VEHICLE.

Next, the two DISCO lexicons: Disco SimCat and Disco
SimSeed worked reasonably well for FOOD & DRINKS, but
only at the earlier section of the lexicons for SPORTS &
GAMES and VEHICLE. We found that the DISCO lexicons
failed to recognize many informal terms people use to refer
to sports in tweets (e.g., “college ball”) and terms that do
not have Wikipedia articles of their own (e.g., “race car”).

In the the last two rows of Table 3, the RelW row refers
to our approach that ranks the candidates using semantically
related patterns, but do not use the term boundary detection
method. The accuracy is close to Basilisk Diff and Disco
SimSeed for FOOD & DRINKS and close to Basilisk Diff for
the other two categories. Notably, it did not perform well at
the beginning as many terms were included in the lexicons
in the top positions that did not have the right term bound-

aries. This demonstrates the necessity of a method that is
able select terms with meaningful boundaries.

The last row in Table 3 presents the accuracy of our
learned lexicons, RelWBound, that uses the selection of
terms with suitable boundary, and also ranks the terms using
semantically related patterns. We find that in all three cate-
gories, RelWBound was able to consistently learn terms with
much higher accuracy than all the other systems. An impor-
tant point to note is that for the first 100 terms, the accuracy
of RelW kept increasing as the lexicon sizes increased, but
the accuracy for RelWBound started decreasing slowly. Fur-
ther analysis of the learned lexicons revealed that as RelW-
Bound learned many of the right category members sooner,
the scope of learning more correct terms from the initial can-
didate list became limited. Also, the method for discarding
terms with non-ideal boundaries is not perfect, and RelW-
Bound occasionally discarded a few terms that indeed had
the right term boundaries.

We additionally looked into how many of the learned
terms do not exist in WordNet (Miller 1995), which is a
well known resource for semantic knowledge. We found
that among the correct terms from the first 100 that Rel-
WBound learned for each category, 21.74% of the terms
in FOOD & DRINKS, 48.49% of the terms in SPORTS &
GAMES and 24.56% of the terms in VEHICLE do not exist in
WordNet. The reason can be attributed to informal mentions
(e.g., “mac n cheese”, “footy”, “lax”), multiword terms not
present in wordnet (e.g., “pizza rolls”, “beer pong”), brand
names (e.g., “kool aid”, “bmw”, “ferrari”) and recently
created video games (e.g., “candy crush”, “temple run”)
and sports (e.g., “quidditch”).

Finally, Figure 1 shows the growth rate of the lexicons
up to first 200 ranked terms, by method from each sys-
tem demonstrating higher accuracy early on. We see that all
methods had a consistently high expansion rate for FOOD.
This is not surprising because people frequently talk about
FOOD in Twitter. The decreased expansion rate of Disco
SimCat in the other two categories can be attributed to many
informal terms that Disco failed to recognize. As Basilisk
Diff was given all the candidate terms transformed into sin-
gle tokens, it eventually found many category terms, but
not until later in the lexicons. On the contrary, RelWBound
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Figure 1: Lexicon Growth Rate Comparison

found more terms with ideal boundaries early on and had a
steeper expansion rate than the other systems. As good accu-
racy and faster expansion rate are essential for iterative lex-
icon induction algorithms to steer the learning in the right
direction as early as possible, this also makes our method
promising for iterative lexicon induction, which we leave as
our future work direction.

Conclusion
We presented a semantic lexicon induction method that is
general enough to be able to learn semantic lexicons even
from the informal text of Twitter. We demonstrated that our
novel contribution of using semantically related words to se-
lect context patterns is reliable for discovering and ranking
category members. Our approach did not explicitly impose
pre-defined term boundary restriction, rather discovered cat-
egory members with suitable term boundaries by comparing
their context patterns with known category members. As fu-
ture work direction, we will use the approach to learn lexi-
cons in iterative learning framework.
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