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Abstract

This research describes the development of a supervised
classifier of English light verb constructions, for exam-
ple, take a walk and make a speech. This classifier relies
on features from dependency parses, OntoNotes sense
tags, WordNet hypernyms and WordNet lexical file in-
formation. Evaluation shows that this system achieves
an 89% F1 score (four points above the state of the art)
on the BNC test set used by Tu & Roth (2011), and an
F1 score of 80.68 on the OntoNotes test set, which is
significantly more challenging. We attribute the supe-
rior F1 score to the use of our rich linguistic features,
including the use of WordNet synset and hypernym re-
lations for the detection of previously unattested light
verb constructions. We describe the classifier and its
features, as well as the characteristics of the OntoNotes
light verb construction test set, which relies on linguis-
tically motivated PropBank annotation.

1 Introduction
As one construction in which the relational semantics of
verbs can be extended in novel ways, English light verb
constructions (LVCs) represent a powerfully expressive re-
source of English. These constructions, such as make an
offer and give a groan, are thought to consist of a seman-
tically general verb and a noun that denotes an event or
state. However, an exact definition of an LVC, which would
precisely delimit these constructions from either idiomatic
expressions or compositional, ‘heavy’ usages of the same
verbs (e.g. She made a dress; He gave me a present; etc.)
remains under debate. As a result, it is no surprise that the
automatic detection of English LVCs also remains challeng-
ing, especially given the semi-productive nature of LVCs,
which allows for novel LVCs to enter the language. Novel
LVCs are particularly difficult to detect, yet it is key for Nat-
ural Language Processing (NLP) systems to identify and in-
terpret LVCs correctly by recognizing, for example, that She
made an offer to buy the house for $1.5 million is an offering
event, rather than a making or creation event.

This research describes a system for the automatic detec-
tion of LVCs. Related work is given in Section 2, and rele-
vant linguistic resources are described in Section 3. A com-
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parison of the OntoNotes LVC annotations to the British
National Corpus1 LVC annotations, used by Tu and Roth
(2011), is given in Section 4. The description of our system
is presented in Section 5, and our experiments and results in
6, followed by concluding remarks and future work.

2 Related Work
There are two main approaches for the automatic identifi-
cation of LVCs: contextually-based and statistically-based.
Contextually-based approaches detect the surrounding to-
kens and decide whether the verb, noun pair with these
context words should be considered an LVC. Vincze et al.
(2003) propose a contextually-based model, with a condi-
tional random fields machine learning method, for detect-
ing English and Hungarian LVCs. Evaluation showed that
their model performs well in various domains of LVCs
and performs well in detecting low-frequency LVCs. On
the other hand, the statistically-based approach finds LVCs
among verb, noun pairs from a well-defined set of verbs
and eventive nouns (nouns denoting events, like declara-
tion), then a classifier function decides if a pair is an LVC
or not. Van de Cruys and Moirn (2007) propose a sta-
tistically and semantically-based method for recognizing
verb-preposition-noun dependency relation combinations of
LVCs. Furthermore, Gurrutxaga and Alegria (2012) detect
idiomatic and light verb-noun pairs from Basque, using sta-
tistical methods.

To compare these two approaches, Tu and Roth (2011)
proposed a Support Vector Machine (SVM) based classifier
to identify LVCs. They developed their system using both
contextual and statistical features and analyzed the deep in-
teraction between them. They concluded that local contex-
tual features perform better than statistical features on am-
biguous examples, and combining them did not give better
performance. We also focus on contextual features and find
additional features that improve performance.

3 Resources
This research uses several resources: PropBank (PB)
(Palmer, Guildea, and Kingsbury 2005), the OntoNotes
(ON) sense groupings (Pradhan et al. 2007), WordNet (WN)

1http://www.natcorp.ox.ac.uk/XMLedition/
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(Fellbaum, Grabowski, and Landes 1998) and the British
National Corpus (BNC).

3.1 PropBank

The primary goal of PB was the development of an anno-
tated corpus to be used as training data for supervised ma-
chine learning systems. The first PB release consists of 1M
words of the Wall Street Journal portion of the Penn Tree-
bank II (Marcus, Santorini, and Marcinkiewicz 1994), an-
notated with predicate-argument structures for verbs, using
semantic role labels for each verb argument. Although the
semantic role labels are purposely chosen to be quite generic
and theory neutral, Arg0, Arg1, etc., they are still intended to
consistently annotate the same semantic role across syntac-
tic variations (Arg0 and Arg1 do consistently correspond to
Dowty’s (1991) concepts of Proto-Agent and Proto-Patient
respectively). For example, the Arg1 or Patient in John broke
the window is the same window that is annotated as the Arg1
in The window broke, even though it is the syntactic subject
in one sentence and the syntactic object in the other. Thus,
the main goal of PB is to supply consistent, simple, general
purpose labeling of semantic roles for a large quantity of co-
herent text to support the training of automatic semantic role
labelers, as the Penn Treebank has supported the training of
statistical syntactic parsers.

PB provides a lexical entry for each broad meaning of ev-
ery annotated verb, including the possible arguments of the
predicate and their labels (its ‘roleset’) and all possible syn-
tactic realizations.2 This lexical resource is used as a set of
verb-specific guidelines for annotation. In addition to num-
bered roles, PB defines several more general (ArgM, ‘Ar-
gument Modifier’) roles that can apply to any verb, such as
LOCation, TeMPoral, and DIRection, etc.

In the past, PB annotation had been restricted to verb re-
lations, but recent work has extended coverage to noun rela-
tions and complex relations like LVCs. In current practices,
annotators identify light verbs and the main noun predicate
in an initial verb pass of annotation. In a second pass, an-
notation is completed for the full span of the complex pred-
icate, using the roleset of the noun. Consider the example,
Yesterday-ARGM-TEMPORAL, John-ARG0 made-REL an of-
fer-REL [to buy the house]-ARG1 [for $350,000]-ARG2,
which uses the offer roleset:

Arg0: entity offering
Arg1: commodity, thing offered
Arg2: price
Arg3: benefactive or entity offered to

PB ensures that the complete argument structure of the com-
plex predicate receives annotation, regardless of whether the
argument is within the domain of locality of the noun or
verb, and ensures that the roles assigned reflect the event
semantics of the noun.

2The PB lexicon of rolesets can be found here:
http://verbs.colorado.edu/propbank/framesets-english/

Name Nouns denoting...
noun.act acts or actions
noun.cognition cognitive process
noun.communication communicative process
noun.event natural events
noun.feeling feelings and emotions
noun.location spatial position
noun.motive goals
noun.phenomenon natural phenomena
noun.possession possession and transfer
noun.process natural processes
noun.relation relations between things
noun.state stable states of affairs

Table 1: WordNet lexical file information types of interest
for eventive and stative nouns

3.2 WordNet
WN is a large electronic database of English words,3 which
was in part inspired by work in psycholinguistics investigat-
ing how and what type of information is stored in the human
mental lexicon (Miller 1995). WN is divided firstly into syn-
tactic categories: nouns, verbs, adjectives and adverbs, and
secondly by semantic relations. The semantic relations that
organize WN are: synonymy (given in the form of ‘synsets’),
antonymy, hyponymy (e.g. a Maple is a tree; therefore, tree
is a hypernym of Maple), and meronymy (part-whole rela-
tions). These relations make up a complex network of as-
sociations that is both useful for computational linguistics
and NLP, and also informative in situating a word’s mean-
ing with respect to others.

Of particular interest for this research are the synsets, the
hyponymic relations of nouns in WN, and the noun’s ‘type,’
as indicated by the lexical file information. For each noun in
WN, lexicographers have coded the noun with one primary
superordinate, or lexical file, given forty-five numbered op-
tions. In our research, nouns that can possibly denote events
or states are the focus, because it is these nouns that can
theoretically combine with a light verb to form an LVC. The
type designations that may denote eventive and stative nouns
are listed in Table 1. The use of synset, hyponym and lexical
file information (or noun ‘type,’) is described in Section 5.2.

3.3 OntoNotes
The ON corpus integrates several layers of different anno-
tation types in a single corpus, making it ideal training data
for semantic analysis (Pradhan et al. 2007). The five lay-
ers of annotation include: 1) the syntactic parse from the
Penn Treebank, 2) proposition structure from PB, 3) coarse-
grained word senses from the ON sense grouping inventory,
4) named entity types, and 5) anaphoric coreference. The
latest release, ON 4.99 (Weischedel et al. 2011), contains
2.6 million English words. In this research, the PB and word
sense layers are of primary interest, the latter is described
next.

3http://wordnet.princeton.edu/wordnet/
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The ON sense groupings can be thought of as a more
coarse-grained view of WN senses because these sense
groupings were based on WN senses, which were succes-
sively merged into more coarse-grained senses, based on the
results of inter-annotator agreement (Duffield et al. 2007).
Essentially, where two annotators were consistently able to
distinguish between two senses, the distinction was kept.
Where annotators were not able to consistently distinguish
between two senses, the senses were reorganized and tagged
again. It was found that sense distinctions with this level of
granularity can be detected automatically at 87-89% accu-
racy, making them effective for NLP applications (Dligach
and Palmer 2011). This sense inventory was used to anno-
tate ON verbs and nouns with more than three WN senses.
Unfortunately, the sense tagging is not complete for all of
the ON corpus: there are about one million verbs and nouns
in ON 4.99, but only 288,217 of these have sense tags (al-
though many are surely monosemous), including 120,400
nouns with sense tags. Each ON sense also lists which WN
senses it includes, providing a mapping between ON anno-
tations and WN senses.

4 Comparison of Light Verb Construction
Resources

The existing state of the art system for LVC recognition is
arguably that of Tu and Roth (2011), who achieve 86.3% ac-
curacy. To best compare our work to the state of the art, a de-
tailed comparison was made of the resources used by Tu and
Roth and the PB LVC data set used in the present work. Tu
and Roth construct a dataset of 2,162 English sentences with
LVCs drawn from the British National Corpus (BNC). Their
approach in constructing this data set differs from that of PB
in several ways, and therefore results in resources containing
some overlapping and some distinct constructions. Firstly,
the authors restrict their annotations to LVCs involving the
six most frequent light verbs: do, get, give, have, make, take.
In the PB annotation process, it is possible for annotators to
mark any verb as a light verb, resulting in a corpus that con-
tains seven LVC types with verbs not included in the Tu and
Roth data, such as textitbring charges against... and conduct
repairs. Secondly, Tu and Roth filter their data set by includ-
ing only LVCs with nouns that are zero-derived nominals
(e.g. offer), or derivationally related to a verb (e.g. destruc-
tion). The PB corpus includes an additional 25 LVC types
(not found in the Tu and Roth data), which involve nouns
that have no etymologically related verb counterpart, such
as take a trip. Although the PB procedure allows for more
variety, this has not resulted in a broader data set with more
unique LVC types overall. The comparison shows that there
are 115 LVC types that appear in both data sets, 245 LVC
types that appear only in the BNC, and 218 LVC types that
appear only in ON.

Although the majority of these different types simply arise
from the differing sources and genres, there are notably more
instances of LVCs involving get and give in the BNC data
set. PB has previously treated many of these usages as ‘semi-
light,’ and opted to annotate both the argument structure of
the verb and that of the noun in distinct annotation passes

have do make take

Token Freq + 221 128 996 317
- 1,781 405 671 766

Type Freq + 62 55 187 46
- 521 155 249 274

Overlap 47 21 98 27
Portion 75.8% 38.2% 52.4% 58.7%

Table 2: Token and type frequency of positive LVC and non-
LVC examples, and the number of overlapping verb+noun
types that can be either positive or negative examples in ON.

instead of marking these as LVCs. As a result, the BNC data
set includes 83 additional types with get and give. The PB
practice has led to some inconsistencies; for example, give a
speech (to the audience) has been treated as semi-light (since
the audience can be seen as either the Recipient of the give
event or the speaking event), while make a speech has been
treated as an LVC (since there is no similar overlap in the
noun and verb relations’ roles). To remedy such inconsisten-
cies, PB will be loosening the annotation requirements and
including such semi-light usages in the LVC annotations. Ta-
ble 2 gives an overview of the number of positive LVC types
and tokens, and the number of non-LVC tokens and non-
LVC verb+noun types involving several common light verbs
in the ON corpus. The ‘overlap’ portion indicates the num-
ber and percentage of nouns that appear in both positive and
negative examples. Notably, this overlap is highest for have,
indicating that it involves a high number of surface-identical
LVC and non-LVC usages.

In summary, the two LVC lexical resources differ in ways
that likely provide an advantage for the Tu and Roth sys-
tem: the BNC data has less variety in the types of nouns that
can be involved in LVCs, and it embraces a more general
definition of LVCs since it has not distinguished light and
semi-light usages.

5 Light Verb Construction Recognition
Our LVC identifier determines what combinations of po-
tential light verbs and eventive nouns should be labeled
as LVCs. For a given dependency tree T , the system first
checks if T meets certain criteria in order to decide if T
should be put into the candidate set (these criteria are de-
scribed in Section 5.1). Next, the light (or ‘Support’) verb
VS and eventive noun NE pair is submitted to an LVC bi-
nary classifier, which labels the VS-NE pair as an LVC or
not an LVC. This supervised classifier is trained with the Li-
bLinear (Fan et al. 2008) algorithm.

5.1 Candidate Identification
The first step for LVC recognition is to select the candidate
dependency trees for the training of the classifier. Here, the
PB layer of the ON 4.99 corpus is used as a starting point.
For this research, we chose to exploit LVCs that are com-
posed of a limited set of the six most frequent light verbs in
the data, since these cover 99.26% of the VS-NE pairs. In
the future, we plan to expand our verb set.
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Relation Type Numbers Portion
I. Direct Chlid 1,546 87.44%
II. Quantity 16 0.90%
III. Head of the clause 178 10.07%
Sub-Total 1,740 98.42%
Other Type 28 1.58%
Total 1,768 100.00%

Table 3: Distribution of Dependency Relation Type of LVCs
in ON 4.99 data

The second step is to select the eventive nouns on which
to focus. Our starting point for this process was to make use
of a list of eventive and stative nouns drawn from WN (ini-
tial list provided by Christiane Fellbaum, personal commu-
nication). To begin, only the dependency trees containing the
previously mentioned six light verbs and eventive nouns on
the candidate list are selected.

The last step is to extract the dependency relation between
the light verb VS and eventive noun NE . The following three
cases are considered:

(i) The NE is the direct child of the VS , with the object re-
lation of the VS (e.g. They took a look at the trials and
tribulations of Martha Stewart.)

(ii) The NE follows a quantity or partitive expression, and the
quantity is the direct object of the VS (e.g. We don’t take
much of a break for the holidays.)

(iii) The NE is the head word of the clause (e.g. This is very
much a statement that the president was not going to be
deterred from making.)

Only the dependency trees containing the VS and NE in
one of these relation combinations were added the candi-
date set. By following these steps, we extract 1,739 LVCs of
the 1,768 LVC instances in the ON 4.99 data. Thus, we are
detecting 98.42% of the LVCs in the gold annotations. Error
analysis of the 28 instances that were not detected showed
that they were missed either because of long-distance depen-
dences and/or intervening relative clauses, and a few were
annotation mistakes. The distribution of the three relation
combinations is displayed in Table 3. The most frequent
relation type is the direct object relation, which makes up
87.44% of all the LVCs.

5.2 Classifier
In LVC recognition, our classifier assigns a binary label
(+1/-1) to an individual VS-NE pair on the dependency tree.
Here, we use the machine learning algorithm called LibLin-
ear, adopting L2-regularized logistic regression. This algo-
rithm uses the following approach: given a set of instance-
label pairs (xi, yi), where xi ∈ Rd, yi ∈ {1,-1}, it finds
a function f : xi → yi that maximizes the likelihood es-
timation of the classifier’s parameters, which assumes that
xi was generated by a binomial model that depends on yi
(McCullagh and Nelder 1989). One advantage of using Lib-
Linear over a Support Vector Machine (SVM) is the training
and prediction speed. The dimensionality of our features is

LEMMA: The lemma of VS , NE , V −1
S , V +1

S , N−1
E ,

N+1
E , V h

S , Nh
E

POS: The part of speech tag of VS , NE , V −1
S , V +1

S ,
N−1

E , N+1
E , V h

S , Nh
E

DEP: The dependents of VS , NE , V −1
S , V +1

S , N−1
E ,

N+1
E , V p

S , Nh
E

RELPATH: The concatenation of the relation on the de-
pendency tree path from VS to NE

POSPATH: The concatenation of the POS on the depen-
dency tree path from VS to NE

DEPSUBCATSET: The subcategorization set that is de-
rived by collecting all dependency labels of VS and NE

VOICE: Active or Passive for the VS

DISTANCE: The dependency tree node distance be-
tween VS and NE

Table 4: Basic Features (W−1/+1 refer to the left word /
right word of W , and Wh refers to the head word of W ).

often very high, but the training sample size is small. Li-
bLinear performs only logistic regression without using a
kernel. Results show that LibLinear reduces both training
and decoding times, while maintaining the accuracy of the
prediction.

Several features are used by the classifier, categorized into
3 different types: Basic Features, ON Word Sense Features,
and WN Features.

Basic Features Basic features include the lexicon, part of
speech (POS) tag, and the dependency relation of VS and
NE . The paths of the dependency relation and POS are in-
cluded as well. Additionally, the subcategorization frame
which concatenates the dependency labels of VS and NE

is adopted. These features are used either individually or
jointly (e.g., POS of VS and lemma of NE make another
new feature). The basic features are listed in Table 4.

OntoNotes Word Sense Features Word sense plays an
important role in recognizing LVCs. For example, consider
the following two sentences:

1. We are going to take a look at the trials and tribulations of
Martha Stewart.

2. Barbie gets a makeover to give her a more youthful look.

In sentence (1) above, take a look is an LVC, while give her
a more youthful look in sentence (2) is not. The difference in
LVC status is reflected in the two different senses of look: the
meaning of the first look is “act of looking,” and the second
usage of look is closer to the meaning “perceived appearance
or feel.” Although it is difficult to discover the lexical and
dependency differences between these two VS-NE pairs, the
word sense gives a useful clue for our classifier to identify
the LVC.

In the ON 4.99 corpus, a word sense tag is annotated on
the verbs with three or more senses and many nouns. The
coarse-grained sense inventory, described in Section 3.3,
gives a definition for each word sense. Ideally, for the data to
be the most effective for LVC detection, all verbs and nouns
would have sense tags. Unfortunately, not all of the subcor-
pora of the ON corpus are sense tagged. In the first step
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of our ON data experiment (in Section 6.2), the verbs and
nouns in the automatically generated dependency trees don’t
contain any of the word sense tags. Hence, a Word Sense
Disambiguation (WSD) model is necessary. In Lee (2002),
a SVM-based WSD model that integrates the lemma, POS
tag, and collocation information from near-by words is pro-
posed. We apply this model to the WSD task with the ON
word senses labels and implement our WSD classifier with
the LibLinear algorithm with L2-regularization and L1-loss
support vector classification. This algorithm uses a linear
classifier to maximize the margin, instead of using a ker-
nel. For the target word, we select ±3 words as the window
size, while we adopt the same feature list that was used in
Lee (2002).

We train and test our model on the ON data for out-of-
genre experiments (See Section 6 for the details of the data
preparation). Our WSD model reaches a 76.16 Precision,
71.32 Recall, and 73.66 F1 score. Although the overall per-
formance of our WSD model is not ideal, the predicted word
sense tag is only used in the automated generated depen-
dency trees as one feature that supports the improvement of
our LVC recognition.

WordNet Features WordNet contains rich word sense in-
formation and relational information between words. In our
model, several pieces of WN information are used as fea-
tures:
WordNet Sense: The fine-grained WN sense inventory pro-
vides word sense information for each verb and noun. As
mentioned previously, the ON data is annotated with the ON
sense inventory tag only. However, the ON sense inventory
provides a mapping between each coarser-grained ON sense
and the WN senses that it comprises. Thus, the WN sense tag
can be extracted via the ON sense tag. Since the WN sense
inventory is more fine-grained than the ON sense inventory,
one ON sense may map to multiple WN senses. We opted to
extract 1) The highest-frequency sense (with the lowest WN
sense label number) as the WN Sense feature, and 2) The set
of WN senses mapped to the ON sense. These two features
are applied to both VS and NE .
WordNet Noun Type (Lexical File Information): For each of
the noun senses in WN, the manually assigned lexical file
information is given. These can be thought of as the word’s
supertype, and in this research, twelve basic types that indi-
cate the noun could be eventive or stative are selected (dis-
cussed in Section 3.2). This base type is a more generalized
property for each noun, and provides more common patterns
for discovering previously unattested LVCs.
WordNet Hyponymy: Each word sense in WN contains the
hypernym derived by the knowledge structure. The hyper-
nym of the NE provides a more generalized feature than the
WN sense itself, but more fine-grained information than the
base noun type.

6 Experiments and Results
For our experiments, we used two target corpora, the BNC
LVC data provided by Tu and Roth (2011) and the ON 4.99
data. The BNC data is a balanced data set, including 1,039
positive LVC examples and 1,123 negative examples. We

Model P R F1

TR-C + 86.49 84.21 85.33
- 86.15 88.19 87.16

TR-S + 86.48 85.09 86.46
- 86.72 87.40 87.06

Basic + 81.13 86.00 83.50
- 88.89 84.85 86.82

All Features + 85.32 93.00 89.00
- 94.31 87.88 90.98

Table 5: Model Comparison for BNC data. TR-C is Tu &
Roth’s contextual feature model; TR-S refers is their statis-
tical feature model. Basic model is our classifier with basic
features only; compared to an All Features model. The ‘+’
refers to performance in detecting LVCs, while the ‘-’ refers
to performance in detecting non-LVCs.

randomly sample 90% of the instances for training and the
rest for testing. We also experiment with the ON 4.99 data.
In order to evaluate the accuracy of our model for the differ-
ent genres, we split our training and testing sets by randomly
selecting different parts of subcorpora in each genre of ON.
Portions of the following six corpora are used for the testing
set: the MSNBC broadcast conversation, the CNN broadcast
news, the Sinorama news magazine, the WSJ newswire, the
CallHome telephone conversation, and the GALE web-text.
In all of the ON data, 1,768 LVCs are annotated (in Table 3).
Among all these LVCs in ON, 1,588 LVCs are listed in the
training data set, and 180 LVCs are in the testing data set.

We also present an experiment investigating how to dis-
cover low-frequency LVCs using the WN synsets of nouns
found in high-frequency LVCs (Section 6.3).

6.1 BNC Data
We first train and evaluate our model with the BNC data
using automatic parsers produced by ClearNLP (Choi and
Mccallum 2013). Table 5 shows the performance of Tu &
Roth’s model (2011) and our classifier on the BNC data set
at each step: precision, recall, and F1-measure. Our base-
line model involves the basic features only. Our All features
model, which includes the three WN features, gains around
3 to 4% improvement for positive and negative examples,
with respect to Tu and Roth’s contextual features and statis-
tical features. In all we have added several beneficial features
in comparison to the system of Tu & Roth: the dependency
tree relation, the POS path between light verb and eventive
noun, the subcategorization set, and the distance between
light verb and eventive noun as new features. We discuss the
the contribution of each individual feature in the next sec-
tion.

6.2 OntoNotes Gold Data Evaluation
We first train and evaluate our model with automatic parse
trees. The overall results are lower than on the BNC test set,
in part due to errors in the automatic trees, but also because
the data exhibits more variety with respect to the nouns
found in the data, as discussed in Section 4. We achieved
Precision of 54.94%, Recall of 77.22% and an F1 score of
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Feature P R F1 Diff(%)
Basic 78.09 78.09 78.09 -
+ WN-Sense 80.23 79.78 80.00 +1.91
+ WN-Type 80.68 79.78 80.23 +0.23
+ WN-Hyper 81.61 79.78 80.68 +0.45
+ Word Sense 81.77 78.09 79.89 -0.79

Table 6: Incremental Feature Contribution for ON gold trees

Feature P R F1 Diff(%)
Basic 78.09 78.09 78.09 -
WN-Sense 80.23 79.78 80.00 +1.91
WN-Type 78.53 78.09 78.31 +0.22
WN-Hyper 80.00 78.65 79.32 +1.23
Word Sense 80.59 76.97 78.74 +0.65

Table 7: Feature Contribution for ON gold trees

64.20%. We then use this data set with Gold Standard de-
pendency trees to evaluate the contribution of the features
individually. Table 6 shows the performance figures for our
system with features added incrementally. These features are
compared with the baseline model. All three WN features
contribute to the F1 score incrementally. After all the WN
features are added, our model reaches the best F1 score of
80.68. Although the addition of the ON Word Sense feature
decreases the F1 score, it still increases the precision.

To investigate the effectiveness of each individual feature,
we carried out an ablation study using only one feature at a
time. The results in Table 7 show that all the WN and ON
word sense features improve the system’s performance. This
demonstrates that the more fine-grained features, including
the WN-Sense, WN-Hyper, and ON Word Sense, contribute
most to precision, especially the WN-Sense feature.

To understand the accuracy of our model on different light
verb types, we conducted error analysis on the output for the
best F1 score in Table 6. As shown in Table 8, make and have
achieve the highest and lowest F1 scores, respectively. The
poor results for have LVC recognition may be due to the bor-
derline nature of many have LVCs, which makes them dif-
ficult to annotate consistently. For example, in Why did we
have a debate for a couple of days?, it isn’t clear whether we
is a participant in the debate, or if they are simply holding
the debate. Similarly, in You could have a separate bilateral
face to face negotiation with the United States..., it is unclear
whether you is a participant in the negotiation, or if this is a
generic construction indicating the potential existence of ne-
gotiations. As shown previously in Table 2, have also com-
bines with the greatest number of overlapping nouns that
appear in both positive and negative LVC examples, making
identification particularly difficult.

6.3 Using WordNet Relations
Although the above model could capture the majority of the
LVCs in the corpus, those that are detected are relatively
high-frequency LVCs. This led to the question of whether
or not there is a better way to detect previously unattested
LVCs. One idea is to leverage some general information that

Light Verb P R F1
do 90.91 68.97 78.43
have 77.78 48.28 59.57
keep 100.00 50.00 66.67
make 79.55 97.22 87.50
take 82.22 82.22 82.22

Table 8: Error Analysis for Individual Light Verb Types

Data # of VS-NE # of LVC Ratio (%)
LV + Synonym 91 49 53.85
LV + Noun 8,198 1,911 23.31

Table 9: LV + Synonym: number of potential LVC tokens
detected by combining a particular light verb with all WN
synonyms of a noun from a high-frequency LVC (# of VS-
NE), compared with the number already annotated as LVCs
(# of LVC). LV + Noun: number of potential LVC tokens
detected by combining a light verb with any noun in ON (#
of VS-NE), compared with the number already annotated as
LVCs (# of LVC).

would allow the classifier to detect other possible LVCs. In
the previous section, the results show that WN features pro-
vide positive contributions to our model. In this section, we
analyze a small set of data from the ON corpus and corre-
sponding WN features to explore the following possibility:
if there is a high-frequency, attested light verb + noun com-
bination, then any other eventive or stative noun sharing a
synset or hypernym with this noun may also combine with
that light verb to form an LVC.

To explore this, we first calculate the frequency of all the
gold LVC pairs in the ON 4.99 data. Then we extract the
top 10 highest-frequency VS-NE pairs. In order to gener-
ate candidate LVC pairs, we fix the verb found in the high-
frequency, attested LVC, and combine this with nouns that
either share a synset or a hypernym with the noun from the
same high-frequency LVC. This replacement of the even-
tive noun with its synonyms could allow for the discovery of
promising LVC candidates. For example, the derived LVCs
make attempt, make effort, and make endeavor are obtained
by examining the synset and hypernym relations of the high-
frequency LVC make contribution.

Using this process, we find a total of 91 tokens of po-
tential LVCs in the ON corpus. When we compare this to
our existing annotations, we see that 49 of these are already
annotated as LVCs. Table 9 displays the numbers of gold
true LVCs and candidate VS-NE pairs. The probability that
combinations generated from the synonyms are true LVCs
is twice the baseline probability that any VS-NE pair is an
LVC. Thus, we can assume that WN synsets could play an
important role in discovering low-frequency and previously
unattested LVCs.

Notably, of the 91 potential LVC tokens that this process
generated, there were 22 unique verb + noun types. Of these
22 potential LVC types, four were attested in the corpus and
already annotated as LVCs, including the high-frequency
types make effort and make commitment. This is not to say
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that the other candidate LVC combinations are not LVCs,
but they are either not attested or not annotated as LVCs in
the corpus. Further research is required.

7 Conclusion & Future Work
We have described a system for the recognition of LVCs in
English, in which we build a regression classifier for auto-
matically identifying LVCs based on lexical, WN, and ON
word sense information. Our evaluations show that the per-
formance of our system achieves an 88.90% F1 score on the
BNC data set and 64.20% F1 score on the ON 4.99 data. Us-
ing ON Gold Standard parses and sense tags, our F1 score
is 80.68%. Evaluation also shows that both the WN and the
ON word sense features result in better performance. In ad-
dition, we demonstrate that the LVCs derived by WN rela-
tions from high-frequency LVCs have a higher probability
of true LVC-hood than other combinations of light verb +
noun.

In the future, we would like to investigate adding more
general information to our model, such as word embeddings
and clustering based on verb dependencies. Secondly, we
plan to integrate our LVC detection model into SRL process-
ing to further improve the performance of the SRL system.
We aim to improve our ON sense inventory and word sense
disambiguation accuracy, and then apply it to our model. We
will also update the ON 4.99 test set to include more consis-
tent annotation of light usages of give and get.
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