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Abstract

Multiple-Instance (MI) learning is an important super-
vised learning technique which deals with collections
of instances called bags. While existing research in MI
learning mainly focused on classification, in this pa-
per we propose a new approach for MI retrieval to en-
able effective similarity retrieval of bags of instances,
where training data is presented in the form of simi-
lar and dissimilar bag pairs. An embedded scheme is
devised as encoding each bag into a single bag feature
vector by exploiting a similarity-based transformation.
In this way, the original MI problem is converted into
a single-instance version. Furthermore, we develop a
principled approach for optimizing bag features specific
to similarity retrieval through leveraging pairwise label
information at the bag level. The experimental results
demonstrate the effectiveness of the proposed approach
in comparison with the alternatives for MI retrieval.

Introduction
Multiple-Instance (MI) learning is an active research area in
machine learning, which deals with classification of bags of
instances (Dietterich, Lathrop, and Lozano-perez 1997). In
a standard MI problem, each training example is a bag con-
taining a number of instances. Each instance is represented
by a feature vector. Both bags and instances have class la-
bels, but only bag labels are available for the learning task.
Bag and instance labels are related by the MI assumption
which states that each positive bag should contain at least
one positive instance, whereas all instances are negative in a
negative bag.

Many real-world applications can be naturally cast to MI
learning problems. One example is content-based image re-
trieval (CBIR) (Chen, Bi, and Wang 2006; Li et al. 2009;
2011), where every image (bag) is segmented into different
regions (instances) and features are extracted from each re-
gion. An irrelevant (negative) image contains only irrelevant
regions, whereas a relevant (positive) image contains at least
a relevant region and possibly irrelevant regions. Other ap-
plication areas for MI learning are drug activity detection,
visual tracking and audio retrieval (Dietterich, Lathrop, and

Copyright c� 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Lozano-perez 1997; Babenko, Yang, and Belongie 2011;
Fu et al. 2013).

Despite the importance of MI learning, existing methods
mainly focused on the classification task. To apply these
techniques to the retrieval task, one has to cast retrieval to
classification by treating examples in the same class as sim-
ilar objects and those from different classes as dissimilar
ones. This is overly restrictive for practical applications, as
it is not always feasible to know the class labels of training
examples. For retrieval, we only need to know the similarity
of two objects instead of the class memberships.

In this paper, we address MI retrieval, a new problem in
MI learning that deals with the retrieval of similar bags of
instances. Unlike existing MI classification algorithms that
use bag labels for training and return a classifier at output, in
MI retrieval, supervised information is provided in the form
of similarity labels for bag pairs rather than class labels for
individual bags. The purpose of MI retrieval is to learn a
bag-level distance metric that can be used for ranking the
bags by similarity.

We propose a two step algorithm for MI retrieval. Firstly,
we employ a bag feature encoding scheme to convert each
bag of instances into a single bag feature vector in accor-
dance with the label constraints of MI assumption. After
that, we develop an optimization algorithm to select the pro-
totypes used to construct the bag-level feature vectors. In
this way, we can optimize the bag feature vectors which are
best aligned with the provided similarity labels for the re-
trieval task. As a result of optimization, distances between
similar bag pairs are minimized while distances between dis-
similar pairs are maximized with the learned metric.

The paper has two major contributions in the following:

1. It proposes the first supervised method for similarity re-
trieval of MI data using only pairwise label information.
The method does not require bag labels for training.

2. It develops a prototype optimization algorithm to produce
a discriminative bag-level feature encoding for similar-
ity retrieval. The algorithm is able to optimize prototypes
freely in the instance space and thus offers more flexibil-
ity and strength than existing feature encoding schemes
(Chen, Bi, and Wang 2006; Fu, Robles-Kelly, and Zhou
2011) that are only able to pick prototypes directly from
the training instances.
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Related Work
MI classification can be addressed at either instance or bag
level. Instance-level methods provide a bottom-up approach,
where models are trained for predicting instance labels. Bag
predictions can then be made by aggregating instance pre-
diction results based on the MI assumption. This leads to
a latent variable problem as instance labels are not ob-
served and need to be inferred from the training data and
bag labels. While early methods on MI learning use var-
ious heuristics to locate true positive regions in instance
feature space (Dietterich, Lathrop, and Lozano-perez 1997;
Maron and Lozano-Perez 1998; Zhang and Goldman 2002),
more recent instance-level methods attempt to adapt stan-
dard classification techniques to the MI setting, most notably
the Support Vector Machine (SVM) (Andrews, Tsochan-
taridis, and Hofmann 2003; Cheung and Kwok 2006; Jia
and Zhang 2008; Li et al. 2009; Li and Sminchisescu 2010;
Li et al. 2011; Wang et al. 2011) and ensemble methods
(Zhou and Zhang 2007; Babenko, Yang, and Belongie 2011;
Doran and Ray 2013).

Instance-level methods usually involve solving a non-
trivial inference problem on instance labels. This often leads
to complex mixed-integer type of optimization. To circum-
vent this issue, bag-level classifiers have been proposed as
alternatives. These methods take a top-down approach to MI
classification by creating a bag-level representation that pre-
serves the label constraints. The representation could be in
the form of bag feature vectors (Chen, Bi, and Wang 2006;
Fu, Robles-Kelly, and Zhou 2011), distance metrics (Wang
and Zucker 2000), or kernels (Gartner et al. 2002; Tao et al.
2008; Zhou, Sun, and Li 2009). Consequently, the original
MI problem is converted into a single-instance problem that
can be solved using standard techniques.

Despite the large number of methods proposed for MI
learning, they are all focused on either supervised or semi-
supervised classification tasks (Jia and Zhang 2008) and re-
quire at least bag labels for classifier training. This makes
them infeasible for the MI retrieval task discussed in this pa-
per, as neither instance nor bag labels are available for the
learning task. The only information given is the similarity of
each bag pair selected for training.

Another technique related to both MI learning and re-
trieval is the MI metric learning (Jin, Wang, and Zhou 2009;
Guillaumin, Verbeek, and Schmid 2010). Its purpose is to
learn an instance-level metric that improves the performance
of bag-level retrieval based on either standard or citation
K-Nearest Neighbor (KNN) models tailored to MI classi-
fication setting (Wang and Zucker 2000). Again, bag la-
bels are required in MI metric learning for the inference of
instance labels and optimization of instance-level metrics.
This is very different from the proposed MI retrieval algo-
rithm, which does not require bag labels for training and op-
erates in bag feature space directly for similarity retrieval.

Optimal Feature Embedding for MI Retrieval
Preliminaries and Overview of Approach
In this section, we define the MI retrieval problem and dis-
cuss how it is related to classification. After that, we present

an overview of our approach to MI retrieval.
Let {X◆|l◆=1} denote a MI data set composed of l bags.

Each bag X◆ = {x◆,p}n◆
p=1 contains a set of instances repre-

sented by instance feature vectors x◆,p, where ◆ and p denote
bag and instance indices, and n◆ is the number of instances
in bag ◆. Let y◆ and y◆,p denote the label value for bag ◆
and the pth instance in bag ◆ respectively, where y◆ = 1

for positive bag and y◆ = 0 for negative one. By the MI
assumption, instance and bag labels are related by the fol-
lowing constraints

y◆ =
n◆

max

p=1
y◆,p 8◆ (1)

At training stage, only bag labels are provided and instance
labels are not available.

Multiclass MI learning can be defined in a similar fashion,
by treating it as multiple binary problems and using a single
label variable for each class. Specifically, let yc◆ denote the
label value for bag ◆ and class c, with yc◆ = 1 if bag ◆ belongs
to class c and yc◆ = 0 otherwise. For each class c, bag labels
yc◆ and corresponding instance labels yc◆,p are related by the
same constraints in eq. (1).

MI retrieval is different from the classification problem
above on how supervised information is provided. The pur-
pose of retrieval is to determine whether two objects are
similar or not. It can be treated as a binary classification
problem on pairs of objects, with positive labels for simi-
lar pairs and negative labels for dissimilar pairs. Hence for
MI retrieval training, given a data set {X◆|l◆=1}, we can
randomly sample a set of bag pairs given by the index set
S = {(i, j)|i, j = 1, . . . , l, i 6= j}. The corresponding label
set is {si,j}(i,j)2S , where si,j is the similarity label for bag
pair (i, j). si,j = 1 if bags i and j are similar and si,j = 0 if
they are dissimilar. It can be seen that similarity labels si,j
are implicitly related to bag labels by

si,j = sgn(yt
iyj) (2)

where yi = [y1i , . . . , y
r
i ] is the label vector for bag i, r is

the number of classes, sgn is the sign function taking the
value of 1 for positive input and 0 otherwise. Thus, two bags
are similar if they belong to the same class and share true
positive instances from that class.

Clearly, MI retrieval defines a more generic scenario that
includes MI classification as a special case, as one can infer
the similarity label on bag pairs given the bag labels on the
right-hand-side of eq. 2 but not vice versa. With MI clas-
sification, only the instance labels are implicit and bag la-
bels are provided for training. With MI retrieval, neither in-
stance nor bag labels are available for training. Moreover,
the number of classes is implicit. This motivates a differ-
ent approach to MI retrieval instead of applying standard MI
learning methods to retrieval.

Due to the presence of too many latent variables in the MI
retrieval scenario, we adopt a top-down bag-level approach
that sidesteps the difficult inference problems encountered
with instance-level methods. Our approach is visualized in
Figure 1. First, we leverage a feature encoding scheme that
maps each bag of instances into a single feature vector. The
feature encoding is parametrized by a set of prototypes in
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Figure 1: Diagram of proposed MI retrieval solution.

the instance space. Hence one can control the bag feature
vectors by purely adjusting the prototypes. To utilize the dis-
criminant label information for bag pairs, the optimal proto-
types should return bag feature vectors such that similar bags
are pulled together and dissimilar bags are pushed away in
the bag feature space, as shown in Figure 1. Consequently,
given a bag for query, one can simply search for similar bags
in the database based on the distances between bag feature
vectors parametrized by the optimized prototypes.

Note that a similar strategy was employed by metric learn-
ing (Jain et al. 2012) and supervised hashing (Liu et al. 2012)
techniques for learning discriminative feature subspaces and
hash functions in single instance scenarios. The proposed
approach extends the idea to the MI scenario and provides
an integral solution that directly optimizes the bag-level fea-
ture encoding for MI retrieval.

Bag Feature Encoding
The label constraints in eq. 1 indicate that only the maximum
value is relevant when predicting the bag label from instance
prediction results. Similarly, for nearest neighbour search of
bags, we only need to consider the closest instances in two
bags. This implies the use of the following Hausdorff dis-
tance for bag comparisons, which was adopted in the citation
KNN framework (Wang and Zucker 2000)

dHXi,Xj
=

ni

min

p=1

nj

min

q=1
d
xi,p,xj,q =

ni

min

p=1

nj

min

q=1
kxi,p � xj,qk (3)

Equivalently, we can map the above distance to the similarity
metric below using the exponential operator

sHXi,Xj
=

ni
max

p=1

nj
max

q=1
e��kxi,p�xj,qk2

(4)

Despite its simplicity, the above bag similarity metric is
quite sensitive to noises and outliers. A single outlier can
contaminate the similarity computation. It also lacks the
flexibility to adapt to different data distributions. To over-
come this issue, we can use a reference point z for bag sim-
ilarity calculation in the following

s
0

Xi,Xj
=

ni
max

p=1

nj
max

q=1
e��(kxi,p�zk2+kxj,q�zk2) (5)

=(

ni
max

p=1
e��kxi,p�zk2

) (

nj
max

q=1
e��kxj,q�zk2

)

It is easy to verify that the above modified similarity metric
provides a lower bound on the metric in eq. 4. Moreover, it

can be decomposed into the product of two terms as shown
above. Each term only depends on instances in one bag and
thus can be treated as a feature value for that bag.

To further improve robustness and flexibility, we can use
multiple reference points to encode each bag into a similarity
based feature vector in the following

˜

bi =
1

kbik
bi (6)

bi =[bi,1, bi,2, . . . , bi,m]

bi,u =

ni
max

p=1
e��kxi,p�zuk2

where {zu}mu=1 is a set of m reference points chosen to com-
pute the bag feature vectors. These are prototypes in the in-
stance space that can be used to control bag-level feature en-
coding. ˜bi is the normalized feature vector for bag i utilized
for bag-level comparison in the retrieval task. It is scaled
from the raw bag feature vector bi with m components bi,u.
Each bi,u is a feature component for bag i obtained by de-
composing the similarity metric in eq. 5 with prototype zu.
Note that the bag feature vectors defined above are entirely
parametrized by the prototypes zu. This motivates the pro-
totype optimization approach in the following section which
produces bag feature vectors that best preserve the discrimi-
nant information in pairwise bag labels.

The bag feature representation developed in eq. 6 estab-
lishes a generic encoding scheme for converting a MI prob-
lem into a single instance one. It reduces to the MILES
encoding scheme (Chen, Bi, and Wang 2006; Fu, Robles-
Kelly, and Zhou 2011) when unnormalized feature val-
ues are used. Normalization is crucial for the proposed
method here. Firstly, for L2 normalized feature vectors,
we can directly relate distance to correlation and develop
a simpler formulation for prototype optimization. We can
also eliminate the undesirable scaling effect in raw similar-
ity values with feature normalization. Moreover, both en-
coding schemes discussed in (Chen, Bi, and Wang 2006;
Fu, Robles-Kelly, and Zhou 2011) are only able to select
prototypes directly from training instances. On the other
hand, our prototype optimization algorithm can directly op-
timize the locations of prototypes by solving a continuous
optimization problem, thus offering more flexibility in the
resulting bag-level feature encoding.

The proposed feature encoding scheme is also more ef-
ficient than bag distance comparison. To compute the min-
imum distance in eq. 3, one needs to enumerate all pairs
of instances between two bags. Plus, all training instances
need to be stored in the database for future queries. This is
O(n2d) time complexity for a single operation of distance
calculation and O(lnd) space complexity for data storage,
where d is the dimension of instance space. In contrast, cal-
culating the bag feature vector is O(nmd) for each bag, but
this step can be done offline. It takes O(lm) space to store
all pre-computed feature vectors, and a single distance cal-
culation only costs O(m) time. Both are much lower than
the case of direct bag distance comparison.
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Prototype Optimization
The quality of bag feature vectors derived in eq. 6 com-
pletely depends on the choice of prototypes used for calcu-
lating the feature values. Choosing good prototypes to pro-
duce a discriminative feature encoding for the retrieval task
is a non-trivial issue. It can potentially get more complicated
for real-world MI retrieval problems with multiple classes
and multimodal instance distributions. Furthermore, the lack
of explicit class membership information makes it hard to
apply density based methods such as diverse density (Maron
and Lozano-Perez 1998) or kernel density estimation (Fu,
Robles-Kelly, and Zhou 2011) to locate good prototypes in
the instance space.

In this section, we devise a prototype optimization algo-
rithm to solve the above problem. The proposed algorithm
only uses the similarity labels as supervised information to
guide the selection of prototypes that achieves maximal dis-
criminability between similar and dissimilar bag pairs. Ide-
ally, the chosen prototypes should produce bag feature vec-
tors such that the feature vectors for similar bag pairs are
pulled together while the feature vectors for dissimilar bag
pairs are pushed away in the bag feature space.

The use of L2 normalization in eq. 6 offers a simple solu-
tion. Since all bag feature vectors are located on the unit ball
and each feature component si,u takes positive values, we
can easily verify that the correlation values between any two
bag-level feature vectors are bounded in the range of [0, 1].
Therefore, the correlation values can be utilized to reliably
measure the degree of similarity. A correlation value close
to 1 indicates the bags are similar, and a correlation value
close to 0 indicates dissimilarity. This leads to the following
least squares formulation for prototype optimization

min

z

Q(z) =

X

(i,j)2S

(⇢i,j � si,j)
2 (7)

where ⇢i,j = ˜

b

T
i
˜

bj is the shorthand for the correlation value
between the normalized bag feature vectors for bag i and bag
j defined in eq. 6. The similarity label si,j takes the value of
1 for a similar pair and 0 for dissimilar pair. By minimiz-
ing the above cost function, the correlations between simi-
lar pairs are maximized by driving their values towards 1,
whereas the correlations between dissimilar pairs are mini-
mized by driving their values towards 0.

With normalized feature vectors, correlations are directly
related to the distances. Specifically, the following one-to-
one map between correlation and distance holds

di,j = k˜bi � ˜

bjk =

p
2� 2⇢i,j

Distances between different bag pairs are also bounded in
the range [0,

p
2]. A smaller distance between two bags indi-

cates a stronger correlation and a similar pair, while a larger
distance indicates otherwise.

Hence, we can also define an equivalent optimization
problem to eq. 7 in the form of distances as follows

min

z

Qd
(z) =

X

(i,j)

�
di,j �

p
2� 2si,j

�2
(8)

By optimizing the cost function above, similar bag pairs
are pulled together in the bag feature space while dissimi-
lar pairs are pushed away.

The distance-based cost function defined above relates
our prototype optimization algorithm to metric learning
techniques (Jain et al. 2012), as both aim to minimize the
distances between similar examples and maximize the dis-
tances between dissimilar ones. Although it is possible to
apply metric learning to fixed bag feature vectors induced
from predefined prototypes, the performance relies heavily
on the quality of feature vectors and the choice of proto-
types in the feature encoding step. On the other hand, the
proposed prototype optimization approach aims to directly
optimize the bag feature encoding in a supervised fashion
by utilizing the similarity labels between bag pairs and thus
is able to maximally preserve the discriminative information
in training.

In the following, we still solve the correlation based prob-
lem formulation, as it leads to simpler gradient calculation.
By taking the derivative of the cost function in eq. 7 with
respect to each zu, we have

@Q(z)

@zu
=

X

(i,j)

(⇢i,j � si,j)
X

v

 
@˜bi,v
@zu

˜bj,v +
@˜bj,v
@zu

˜bi,v

!

@˜bi,v
@zu

=

8
>><

>>:

1

kbik
@bi,u
@zu

�
˜bi,v˜bi,u
kbik

@bi,u
@zu

8v = u

�
˜bi,v˜bi,u
kbik

@bi,u
@zu

8v 6= u

(9)
Since bi,v is obtained from a max operator in eq. 6, it is

not differentiable with respect to zu. To calculate the term
@bi,u
@zu

, we use the sub-derivative instead, by simply treating

the feature value si,v equal to the maximum value on the
right hand side of the equation in each iteration. The result-
ing partial derivative is then given by

@bi,u
@zu

=2�si,u(x
⇤
i,u � zu) (10)

x

⇤
i,u =arg max

x2Xi

e��kx�zuk2

= arg min

x2Xi

kx� zuk2

where x

⇤
i,u denotes the nearest neighbor of prototype zu

among all instances in bag i . Based on the feature encod-
ing scheme presented above, only the closest instance con-
tributes to the corresponding feature value and needs to be
considered in derivative calculation. However, note that the
nearest instance might change over the iterations. Thus x⇤

i,u
values need to be updated for each iteration.

By plugging eq. 10 into eq. 9 and making necessary sim-
plifications, we can obtain the final partial sub-derivative
with respect to zu in the following

@Q(z)

@zu
=4�

X

i,j

(⇢i,j � si,j)[�i,j,u(x
⇤
i,u � zu)

+ �j,i,u(x
⇤
j,u � zu)] (11)

�i,j,u
4
=

˜bi,u˜bj,u � ⇢i,j˜b
2
i,u
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Given the sub-gradients, we can then employ any first-
order iterative optimization algorithm to solve the formu-
lated problem. In this paper, we used a conjugate gradient
method with a maximum of 100 iterations. Compared to
standard gradient descent, conjugate gradient method en-
joys faster convergence and can also be applied to non-
differentiable objective function as long as the sub-gradient
exists (Wolfe 1975).

As the cost function is non-convex, proper initialization
is crucial to avoid obtaining poor solutions. A reasonable
choice is to apply a clustering algorithm on the training in-
stances and select the cluster centroids as the initial pro-
totypes. Compared with random selection of training in-
stances, clustering is more appropriate since the cluster cen-
troids roughly spread over the instance space and cover the
modes of the training instance distribution.

Experiments
Synthetic Data
In our first experiment, we demonstrate the effectiveness
of prototype optimization for bag-level feature embedding
with synthetic data. A three-class multiple instance data
set was created and shown in Figure 2(a). The data set
contains 50 bags from each of the three classes. Each
bag contains one positive and four negative instances.
The negative instances for all bags were generated from
a Gaussian distribution N([1,�1]

T , 0.52), and the posi-
tive instances for each class were generated from Gaus-
sian distributions N([1, 1]T , 0.252), N([�1, 1]T , 0.252),
and N([�1,�1]

T , 0.252) respectively. The positive in-
stances from three different classes were marked by cir-
cles, triangles and squares in the plot, and the negative in-
stances were marked by dots. Intuitively, this problem can be
solved using bag feature vectors computed from three proto-
types located at the centers of the three positive distributions.
However, the initial prototypes returned by cluster centroids,
marked by ’x’ signs in the plot, were far from the desirable
configuration. This is because negative instances dominate
in the training instances, making the cluster centroids bias
towards the negative distribution.

To optimize over the initial prototypes, we randomly gen-
erated 10 similar and 10 dissimilar constraints from each bag
based on class labels. Final prototypes returned by the opti-
mization algorithm were marked by ’+’ signs in the same
plot. We notice that the optimized prototypes cover all the
positive classes and are close to the centers of the Gaussian
distributions from which positive data were generated. To
compare the effectiveness of prototype optimization, we also
visualize the bag feature vectors for the initial and optimized
prototypes in Figures 2(b) and 2(c) respectively. Principle
component analysis was used to project the original three-
dimensional feature vectors into the two-dimensional plane
in the two plots. The bag feature vectors produced by the op-
timized prototypes clearly outperform those produced by the
initial prototypes by pulling together features from similar
bags and pushing away features from dissimilar bags. Fig-
ure 2(d) shows that the cost function value decreases mono-
tonically over the iterations. The reductions are more signif-

(a) Data set (b) Initial bag features

(c) Final bag features (d) Cost over iterations

Figure 2: Prototype optimization on synthetic data set.

icant for the first few iterations, indicating the effectiveness
of prototype optimization.

Benchmark Data
Data Sets We used four real-world benchmark data sets
in our experiment, including two data sets on drug activity
prediction (MUSK1 and MUSK2), two data sets on image
categorization (COREL-10 and COREL-20). MUSK1 and
MUSK2 were first introduced in (Dietterich, Lathrop, and
Lozano-perez 1997) and have been widely used as the stan-
dard benchmarks for MI learning. MUSK1 contains 47 pos-
itive bags and 45 negative ones, with an average of 5.2 in-
stances in each bag. MUSK2 contains 39 positive bags and
63 negative ones, with an average of 64.7 instances in each
bag. COREL-10 and COREL-20 were from the COREL im-
age collection and introduced in (Chen, Bi, and Wang 2006).
COREL-20 contains 2000 JPEG images from 20 categories,
and COREL-10 contains 1000 images from 10 categories.
Each image is segmented into 2-13 regions from which tex-
ture features are extracted, which give a bag of instances
representation at image level.

Methods Existing supervised methods in MI classification
all require bag labels for classifier training. This is not the
case for the MI retrieval scenario as only similarity labels
are provided for training. Hence, it is impossible to apply
these methods directly to the MI retrieval task. To this end,
we employed the following unsupervised methods as base-
lines and compared them with the proposed supervised MI
retrieval method on the retrieval performance.
• minDist - the Hausdorff distance defined in eq. 3. This is

the same bag distance metric used by the Citation KNN
classifier (Wang and Zucker 2000).

• meanSim - the similarity metric modified from eq. 4 by
replacing the max with the mean operator. Note meanSim
is equivalent to the MI kernel developed in (Gartner et al.
2002) for the classification problem.

• bagFeat - distances derived from bag feature vectors de-
fined in eq. 6. Based on how prototypes are chosen for
feature encoding, we have three variants: bagFeatR for
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random prototypes, bagFeatC for prototypes chosen from
cluster centroids, bagFeatO is our proposed supervised
method with optimized prototypes.

Experiment Setup and Evaluation For the COREL
data sets, we randomly split each data set into two equal
halves as the training and query sets. For the smaller MUSK
data sets, we adopted 10-fold validation for each single train-
ing and query round. Since bag labels are available for all
four data sets, we synthesized the pairwise labels by ran-
domly selecting 10 bags from the same and different classes
respectively to form similar and dissimilar pairs for each bag
in the training set. We then discarded the bag labels and used
the labeled pairs only for training. For bagFeat, the � param-
eter in eq. 6 was empirically set to the inverse of the instance
feature dimension. Moreover, we tested different number of
prototypes (32, 64 and 128) for all three bagFeat variants.

For each method and data set, the experiment was re-
peated 10 times using different random data partitions.
Query results for each method are ranked in increasing dis-
tances or decreasing similarities. To evaluate the retrieval
performance, we calculated the mean average precision
(MAP) and precision for top-K retrievals (PrecK, with K=10
in our experiment) from the query results.

Prec@K =

1

lq

lqX

j=1

KX

i=1

spj
i ,j

K
(12)

MAP =

1

lq

lqX

j=1

lX

k=1

kX

i=1

s
p
j
k
,j
=1

spj
i ,j

k
(13)

where i and j denote the indices of training and query ob-
jects, lq is the number of queries, pjk denotes the rank of the
kth bag for querying bag j in the query set. Note the MAP
measure defined above is calculated by matching individual
query results directly with similarity labels. It is different
from the MAP measure for classification (Jin, Wang, and
Zhou 2009), which evaluates query results by checking their
consistency with ground truth class labels and is not appli-
cable to the MI retrieval setting. The MAP measure used
here does not require bag labels and can be calculated solely
based on the input bags and similarities.

Results Table 1 shows the retrieval results obtained by
different methods on benchmark data. From the table, we
can see that feature encoding based methods obtain rela-
tively better performance than bag-level distance or simi-
larity comparison. meanSim performs rather poorly on all
data sets, whereas the performance of minDist is on par with
bagFeatR. For the bagFeat variants, the proposed bagFeatO
returns the best results on all data sets, achieving quite a
significant gain over all other methods in both evaluation
measures. This empirically demonstrates the effectiveness
of prototype optimization for MI retrieval. Furthermore,
the performance gaps between different number of proto-
types are not as significant as the gaps between different
initializations for bagFeat. We can see that the proposed
bagFeatO with 32 prototypes still produces far better results
than bagFeatR and bagFeatC with 64 or 128 prototypes.

Figure 3: Distance distributions for similar (in dark shade)
and dissimilar (in bright shade) pairs on MUSK2 (left)
and COREL-20 (right) data sets. Top row: histograms for
bagFeatC; bottom row: histograms for bagFeatO.

To further visualize the effectiveness of prototype opti-
mization, we made histogram plots to capture the distance
distributions for similar and dissimilar pairs on the MUSK2
and COREL-20 data sets in Figure 3, where the top and bot-
tom rows in the figure show the distance distributions before
and after optimization. We can clearly see that distances for
similar pairs are driven towards the lower bound of 0 and
distances for dissimilar pairs are driven towards the upper
bound of 1 after optimization. It is particularly obvious for
the MUSK2 data, which explains the great competitive edge
bagFeatO gains over other methods on this data set.

Conclusions
In this paper, we proposed the first approach for MI retrieval
with similarity labels. Our approach converts bags of in-
stances into single feature vectors using a feature encoding
scheme, and employs a prototype optimization algorithm to
produce optimized bag features for similarity retrieval.

The proposed approach relies on unambiguous notion
of similarity. This is not the case for multi-labeled data,
where each example can have multiple class labels. In-
tensive research was done recently in the area of multi-
instance multi-label (MIML) learning (Zhou et al. 2012;
Nguyen et al. 2014). It would be interesting to extend our
approach to the MIML retrieval scenario in the future.

Another interesting future direction is to investigate the
use of an overcomplete set of prototypes for bag feature en-
coding and the metric learning techniques for dimensionality
reduction (Jain et al. 2012). A larger number of prototypes
helps retain the discriminant information in training with in-
creased computation cost. Hence, one needs to carefully bal-
ance the trade-off between efficiency and performance.
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Table 1: Performance comparison of different methods for MI retrieval on benchmark data.
Methods Prec@10 MAP

MUSK1 MUSK2 COREL-10 COREL-20 MUSK1 MUSK2 COREL-10 COREL-20
minDist 0.681 0.630 0.496 0.330 0.628 0.606 0.385 0.227

meanSim 0.641 0.546 0.271 0.159 0.621 0.588 0.227 0.128

m = 32

bagFeatR 0.625 0.566 0.510 0.325 0.591 0.571 0.368 0.204
bagFeatC 0.660 0.588 0.544 0.348 0.610 0.576 0.392 0.219
bagFeatO 0.969 0.871 0.671 0.449 0.956 0.885 0.588 0.350

m = 64

bagFeatR 0.631 0.564 0.535 0.340 0.599 0.571 0.382 0.211
bagFeatC 0.639 0.586 0.547 0.354 0.601 0.579 0.390 0.217
bagFeatO 0.941 0.880 0.667 0.463 0.942 0.895 0.591 0.358

m = 128

bagFeatR 0.638 0.562 0.551 0.356 0.607 0.571 0.393 0.220
bagFeatC 0.639 0.576 0.554 0.364 0.610 0.576 0.397 0.226
bagFeatO 0.964 0.885 0.713 0.495 0.949 0.892 0.628 0.383
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