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Abstract

Due to the simplicity and efficiency, many hashing
methods have recently been developed for large-scale
similarity search. Most of the existing hashing meth-
ods focus on mapping low-level features to binary
codes, but neglect attributes that are commonly as-
sociated with data samples. Attribute data, such as
image tag, product brand, and user profile, can rep-
resent human recognition better than low-level fea-
tures. However, attributes have specific characteris-
tics, including high-dimensional, sparse and categori-
cal properties, which is hardly leveraged into the exist-
ing hashing learning frameworks. In this paper, we pro-
pose a hashing learning framework, Probabilistic
Attributed Hashing (PAH), to integrate at-
tributes with low-level features. The connections be-
tween attributes and low-level features are built through
sharing a common set of latent binary variables, i.e.
hash codes, through which attributes and features can
complement each other. Finally, we develop an efficient
iterative learning algorithm, which is generally feasible
for large-scale applications. Extensive experiments and
comparison study are conducted on two public datasets,
i.e., DBLP and NUS-WIDE. The results clearly demon-
strate that the proposed PAH method substantially out-
performs the peer methods.

Introduction
Attributes, which are often derived from human knowledge,
represent characteristics of entities (e.g. users, images, etc.)
in different aspects. From the view point of computational
intelligence, attributes are imperative to improve data usabil-
ity through giving a new view from human cognition. Thus,
attributes have been ubiquitously used in various applica-
tion scenarios, such as image and video tags in social me-
dia platform, product attributes (e.g. brands, materials etc.)
in e-commerce, user profiles (e.g. age, gender etc.) in so-
cial networks and so on. These attributes provide an effec-
tive and efficient way for data management and organiza-
tion. More importantly, users’ interaction behaviors on en-
tities show obvious patterns over entity attributes. For ex-
ample, people tend to purchase products of a specific brand,
like images and videos with a specific group of tags, and
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read papers written by a specific group of researchers. This
property sheds lights on similarity search, where low-level
features alone perform poorly. How to integrate attributes
with low-level features for large-scale similarity search is
of paramount significance for information retrieval, recom-
mendation, and other real-world applications.

Hashing is a class of efficient methods for large-scale
similarity search (Indyk and Motwani 1998; Weiss, Tor-
ralba, and Fergus 2008; Wang, Kumar, and Chang 2012;
Liu et al. 2011). Most of the existing methods are designed
to map low-level features to binary code space, namely
Hamming space. Typically, attribute data has specific char-
acteristics, such as high-dimensional, sparse, and categor-
ical properties. For instance, in the public image dataset
NUS-WIDE (Chua et al. 2009), a small subset of Flickr,
there are over 400, 000 unique textual tags and each im-
age is associated with just 18 tags on average. However,
most of the existing hashing learning methods are more
feasible for dense and continuous feature representations.
Specifically, many of the linear projection methods rely
on the estimation of a data covariance matrix for find-
ing optimal projections (Weiss, Torralba, and Fergus 2008;
Wang, Kumar, and Chang 2012; Gong and Lazebnik 2011;
Strecha et al. 2012), but it is difficult to estimate the data co-
variance for extremely high-dimensional and sparse attribute
data due to the well-known sample complexity issue. In ad-
dition, some existing supervised and semi-supervised learn-
ing frameworks for hash function design require acquiring a
set of pairwise labels that can often be estimated by comput-
ing the amounts of commonly shared semantic tags (Zhang
et al. 2010; Liu et al. 2011; Wang, Kumar, and Chang 2012).
Due to extremely sparse attributes, such estimation for pair-
wise similarity will be much less reliable. Therefore, it re-
mains a challenging issue to effectively leverage the attribute
data into the hash function design.

In order to incorporate attributes to design more effective
hash function, we need to address the following three chal-
lenges. First, how to exploit the complementary relationship
between attributes and low-level features? Low-level fea-
tures are often less descriptive but easily available. Although
more descriptive, user-generated attributes often tend to be
incomplete. Thus, the resulted hashing can expect to benefit
much from the complementary properties of attributes and
low-level features. Second, how to accommodate the differ-
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ent characteristics of attributes and features? Since attributes
are often in discrete and categorical space and features are
often in continuous space, it requires different assumptions
and hypothesis of the data. Third, how to achieve a scalable
solution for learning hash functions? As attributes are high-
dimensional and sparse, the hash models need to be learned
on large-scale database in order to receive sufficient seman-
tic information and avoid overfitting.

To address the above challenges, we propose a probabilis-
tic generative model, Probabilistic Attributed
Hashing (PAH). Attributes and low-level features are
both generated from a set of latent binary variables, i.e.,
hash codes. Thus, they can interact with each other through
these latent variables. To cope with different data character-
istics, we design two types of probabilistic generative pro-
cesses for attributes and features, respectively. First, for at-
tribute data, we employ a novel generative process based
on multinomial mixture distributions, which can be easily
adapted to the characteristics of attributes, and extract la-
tent attributes clusters. Then, for low-level features, we use a
Gaussian generative process to approximate the distribution
of continuous low-level features. Besides, we develop an ef-
ficient iterative learning algorithm with linear time complex-
ity for each updating process, and the learning of PAH is
fairly scalable for large-scale application. With PAH, we can
incorporate attributes into hashing, and generate more de-
scriptive hash codes. We perform extensive experiments and
compare with several representative hashing methods on two
public datasets, DBLP1 and NUS-WIDE. The results clearly
demonstrate that the proposed PAH method outperforms the
peer methods.

Related Work

Here we will briefly survey attribute based learning methods
and some representative hash function design approaches.

Learning with Attributes

As attributes can be more descriptive, many researchers
analyse and exploit them from various perspectives. In rec-
ommendation systems, Jiang et al. (2012a; 2012b) incorpo-
rate both friend relationships and tags into recommendation
algorithms to model the similarity between users. In docu-
ment representation, El-Arini et al. (2013) propose to model
documents by attributes of readers. Kim et al. (2012) ex-
ploits entities in documents to build more expressive, entity-
based topic model. Tang et al. (2013) uses different types
of context information to improve the performance of topic
modeling on sparse user-generated data. In computer vision,
the attributes are often regarded as multiple semantic labels.
Hence, the researchers focus on learning attribute represen-
tation of images that can further be used in object descrip-
tion (Farhadi et al. 2009), image retrieval (Zhang et al. 2013;
Yu et al. 2012; Douze, Ramisa, and Schmid 2011), and ob-
ject recognition (Lampert, Nickisch, and Harmeling 2009).

1http://www.informatik.uni-trier.de/∼ley/db/

Hashing
Hashing provides an efficient solution for approximate
nearest neighbor (ANN) search in large-scale high di-
mensional space. Many hashing methods are designed to
improve the search accuracy for a single type of fea-
tures (Indyk and Motwani 1998; Weiss, Torralba, and Fer-
gus 2008; Salakhutdinov and Hinton 2009; Liu et al. 2011;
Gong and Lazebnik 2011; Heo et al. 2012). For exam-
ple, Locality sensitive hashing (LSH)(Indyk
and Motwani 1998) generates hash codes by random pro-
jections. Spectral hashing (Weiss, Torralba, and Fer-
gus 2008) learns hash functions from the data distribution in
feature space.

In addition, various kinds of extra information are ex-
ploited to further improve the accuracy of hashing based
ANN search. As supervision information is available in
many scenarios, supervised (or semi-supervised) hash-
ing methods were proposed (Kulis, Jain, and Grauman
2009; Liu et al. 2012; Norouzi, Fleet, and Salakhutdi-
nov 2012; Torralba, Fergus, and Weiss 2008; Wang, Ku-
mar, and Chang 2012). For example, Semi-supervised
hashing(SSH) (Wang, Kumar, and Chang 2012) is pro-
posed to learn accurate and balanced hash codes when su-
pervision information is limited. KSH (Liu et al. 2012) in-
troduces kernelization into hash function design with afford-
able training cost.

Realizing that multiple types of features are also ubiq-
uitous (e.g. multiple image visual features), multi-modal
hashing methods have been recently invented (Bronstein
et al. 2010; Kumar and Udupa 2011; Song et al. 2011;
Zhen and Yeung 2012; Zhang, Wang, and Si 2011; Ou et al.
2013). Briefly, multi-modal hashing methods leverage com-
plementary features to generate more representative binary
codes. For example, Zhen et al. (2012) propose a proba-
bilistic model which preserves inter-modal and intra-modal
similarity simultaneously in the projected Hamming space.
Zhang et al. (2011) design composite hashing with multi-
ple source data (CHMS). Although these multi-modal hash-
ing methods can deal with multiple types of features, they
rely on a common model for all types of features. However,
due to the significantly different properties of the low-level
features and the attributes, the aforementioned multi-modal
hashing methods often produce poor performance if directly
applied to our setting. Finally, Wang et al. (2013) propose
a semantic hashing method (SHTTM) using document tags.
But, it uses document tags only in training procedure and ne-
glects the sparsity of tags which makes SHTTM not scalable
for high-dimensional attributes.

Framework of Probabilistic Attributed
Hashing

In this section, we first give the formal problem statement of
Probabilistic Attributed Hashing (PAH), and then describe
the details of the formulation and solution.

Notations
Attributes and features of entities are the inputs of PAH. Let
E = {e1, e2, ..., eN} be the set of entities, where N is the
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Figure 1: The graphical model of probabilistic attributed
hashing. Algorithm 1 presents the corresponding generative
process.

number of entities. Each entity ei has an attribute vector
ai = {ai1, ai2, · · · , aiMi

}, where Mi is the number of at-
tributes tagged on ei. All the attributes are from a attribute
vocabulary indexed by {1, 2, · · · , La}, where La is the size
of the attribute vocabulary. Let A = {a1,a2, · · · ,aN} be
the set of attribute vectors. We denote X ∈ RLf×N as the
feature matrix, where the i-th column vector xi is the feature
vector of the entity ei. The dimension of features is given as
Lf , respectively. PAH learns hash codes using both attributes
and features. Assume that H ∈ {0, 1}K×N is a binary ma-
trix and its i-th column hi is the hash code of ei and each
hash code consists of K bits. Let Y ∈ {1,−1}K×N be the
variant of H, where yki = 2 ∗ hki − 1.

Model Formulation
As shown in Figure 1 (Algorithm 1 presents the correspond-
ing generative process), PAH is a probabilistic generative
model. As attributes and low-level features are different rep-
resentations of common entities and complementary to each
other, we use common binary hidden variables (h in Figure
1) to integrate the information from the two representations.
In other words, attributes and low-level features are both
generated from common hash codes. The generation mech-
anisms tend to be fairly different due to different character-
istics of the attributes A and the features X. With the above
framework, attributes and low-level features are linked up,
and can transfer information to each other. Below we will
present each process in detail.

First, we construct a binary generative model for observed
attributes. As Latent Dirichlet Allocation (LDA) (Blei,
Ng, and Jordan 2003) has been a powerful tool for ex-
tracting latent semantic topics from high-dimensional and
sparse documents, we adopt a generative structure like
LDA. Unlike the standard LDA, we propose a novel bi-
nary generative process to fit the discrete property of
hash bits and attributes. Each value of each bit (i.e. 0
or 1) corresponds to a cluster of attributes, and we rep-

Algorithm 1 Probabilistic Attributed Hashing
1: for all hash bit h do
2: for all bit value {0,1} do
3: Draw ϕ from Dirichlet distribution Dir(β)
4: end for
5: Draw µ from Gaussian distribution N(γ, σ0 ∗ I)
6: end for
7: for all entity e do
8: for all hash bit h do
9: Draw θ from Beta distribution Beta(α)

10: Draw h from Bernoulli distribution Bern(θ)
11: end for
12: for all attribute a do
13: Draw z from uniform distribution

Unif(1, 2, · · · ,K)
14: Draw a from multinomial distribution

Multi(ϕhz,z)
15: end for
16: Draw x from Gaussian distribution

N(
∑K
k ykµk, σ ∗ I)

17: end for

resent it by a multinomial distribution on attributes, i.e.
p(aim|hi, ϕ, zim) = ϕhi,zim

,zim,aim . Here, ϕ ∈ R2×K×La

is a tensor denoting multinomial distributions,
∑
l ϕb,k,l =

1. Let ϕb,k = {ϕb,k,1, ϕb,k,2, · · · , ϕb,k,La
}. zim determines

that aim generates from the multinomial distributions of
zim-th hash bit. To balance the hash bits, we generate zim
uniformly, zim ∼ Unif(1, 2, · · · ,K). The hash bits are
generated from Bernoulli distributions, hki ∼ Bern(θki).
Hence, each hash code represents a mixture of hash bits:

p(aim|hi, ϕ) =
1

K

K∑
zim=1

ϕhi,zim
,zim,aim (1)

Thus, like LDA, attributes can be clustered through the co-
occurrence in attribute set of entities. Such a cluster strat-
egy using local relationship can avoid evaluating similarity
(or covariance) on sparse attributes which is not accurate as
mentioned in Introduction.

Besides, we choose the following two conjugate prior dis-
tributions to generate ϕ and θ:

ϕ ∼ Dir(β), θ ∼ Beta(α), (2)

where β and α are the hyper-parameters. Here, Dir(x) and
Beta(x) represent Dirichlet and beta distributions.

Then, for low-level features, we adopt a Gaussian gener-
ative model. We assume that the feature data X is gener-
ated from continuous Gaussian distributions. Take i-th en-
tity as example. Each value of each hash bit corresponds to
a sub-center (i.e. ykiµk), and each hash code corresponds to
a specific Gaussian center which is a mixture of sub-centers,∑K
k ykiµk. Thus, similar hash codes will generate similar

low-level features.

xi ∼ N(
K∑
k

ykiµk, σ ∗ I) (3)
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where I is an identity matrix and σ is the parameter of the
covariance.

Besides, we adopt the conjugate prior distribution below
to generate µ.

µk ∼ N(γ, σ0 ∗ I), (4)
where γ and σ0 are two hyper-parameters.

Iterative learning algorithm
To achieve optimal latent variables, i.e. H, ϕ ∈
[0, 1]2×K×La , and µ ∈ RLf×K , we use MAP (Maximum a
posteriori) to conduct model estimations. The posterior dis-
tribution is given as:

p(H, ϕ, µ|A,X, α, β, γ) ∝ p(A|H, ϕ) ∗ p(X|H, µ) (5)
∗ p(H|α) ∗ p(ϕ|β) ∗ p(µ|γ)

As it is intractable to perform the learning process simulta-
neously, we propose to learn H, ϕ, µ in an iterative way.

We update hash codes H bit by bit, i.e. we update each bit
hik by fixing other hash bits. Formally, we need to maximize
the following posterior distribution of hik

p(hik|h−ik,xi,ai, ϕ, α, µ) =
1

Z
p(ai|hi, ϕ) ∗ p(xi|hi, µ)

∗ p(hik|α) (6)

with

p(ai|hi, ϕ) =
Mi∏
m

p(aim|hi, ϕ)

p(hik|α) =
∫
p(hik|θ)p(θ|α)dθ =

αhik

α0 + α1
.

Here h−ik is the hash bits in hi except the bit hik and Z are
normalization constants.

Since hik is binary, we can get optimal hik by comparing
the two posterior probabilities of hik:

hik = sgn(log
p(hik = 1|h−ik,xi,ai, ϕ, α, µ)
p(hik = 0|h−ik,xi,ai, ϕ, α, µ)

), (7)

where sgn(·) is the sign function. Note that the hash codes of
queries are also computed by this algorithm with the learned
parameters ϕ and µ.

We use the EM (Expectation Maximization) algorithm to
learn ϕ through solving the following problem:

min −
N∑
i

Mi∑
m

K∑
zim

q(zim|hi, ϕ) log
p(aim, zim|hi, ϕ)
q(zim|hi, ϕ)

−
1∑
b=0

K∑
k

β> logϕb,k. (8)

E step: we calculate the posterior distribution as

q(zim|hi, ϕ) = p(zim|hi, ϕ, aim)

=
p(aim|zim,hi, ϕ)p(zim)

p(aim|hi, ϕ)

=
1

Czim
ϕhi,zim

,zim,aim

where Czim is a constant.
M step: we maximize ϕ with q(zim|hi, ϕ) fixed. To han-

dle the constraint
∑La

l ϕb,k,l = 1, we use the Lagrange mul-
tiplier and maximize the following objective:

max
N∑
i

Mi∑
m

K∑
zim

q(zim|hi, ϕ) log
p(aim, zim|hi, ϕ)
q(zim|hi, ϕ)

+
1∑
b=0

K∑
k

β> logϕb,k + λb,k(

La∑
l

ϕb,k,l − 1).

We can compute the optimal solution as:

ϕb,k,l =

∑
i∈I

∑
m∈M q(zim = k|hi, ϕ) + βl∑

i∈I
∑Mi

m q(zim = k|hi, ϕ) +
∑
l βl

, (9)

where I = {i|hik = b},M = {m|aim = l}.
Similar to the learning of ϕ, we estimate the parameter µ

through maximizing the following posterior distribution:

log(p(µ|X,H, γ)) = −
N∑
i

‖xi − µhi‖2F −
K∑
k

‖µk − γ‖2F

+ Cµ (10)

where Cµ is a constant. Then we can get the optimal esti-
mation of µ as

µ = (γ1> +XH>)(I+HH>)−1. (11)

Complexity Analysis
For the learning process of H, we need to calculate the prob-
ability of each hash bit. The time complexity isO(K∗(Ca+
N ∗ Lf )), where Ca is the total counts of all attributes, i.e.
the number of nonzero elements in A. For the learning of ϕ,
we only need to count the frequency of attributes for each
latent attribute and approximate the probability q, resulting
in the time complexity as O(K ∗Ca). For the learning of µ,
the time complexity is O(N ∗K ∗ Lf +K3). In summary,
the time complexity of each iteration is O(K ∗ (Ca + N ∗
Lf +K2)). Note that the time complexity is linear with re-
spect to the number of entities. Since the length of compact
hash codes (the value ofK) is often set to be small, the train-
ing procedure of the proposed PAH method is fairly efficient
in practice. Moreover, as the hash codes are updated inde-
pendently and the other latent variables (i.e. ϕ and µ) are
updated based on some simple statistics, we can implement
parallel PAH easily.

Experiments
In this section, we describe the experimental settings and
report the results.

Datasets
We perform the experiments and comparison using two pop-
ular benchmark datasets, i.e. the DBLP and the NUS-WIDE
dataset (Chua et al. 2009). NUS-WIDE is an image dataset
crawled from Flickr, which includes about 260, 000 im-
ages of 81 concept categories. We select the top 10 popular
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Table 1: Selected research fields and corresponding confer-
ences

Field Conference

Database ICDE, VLDB, SIGMOD,
PODS, EDBT

Data Mining KDD, ICDM, SDM,
PKDD, PAKDD

Artificial Intelligence IJCAI, AAAI
Information Retrieval SIGIR, ECIR

Computer Vision CVPR
Machine Learning ICML, ECML

Algorithms & Theory STOC, FOCS, SODA, COLT
Natural Language ACL, ANLP, COLINGProcessing

Bioinformatics ISMB, RECOMB

Networking SIGCOMM, MOBICOM,
INFOCOM

Operating Systems SOSP, OSDI
Distributed & PODC, ICSParallel Computing

concepts, and there are about 180, 000 images. All the im-
ages are described by user-generated tags. The 5, 018 tags
selected by NUS-WIDE are used as attributes, and 500-
dimension Bag-of-Visual-Word (BOW) of SIFT as features.
We randomly select 10, 000 images as our training set, and
5, 000 images as our test set for the comparison with other
methods. To test the efficiency of PAH, we randomly select
multiple training sets, where the number of images ranges
from 100 to 100, 000. We use the concepts as the ground
truth, i.e. two images are regarded similar when they share
common concepts, otherwise, they are dissimilar.

The DBLP dataset consists of the bibliographic informa-
tion of the computer science community. We select 12 fields
and 33 corresponding conferences (Table 1), which include
a total of 64, 256 papers. We keep the authors whose number
of papers is not less than 5, then get 3, 527 unique authors,
and about 20, 000 papers. For each paper, we use the au-
thors as our attributes, and its distributions over 100 LDA
topics (extracted from the titles and abstracts) as features.
We randomly select 10, 000 papers as our training set, and
another 10, 000 papers as queries for the comparison with
other methods. We use the research field labels as the ground
truth, i.e. two papers are regarded as similar when they are
published in a common field; otherwise, they are dissimilar.

Experiment Settings
We compare PAH with MLBE (Zhen and Yeung 2012),
CVH (Kumar and Udupa 2011), CHMS (Zhang, Wang, and
Si 2011), SHTTM (Wang, Zhang, and Si 2013), AGH (Liu et
al. 2011), SH (Weiss, Torralba, and Fergus 2008). Note that
MLBE, CVH, CHMS are multi-modal hashing methods that
treat features and attributes equally. SHTTM uses attributes
as supervision information, and only low-level features are
used as input of hash functions. We treat BOW of SIFT in
NUS-WIDE as document for SHTTM. In addition, we in-

clude two simplified versions of the PAH methods, i.e., the
PAH NF and the PAH NA, where PAH NF exploits attributes
only (omits the features) and PAH NA exploits features only
(omits the attributes). Since AGH and SH are two single fea-
ture based methods, we concatenate attributes and features
into a single feature for both of them.

Given a query, the experimental evaluation considers the
most similar (based on Hamming distance) entities. Here
we measure the search quality using the MAP (Mean Aver-
age Precision) of top 500 returned results and the Precision-
Recall curve, where precision-recall pairs are obtained by
changing the search space range from Hamming radius 0
to K. For setting the hyper-parameters in PAH, we use grid
search to get the optimal hyper-parameters, and get α =
{0.1}2×1, β = {0.01}La×1, γ = {0}Lf×1. Note that the
parameters σ, σ0 weigh the contributions from the feature
data. Hence we get σ = σ0 = 1.0 for the DBLP dataset,
and σ = σ0 = 10−5 for the NUS-WIDE dataset, because
the document features represented by the distributions of the
hidden topics provide rich and reliable semantic meanings.

Finally, all the algorithms are implemented using Mat-
lab (the codes of baselines are provided by their authors),
and run experiments on a machine running Windows Server
2008 with 12 2.4GHz cores and 192GB memory.

Experimental Results
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Figure 2: Comparison study of the Precision-Recall curves
using different hashing methods. The top row shows the re-
sults on the DBLP data, and bottom row shows the results
on the NUS-WIDE data. From left to right, the subfigures
demonstrate the results using 16 and 32 hash bits, respec-
tively.

Figure 2 shows the precision-recall curves, where the PAH
method achieves the best performance in all test settings. In
Table 2, we show the performance measured by the MAP
on the DBLP and the NUS-WIDE datasets. Compared with
the best competing methods (except PAH NF and PAH NA),
the proposed PAH achieves around ∼ 7% relative improve-
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Table 2: The MAPs on DBLP and NUS-WIDE when the number of hash bits varies. PAH NF and PAH NA are two variants of
PAH, the others are competitive methods proposed in other papers.

Method DBLP NUS-WIDE
8 bits 16 bits 24 bits 32 bits 8 bits 16 bits 24 bits 32 bits

PAH 0.530 0.563 0.575 0.573 0.566 0.597 0.613 0.625
PAH NF 0.509 0.533 0.537 0.532 0.563 0.597 0.609 0.619
PAH NA 0.362 0.464 0.469 0.487 0.395 0.394 0.410 0.419
SHTTM 0.367 0.359 0.389 0.387 0.492 0.478 0.467 0.463

CVH 0.456 0.464 0.460 0.457 0.383 0.382 0.379 0.379
MLBE 0.256 0.267 0.270 0.250 0.350 0.350 0.350 0.350
CHMS 0.485 0.540 0.538 0.535 0.486 0.477 0.478 0.488
AGH 0.461 0.491 0.487 0.484 0.394 0.401 0.411 0.415
SH 0.299 0.347 0.361 0.366 0.352 0.355 0.355 0.357

ment on the DBLP, and ∼ 24% relative improvement on
the NUS-WIDE. The prominent advantage of PAH is at-
tributed to designing different generative processes to cope
with the specific characteristics of features and attributes. In
addition, the PAH method directly learns binary hash codes,
and avoids the suboptimality from performing binarization
as a postprocessing step. While the competing methods al-
most achieve the upper limit of performance when using 16-
bit hash codes, the MAP of PAH keeps increasing when the
number of hash bits increases. It indicates that our method is
more powerful to prevent overfitting and has stronger gener-
alization ability.

Since the PAH method outperforms both the PAH NF and
the PAH NA on MAP, it clearly demonstrates that both at-
tributes and features are complementary to each other, and
a joint use of both data tends to give better performance.
We also notice that PAH receives much higher improvement
over PAH NF on DBLP than that on the NUS-WIDE. Such
a phenomenon is consistent with our initial hypothesis that
the topic distribution based features on the DBLP data is
a more powerful descriptor than the BOW representation
of the NUS-WIDE data. In addition, the PAH NF method
works better than the PAH NA method on both datasets,
which indicates that attributes are more descriptive and are
better representation for assessing the similarities.
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Figure 3: Training time of PAH on NUS-WIDE. The left fig-
ure shows the trend of training time when the size of training
set varies (Different lines show the training time with differ-
ent bit nubmers). The right figure shows the trend of training
time when bit number varies (Different lines show the train-
ing time with different numbers of training examples).

Finally, we show the training time of PAH (Figure 3) to
demonstrate the scalability in practice. Figure 3(a) shows
that training time grows linearly with the size of training set.
Figure 3(b) shows that training time grows almost linearly
with respect to the number of hash bits when the training set
is large (e.g. 10000 and 100000). Although the time com-
plexity is O(K ∗ (Ca + N ∗ Lf + K2)), the bit number
K is often much smaller than the training set size in prac-
tice (e.g. 322 � 10000), so that the training time is almost
linear with respect to the number of hash bits. In addition,
when the hash bit number is 32, each training example just
costs about 20 milliseconds on average. So, PAH is feasible
even for very large-scale applications.

Conclusion
In this paper, we have proposed a probabilistic gener-
ative model, namely Probabilistic Attributed
Hashing (PAH), to integrate attributes and features for
improving the accuracy of hashing. PAH employs different
generative processes for attributes and features to capture
their unique characteristics. We designed an efficient itera-
tive learning algorithm where binary hash codes are learned
directly. Empirical study on two distinct benchmark datasets
has demonstrated the superiority of PAH, compared to sev-
eral representative hashing methods.

As input data is becoming increasingly more diverse, our
future work may focus on extending attributes to other com-
plex types of data, such as relative attributes (Parikh and
Grauman 2011). Besides, developing a supervised version
of PAH would be another interesting direction to pursue.
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