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Abstract

Linear discriminant analysis (LDA) is a popular dimension-
ality reduction and classification method that simultaneously
maximizes between-class scatter and minimizes within-class
scatter. In this paper, we verify the equivalence of LDA and
least squares (LS) with a set of dependent variable matrices.
The equivalence is in the sense that the LDA solution matrix
and the LS solution matrix have the same range. The result-
ing LS provides an intuitive interpretation in which its solu-
tion performs data clustering according to class labels. Fur-
ther, the fact that LDA and LS have the same range allows us
to design a two-stage algorithm that computes the LDA solu-
tion given by generalized eigenvalue decomposition (GEVD),
much faster than computing the original GEVD. Experimen-
tal results demonstrate the equivalence of the LDA solution
and the proposed LS solution.

Introduction
In classification, dimensionality reduction has been an im-
portant problem in many fields dealing with high dimen-
sional data. The main objective of dimensionality reduc-
tion is to discard redundant and noisy features while pre-
serving discriminative information so that the curse of di-
mensionality can be overcome. Linear discriminant analysis
(LDA) is a popular dimensionality reduction and classifica-
tion method that simultaneously maximizes between-class
scatter and minimizes within-class scatter (Bishop 2006)
(Fukunaga 1990), thereby keeping discriminative informa-
tion while reducing indiscriminative information. The orig-
inal formulation of LDA, known as Fisher’s linear discrimi-
nant, deals with binary classification. This binary-class LDA
is equivalent to a least squares (LS) problem with a partic-
ular dependent variable matrix (Bishop 2006). Many real-
world applications involve multiclass problems, and LDA
can be generalized to a multiclass problem. With the gen-
eralized Fisher criterion, LDA finds a subspace that has less
than or equal to c − 1 dimensions, where c is the number
of classes (Bishop 2006) (Fukunaga 1990). It has been pro-
posed that the range of the LDA solution matrix for the mul-
ticlass cases can be obtained from that of the LS solution
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matrix with a certain dependent variable matrix1 (Hastie,
Tibshirani, and Buja 1994).

Recently, there has been progress in generalizing the
equivalence of LS and LDA to multiclass cases without
regularization and multiclass cases with regularization. Ye
(2007) extended the equivalence to multiclass cases without
regularization by considering LS with one specific choice of
dependent variable matrix. Sun (2010) and Zhang (2010)
dealt with multiclass cases with regularization, which are of
more practical importance. They proposed a two-stage algo-
rithm that consists of an LS stage with a dependent variable
matrix and a generalized eigenvalue decomposition (GEVD)
stage, where the resulting transformation matrix consists of
the eigenvectors of the original LDA problem. Cai et al.
(2008) also considered multiclass cases with regularization
and proposed an algorithm to obtain the LDA solution sub-
space by solving LS. Their algorithm suggested a way to
find the dependent variable matrix. However, the theory for
the equivalence of LDA and LS has remained incomplete in
the sense that the necessary and sufficient condition for the
equivalence is unknown. Consequently, there has been no
simple way to check the validity of a potential candidate de-
pendent variable matrix with some desirable properties; the
equivalence needs to be proved once again for the candidate
dependent variable matrix. Similarly, a two-stage algorithm
was proposed and verified only for a specific choice of de-
pendent variable matrix (Sun, Ceran, and Ye 2010) (Zhang
et al. 2010).

In this paper, we complete the theory for the equivalence
of LDA and LS by establishing the necessary and sufficient
conditions for the dependent variable matrices, i.e., we iden-
tify the exact set of dependent variable matrices such that
the corresponding LS is equivalent to the LDA for any data
so that one can apply LS to obtain the LDA solution. The
equivalence is in the sense that they have the same solution
subspace (i.e., the same range). The resulting LS with the
set of dependent variable matrices provides an interesting
and appealing intuitive interpretation in that the mapping
for dimensionality reduction given by the LS solution, or
equivalently the LDA solution, performs a sort of data clus-

1For example, in a typical LS problem minW‖AW−B‖F , A
and B are the independent and dependent variable matrices for the
LS, respectively. In this paper, we use Y for the dependent variable
matrix.
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tering according to class labels. Furthermore, the resulting
necessary and sufficient condition is in a simple form that
allows us to easily check the validity of a potential candi-
date dependent variable matrix. For example, we designed
a new dependent variable matrix YB that has several desir-
able properties, including a low construction cost and almost
uncorrelated data vectors after dimensionality reduction; the
validity of YB is checked according to our theoretical re-
sults. We also generalize the two-stage algorithm proposed
by Sun (2010) and Zhang (2010) by enlarging the set of de-
pendent variable matrices for the first stage, and we show
that one can use this two-stage algorithm to implement a
fast dimensionality reduction by LDA to an arbitrary target
dimension.

Background
Notation
Let x ∈ Rd be a data point, and let l = ek ,
[0, · · · , 0︸ ︷︷ ︸
k − 1 zeros

, 1, 0, · · · , 0︸ ︷︷ ︸
c− k zeros

]T ∈ Rc be its corresponding label

vector, where k is the class of the data. Also, let X =
[x1, · · · ,xn] ∈ Rd×n be the collection of training data (data
matrix), and let L = [l1, · · · , ln] ∈ Rc×n be the collection
of the corresponding label vectors (label matrix), so that if
xi is in the k-th class, then li = ek. We refer to a solution
matrix W(p) or W ∈ Rd×p as a p-dimensional solution,
and its subspace ran (W) as the solution subspace. The no-
tations are presented in Table 1.

Table 1: Notations.
Symbol Description
dim (·) Dimension of the given subspace
null (·) Nullspace of the given matrix
ran (·) Range space of the given matrix
rank (·) Rank of the given matrix, rank (·) = dim (ran (·))
tr (·) Trace; summation of the diagonals of the given matrix
1, 0 One/zero vector; subscript indicates its dimension
I, O Identity/zero matrix; subscript indicates its dimension
n, nk The number of all data/data in the k-th class
d, p Original/projected data dimension
c The number of classes
γ Regularization parameter

W(·) Transformation matrix; subscript indicates the method
X Data matrix

L(·) , Y(·) Dependent variable matrix
Ŷ Transformed data matrix
m Total mean

mk , M k-th class mean / class mean matrix
S(·) Scatter matrix
C(·) Centering matrix; subscript indicates its dimension

For some 1, 0, I, O, and C, we added a subscript to clar-
ify their dimension. In a GEVD AW = BWΛ, we only
consider the positive eigenvalues, and the diagonals of the
eigenvalue matrix are sorted in descending order.

Linear Discriminant Analysis
LDA is a popular dimensionality reduction and classification
method that simultaneously maximizes between-class scat-
ter and minimizes within-class scatter (Bishop 2006) (Fuku-
naga 1990). The LDA solution W ∈ Rd×p maps the data
matrix X onto the transformed data matrix Ŷ = WTX.

Let m ∈ Rd be the mean vector, and let mk ∈ Rd be the
k-th class mean vector. With LB , (LLT )−

1
2 L, the scat-

ter matrices, which are in Rd×d, can be defined as follows:
ST ,

∑n
i=1(xi − m)(xi − m)T = XCXT

C = XCXT

and SB ,
∑c
k=1 nk(mk − m)(mk − m)T = XCBXT

where C = I− 1
n11T , XC = XC, and CB = CLTBLBC.

The scatter matrices ST and SB are referred to as the total
scatter matrix and between-class scatter matrix, respectively.
Note that C and CB are symmetric, idempotent (the square
of the matrix is the matrix itself), and centered (the mean
of column vectors is the zero vector). The matrix C is often
referred to as the centering matrix since multiplying this ma-
trix has the same effect as subtracting the mean vector from
every column of the target matrix.

The Fisher criterion can be defined in several ways, and
the following is a well-known form (Fukunaga 1990):

JLDA(W) , tr
(
(WTSTW)−1(WTSBW)

)
(1)

with an assumption that rank (ST ) = d. Note that total
scatter is used instead of within-class scatter, since it gener-
ates the same solution, and it is easier to deal with (Fuku-
naga 1990). One way to obtain an LDA solution is to solve
the generalized eigenvalue problem SBw = λSTw. In
that case, the LDA solution consists of the p eigenvectors
corresponding to the p largest eigenvalues and the value of
JLDA is the sum of the eigenvalues. Since it has at most
rank (SB)-positive eigenvalues, p = rank (SB) is enough
to maximize JLDA. Note that rank (SB) ≤ c − 1 where
the equality holds in most cases; for instance, it holds when
class mean vectors {mk}ck=1 are linearly independent.

On the other hand, if rank (ST ) < d, (1) is ill-posed. In
that case, there exist vectors in null (ST ) such that they are
geometrically the worst solution: if one takes these vectors
as projectors, all data are projected onto zero. In terms of
the Fisher criterion, theses vectors make the Fisher criterion
zero divided by zero since wTSBw = 0 and wTSTw = 0.
To deal with the problem, one can add a regularization ma-
trix into the total scatter matrix so that the problem becomes
well-posed, which is referred to as regularized LDA (RLDA)
(Friedman 1989). To represent the original LDA simultane-
ously, we define the regularized total scatter matrix as

ST,γ , ST + γI,

where γ ≥ 0 and rank (ST,γ) = d so that ST,γ is always
invertible. Note that it can be separated in two cases: either
a regularized case, γ > 0, or the original LDA case, γ = 0
and rank (ST ) = d.

JRLDA(W) , tr
(
(WTST,γW)−1(WTSBW)

)
.

Least Squares
LS finds a transformation from an independent variable ma-
trix A ∈ Rn×d to a dependent variable matrix B ∈ Rn×p
by minimizing the sum of squared error. Adding a positive
regularization term makes the solution unique: An regular-
ized LS (RLS) problem minW‖AW−B‖2F + γ‖W‖2F has
a unique solution W = (ATA + γI)−1ATB.

Previous studies showed a relation between LDA and LS
with A = XT

C and B = YT , where Y is related to the
label matrix L, e.g., Y = LB (Sun, Ceran, and Ye 2010)
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or Y = LBC (Ye 2007) (Zhang et al. 2010). With these
choices, the RLS solution WRLS can be represented as

WRLS = S−1
T,γXCYT (2)

and the equivalence of RLDA and RLS with these particular
choices of Y has been found in (Ye 2007), (Sun, Ceran, and
Ye 2010), and (Zhang et al. 2010) in the sense that the RLDA
solution obtained by the generalized eigenvalue problem and
this RLS solution have the same range.

Theoretical Analysis
In this section, we show the equivalence of LDA and LS.
Using this relationship, the LDA solution subspace can be
obtained by solving the LS, which is more computationally
efficient than GEVD. For convenience, let rB = rank (SB).

Range Uniqueness of RLDA Solutions
As is well known, an LDA solution can be obtained by
GEVD. However, the solution is not a unique solution but
a particular solution. One can verify the fact from the fol-
lowing proposition:
Proposition 1. For any nonsingular Ξ ∈ Rp×p,
JLDA(W) = JLDA(WΞ).

Proof. The proof follows from the properties (AB)−1 =
B−1A−1 and tr (AB) = tr (BA).

Proposition 1 implies that the LDA solution is not unique
and that the Fisher criterion value does not depend on the
bases but rather on the span of the bases: the Fisher criterion
is affine invariant. Consequently, we focus on the subspace
in this paper, since the solution subspace ran (W) matters2

instead of the solution W.
Let an eigenvector matrix W ∈ Rd×p satisfying SBW =

ST,γWΛ be the p-dimensional GEVD solution W
(p)
GEVD.

For p ≤ rB , any p-dimensional RLDA solution can be repre-
sented as a linear combination of the first p dominant eigen-
vectors.
Lemma 1. For p ≤ rB , there exist Ξ1 ∈ Rp1×p and Ξ2 ∈
Rp2×p such that

W
(p)
RLDA = W

(p1+p2)
GEVD

[
Ξ1

Ξ2

]
,

where p1 is the number of eigenvalues larger than the p-th
eigenvalue, p2 is the number of eigenvalues equal to the p-th
eigenvalue, rank (Ξ1) = p1, and rank (Ξ2) = p− p1.

Since the generalized eigenvalue problem has at most rB
positive eigenvalues, p ≤ p1 + p2 ≤ rB . In particular,
when p = rB , we have an equivalence ran

(
W

(rB)
RLDA

)
=

ran
(
W

(rB)
GEVD

)
, which means that the rB-dimensional

range is uniquely determined by the eigenspace. Further,
2JLDA(W) = JLDA(WΞ) alone does not guarantee that the

classification performance is the same for arbitrary classifiers un-
less the classifiers are affine invariant; however, since WTx and
ΞTWTx are reproducible from each other, they have the same
amount of discriminative information.

Lemma 2 shows that the rB-dimensional RLDA solution
subspace is uniquely determined by the data matrix and the
label matrix.

Lemma 2. ran
(
W

(rB)
RLDA

)
= ran

(
S−1
T,γXCLT

)
.

The equivalence of RLDA and RLS for the case p = rB
is considered in the next section, and then the analysis for
the case p < rB follows in another section.

Solution Subspace Equivalence of RLDA and RLS
In this section, we compare the rB-dimensional RLDA solu-
tion subspace and the RLS solution subspace. From (2) and
Lemma 2, one can expect that the range equivalence might
hold if Y has a relation with L. We introduce a lemma about
a set of Y ∈ RpLS×n, which turns out to be the exact condi-
tion of the equivalence:
Lemma 3.

Y = ZL for some Z, where rank (ZCc) = c− 1, (3)

or, equivalently,

Y = ZL for some Z, where rank
([

ZT 1
])

= c, (4)

if and only if

ran
(
CnLT

)
= ran

(
CnYT

)
.

We refer to the condition rank (ZC) = c − 1 as being
“centered rank” c− 1, e.g., Z is of centered rank c− 1.

Using a concept of Moore-Penrose pseudoinverse (Pen-
rose 1955), we present a general theorem for an arbitrary
data matrix X with a mild condition that its class mean ma-
trix M , [m1, · · · ,mc] is of centered rank c− 1, or equiv-
alently, rB = c− 1, which is true in most cases.
Theorem 1. Suppose that an arbitrary data matrix X and
label matrix L has a class mean matrix M of centered rank
c − 1, or equivalently, rank (SB) = c − 1. Then, Y =
ZL+Ξ(I−X+

CXC) for some Z of centered rank c− 1 and
some Ξ ∈ RpLS×n if and only if

ran
(
W

(rB)
RLDA

)
= ran (WRLS) .

Theorem 1 identifies the exact set of Y so that the RLDA
and RLS are equivalent for a specific X and L. It makes
sense that this set of Y depends on X. This theorem is of
theoretical importance as it delineates the exact boundary
for the set of valid Y for the equivalence. In practice, it is
more desirable to have a universal algorithm that works for
any data matrix X rather than a specific X. The following
theorem identifies the exact set of Y so that the equivalence
holds for any X.
Theorem 2. Suppose that d ≥ c − 1 and d ≥ 2.
For any data matrix X and label matrix L, if Y is in
the form of ZL where Z is of centered rank c − 1,
then ran

(
W

(rB)
RLDA

)
= ran (WRLS). Conversely, if

ran
(
W

(rB)
RLDA

)
= ran (WRLS) for any X and L, then Y

should be in the form of ZL where Z is of centered rank
c− 1.
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Note that Proposition 1 also holds for RLDA. The range
equivalence ran

(
W

(rB)
RLDA

)
= ran (WRLS) in Theorem 1

and 2 implies that an RLS solution maximizes JRLDA,
which means that the RLS solution is an RLDA solution.

Now, we focus on the dependent variable matrix Y. For
checking the validity of Y, (4) is useful: an Y in the form
of ZL is valid if rank

(
[ZT 1]

)
= c holds. Let us consider

this condition in more details. This condition can be sepa-
rated in two cases: rank (Z) = c or rank (Z) = c−1. Here-
after, we refer to such Zs as type 1 and type 2 matrix, and
Ws as type 1 and type 2 solution, respectively. First, con-
sider the type 1 case. As illustrated in Figure 1, for a matrix
Z whose columns are linearly independent, the RLS clusters
k-th class data around zk = Zek, the k-th column vector of
Z. That is, designing class vectors to be linearly indepen-
dent is sufficient to make the RLS solution equivalent to the
RLDA solution. Interestingly, it can be shown that any type

Figure 1: An example of transformation by W ∈ Rd×pLS

when pLS = c = 3 and Y = ZL ∈ Rc×n where Z =
[z1 z2 z3] has linearly independent columns.

1 solution is also a type 2 solution: Let Wt1 be a type 1 solu-
tion with Yt1 = Zt1L where Zt1 = [z1, . . . , zc] ∈ Rpt1×c.
For any vector a ∈ Rpt1 , with Z = Zt1 − a1T , we can get
the identical type 1 solution: using (2),

S−1
T,γXCLT (Zt1 − a1T )T

= S−1
T,γX(CLTZTt1 −CLT1aT )

= S−1
T,γXCLTZTt1 = Wt1,

where CnLT1c = Cn1n = 0n is applied. How-
ever, choosing an appropriate a, e.g., a = z1, we get
rank

(
Zt1 − a1T

)
= c− 1, hence Zt1 − a1T is type 2 and

the corresponding solution is a type 2 solution. Conversely,
a type 2 solution with an augmented zero vector turns out
to be a type 1 solution: Let Wt2 be a type 2 solution with
Yt2 = Zt2L where Zt2 ∈ Rpt2×c. Using a type 1 matrix[
ZTt2 1

]T
, one can find the relationship:

S−1
T,γXCLT

[
ZTt2 1

]
=
[
S−1
T,γXCLTZTt2 0

]
= [Wt2 0] .

Therefore, type 2 LS generates essentially the same solution
as type 1.

Now, we introduce two important and novel type 2 de-
pendent variable matrices, L− and YB , which can be com-
puted efficiently. With Z− , [Ic−1 0] ∈ R(c−1)×c,
L− , Z−L is a valid dependent variable matrix. With

this choice Y = L− ∈ R(c−1)×n, Y is the sparsest ma-
trix among the cases. Also, we introduce a full-rank fac-
torization of CB = CLTBLBC where LB = (LLT )−

1
2 L

is a scaled label matrix, referred to as YB , which satisfies
YT
BYB = CB and YBYT

B = I. The matrix can be repre-
sented as YB = ZBL, where ZB = {zBij} satisfies

zBij =


√

1
ni
− 1∑c

h=i nh
if i = j,

−
√

1∑c
j=i+1 nj

− 1∑c
j=i nj

if i < j,

0 otherwise,

(5)

where nk is the number of data in the k-th class.
Since ZB is nearly triangular, one can easily verify that
rank

([
ZTB 1

])
= c. Also, YT

BYB = CB and YBYT
B =

I are directly derived from (5).
It is often desirable that the transformed data are un-

correlated or that the transformation matrix has orthogonal
columns. The dependent variable matrices can be chosen
depending on the desired property. Suppose that we want
the transformed data to be nearly statistically uncorrelated
without additional processing after RLS. With a mild as-
sumption rB = c − 1, which is true in most cases, YB

can be the choice: Consider the uncorrelatedness constraint,
WTSTW = I. Note that LDA with this constraint is re-
ferred to as uncorrelated LDA (ULDA) (Ye 2006) (Jin et al.
2001). Choosing Y = YB , we can see that

WTSTW = (XT
CW)T (XT

CW) ' YBYT
B = Ic−1.

Therefore, Algorithm 1 returns a transformation that pro-
duces nearly statistically uncorrelated transformed data and
has the same range as the RLDA solution.

Algorithm 1 Fast approximation of regularized uncorrelated
LDA (RULDA) (p = c− 1)
1. Compute YB = ZBL, where ZB = {zBij} in (5).
2. Solve W = argminW‖XT

CW −YT
B‖2F + γ‖W‖2F .

3. return W

Next, suppose we want to find an orthonormal basis of
the solution subspace ran (W), i.e., WTW = I, which
is referred to as orthogonal LDA (OLDA) (Ye 2006). In
this case, an additional thin QR factorization (Golub and
Van Loan 1996) is needed after RLS. Any Y that satisfies
the condition in (3) can be a candidate, but L− is preferable
due to its sparseness. Note that a thin QR factorization step
often improves classification performance of Euclidean dis-
tance classifier since the RLS solutions have skewed bases.
The fast regularized orthogonal LDA (ROLDA) algorithm is
presented in Algorithm 2.

Algorithm 2 Fast ROLDA (p = rB)
1. Solve W = argminW‖XT

CW − LT−‖2F + γ‖W‖2F .
2. Find the thin QR factorization W = Q [R1 R2], where
R1 is upper triangular.
3. return Q
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Two-stage RLDA Method Based on RLS and EVD
Suppose we desire to reduce the dimension to an arbitrary p,
where p ≤ rB . Although RLS can find pLS ≥ c− 1 vectors
such that the solution subspace is optimal, we cannot obtain
the optimal p-dimensional solution simply by choosing the
first p columns of the solution, unlike the GEVD solution.
In this case, we can find the solution in two stages: we first
obtain the RLS solution and then perform GEVD with the
small scatter matrices transformed by the basis of the RLS
solution subspace to obtain the p-dimensional optimal solu-
tion instead of GEVD of the large scatter matrices.
Theorem 3. For Y in the form of ZL where Z is of centered
rank c−1, let W1 = Q1R1 where Q1 ∈ Rd×rB be the thin
QR factorization of the LS solution

W1 = argmin
W
‖XT

CW −YT ‖2F + γ‖W‖2F ∈ Rd×pLS ,

and let W2 ∈ RrB×rB be the eigenvector matrix satisfying

(QT
1 SBQ1)W2 = (QT

1 ST,γQ1)W2Λ2.

Then, the two-stage RLDA solution Q1W2

[
Ip
O

]
is the p-

dimensional GEVD solution.
To make the transformed total scatter matrix used in the

second stage always nonsingular, an additional QR factor-
ization should be conducted before the second stage in The-
orem 3. The first stage finds the transformation that reduces
the dimension from d to rB , and the second stage finds the
transformation that further reduces the dimension from rB
to p. However, replacing GEVD with EVD, which needs
only one transformed scatter matrix, the more efficient algo-
rithm can be conducted, as in Algorithm 3. In the following
theorem, an additional constraint CYTYC = CB is suffi-
cient for the application of Algorithm 3. For example, LB
(Sun, Ceran, and Ye 2010), LBC (Ye 2007) (Zhang et al.
2010), and YB , which is proposed in this paper, satisfy this
condition.
Theorem 4. For Y satisfying CYTYC = CB , let W1 be
the LS solution

W1 = argmin
W
‖XT

CW −YT ‖2F + γ‖W‖2F ∈ Rd×pLS ,

and let W2 ∈ RpLS×rB be the eigenvector matrix of the
EVD of WT

1 XCYT , which satisfies(
WT

1 XCYT
)
W2 = W2Λ2. (6)

Then, the two-stage RLDA solution W1W2

[
Ip
O

]
is the p-

dimensional GEVD solution.

Computational Complexity Analysis
We use floating point operations (flops) (Golub and
Van Loan 1996) to measure the operation counts. Note that
flops do not consider several issues, such as memory alloca-
tion.

Table 2 summarizes the dominant term of the computa-
tional complexity of the compared methods.

Algorithm 3 Two-stage RLDA (p ≤ rB)
1. Solve W1 = argminW‖XT

CW − YT ‖2F + γ‖W‖2F
where Y ∈ {Y|CYTYC = CB}.
2. Find the EVD of WT

1 XCYT , (WT
1 XCYT )W2 =

W2Λ2.
3. Select the first p columns of W1W2 and normalize them:
for k = 1 . . . p, W(:, k) = W1W2(:, k)/‖W1W2(:, k)‖2.
4. return W

Table 2: Summary of computational complexity (Golub and
Van Loan 1996) (Anderson 1999) (Lehoucq, Sorensen, and
Yang 1998) (Stewart 2001). Note that s = min(n, d), h is
the number of iterations, and l ≥ c is the number of Lanc-
zos vectors used in the implicitly restarted Lanczos method
(Lehoucq, Sorensen, and Yang 1998). In the MATLAB
function “eigs”, at least l ≥ 2c is recommended.

Algorithm Dominant Term (Flops)

GEVD nd2 + 16
3
d3 + cd2

Iterative GEVD nd2 + 1
3
d3 + 2hld2 + 2h(l2 − c2)d + O(hl3)

LS nds + 1
3
s3 + 2cnd + 2cs2

GEVD and iterative GEVD are implemented by the MAT-
LAB functions “eig” and “eigs”, respectively; “eig” directly
finds the GEVD fully, while “eigs” iteratively finds the se-
lected number of eigenvalues and eigenvectors in descend-
ing order. LS is implemented with Cholesky factorization
(Golub and Van Loan 1996) and matrix inversion by for-
ward/backward substitution. Note that the computational
complexity of LS is related to s = min(n, d) because the
RLS solution can be represented in terms of the Gram ma-
trix of XC :

WRLS = XC(X
T
CXC + γI)−1YT .

Therefore, LS is faster than both GEVD and iterative GEVD
when the data are undersampled (n < d). In an oversampled
case (n > d), although the first two dominant terms of iter-
ative GEVD and LS are the same, the rest of the terms of
iterative GEVD are larger than those of LS.

Experimental Results
In this section, we verify the range equivalence and the cor-
rectness of the two-stage solutions. We also investigate the
performance of the proposed algorithms. All experiments
were done in MATLAB on a PC with an Intel Core i7-
3610QM CPU at 2.30 GHz and with 8 GB RAM.

Data Sets
We used three data sets for our experiment: the extended
Yale Face Database B (Georghiades, Belhumeur, and Krieg-
man 2001), the MNIST database of handwritten digits (Le-
Cun and Cortes 1998), and Isolet (Bache and Lichman
2013). For each data set, we chose two different sizes of
training data so that the experiments cover both undersam-
pled and oversampled problems, which are marked as (u)
and (o), respectively. We normalized the data so that their
norm is one. The data sets satisfy the condition rB = c− 1.
The data sets are summarized in Table 3.
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Table 3: Summary of data sets.

Data Set # of Training # of Test Dimension # of Classes
Samples (n) Samples (d) (c)

Yale B (u) 608 608 896 38Yale B (o) 1806
MNIST (u) 600 10000 784 10MNIST (o) 6000
Isolet (u) 520 1559 617 26Isolet (o) 6238

Compared Algorithms
There are two categories of methods to solve the LDA prob-
lem that we discussed in the previous sections: GEVD and
LS. All RLDA solutions obtained by GEVD are normalized:
‖wk‖2 = 1 for W = [w1, . . . ,wp]. An iterative GEVD
(I-GEVD) based on implicitly restarted Arnoldi method
(Lehoucq, Sorensen, and Yang 1998) is also compared. On
the other hand, we compare two LS algorithms with fixed
Ys, aRULDA and ROLDA, and three LS algorithms with
Y = ZL, where Z is randomly selected, referred to as type
1, 2, and 3, to verify the range equivalence. First, aRULDA
is the fast approximation of RULDA implemented in Algo-
rithm 1, and ROLDA is the regularized version of OLDA
implemented in Algorithm 2, respectively. The other three
LS have different properties: type 1 has rank (Z) = c, type
2 has {rank (Z) = c − 1 and rank

(
[ZT 1]

)
= c}, and

type 3 has rank (Z) = rank
(
[ZT 1]

)
= c − 1, so that

type 3 does not satisfy (3). Note that Theorem 2 guarantees
the validity of type 1 and type 2, but not type 3. The three
LS algorithms, type 1, 2, and 3, are also used to verify the
correctness of the two-stage solution. Finally, 2sRLDA is
the two-stage RLDA based on RLS and EVD, which is im-
plemented in Algorithm 3. Both LB and YB can be used
and there is no difference in terms of performance.

Results
Let W = QR be the thin QR decomposition of W. To
verify the range equivalence of two categories of methods,
ran (WRLDA) = ran (WRLS) as claimed in Theorem 2,
we use the fact that ran (WRLDA) = ran (WRLS) if and
only if QRLDAQT

RLDA = QRLSQT
RLS , which holds be-

cause QQT is an orthogonal projection onto ran (W) and
there is an one-to-one correspondence between QQT and
ran (W) (Golub and Van Loan 1996). Therefore, we can
empirically verify the correctness of Theorem 2 by check-
ing whether QRLDAQT

RLDA = QRLSQT
RLS holds. On

the other hand, note that eigenvectors can be permuted or
reflected, and these operations can be summarized as an or-
thogonal matrix: any eigenvector matrix can be expressed
as W∗P, where P is orthogonal. Since PPT = I, we
compared WWT = W∗W

T
∗ to verify the correctness of

the two-stage solutions. The regularization parameter is set
to be 10−4 on extended Yale B and 1 on the others. The
regularization parameter selection is not included, which is
out of scope of this paper. After the dimensionality reduc-
tion, we used a nearest centroid method for classification,
which is a Euclidean distance classifier: l = ek∗ where
k∗ = argmink‖x−mk‖2.

Table 4 supports our theoretical results. First, observe

that type 1 and type 2, which satisfy (3), have the same
range as GEVD, while type 3 does not. Our proposed al-
gorithms, aRULDA and ROLDA, do as well. Next, as we
expected, 2sRLDA, type 1, and type 2 make the same so-
lution as GEVD using two-stage method, while type 3 does
not. From Table 5, observe that the training time is much
less in the LS methods than in the GEVD methods, while
the test set accuracy is similar.

Table 4: The value of ‖QQT − Q∗Q
T
∗ ‖2 and ‖WWT −

W∗W
T
∗ ‖2 for verifying the range equivalence and the cor-

rectness of the two-stage solutions, respectively.

Data Set
Range Equivalence: ‖QQT −Q∗Q

T
∗ ‖2

I-GEVD LS LS
RLDA aRULDA ROLDA Type 1 Type 2 Type 3

Yale B (u) 2.4e-12 1.5e-11 4.7e-10 3.2e-09 1.5e-11 1.0e+00
Yale B (o) 1.4e-11 4.6e-13 4.3e-11 1.8e-10 1.9e-11 1.0e+00
MNIST (u) 1.5e-14 6.8e-15 6.3e-14 4.9e-13 4.0e-14 1.0e+00
MNIST (o) 6.5e-14 9.3e-14 5.6e-13 7.6e-12 1.2e-12 1.0e+00
Isolet (u) 3.0e-14 8.0e-15 1.4e-13 1.3e-11 9.2e-14 9.9e-01
Isolet (o) 1.4e-13 4.1e-14 2.3e-12 9.9e-12 6.4e-13 1.0e+00

Data Set
Solution Correctness: ‖WWT −W∗W

T
∗ ‖2

I-GEVD LS-EVD LS-GEVD
RLDA 2sRLDA Type 1 Type 2 Type 3

Yale B (u) 2.7e-12 2.4e-10 2.4e-09 1.8e-11 1.0e+00
Yale B (o) 2.1e-11 6.4e-13 1.2e-11 1.9e-11 1.1e+00
MNIST (u) 1.6e-14 8.5e-15 5.5e-14 4.5e-14 1.1e+00
MNIST (o) 6.6e-14 1.6e-14 2.3e-13 1.1e-12 1.0e+00
Isolet (u) 3.0e-14 1.3e-14 8.1e-14 9.4e-14 1.0e+00
Isolet (o) 1.3e-13 5.4e-14 2.6e-13 7.4e-13 1.0e+00

Table 5: Test set accuracy and training time.

Data Set
Test Set Accuracy (%)

GEVD I-GEVD LS LS-EVD
RLDA RLDA aRULDA ROLDA 2sRLDA

Yale B (u) 93.59 93.59 92.43 89.64 93.59
Yale B (o) 98.85 98.85 98.68 97.70 98.85
MNIST (u) 85.60 85.60 85.85 84.65 85.60
MNIST (o) 87.86 87.86 87.99 87.43 87.86
Isolet (u) 87.30 87.30 86.08 85.44 87.30
Isolet (o) 94.55 94.55 93.91 93.84 94.55

Data Set
Training Time (msec)

GEVD I-GEVD LS LS-EVD
RLDA RLDA aRULDA ROLDA 2sRLDA

Yale B (u) 373.5 178.7 18.1 17.6 20.3
Yale B (o) 424.2 202.6 61.3 55.8 59.2
MNIST (u) 201.0 68.0 15.9 15.4 16.9
MNIST (o) 311.5 151.9 93.6 105.2 96.2
Isolet (u) 150.4 68.2 11.5 11.1 12.3
Isolet (o) 209.2 135.4 75.9 77.5 93.9

Conclusion
A relation between LDA and LS is discussed in this paper.
LDA has the same solution subspace with LS if and only if
the dependent variable matrix Y is in the form of ZL where
rank (ZC) = c−1. That is, the solution subspace, where the
solution maximizes between-class scatter while minimizing
within-class scatter, is equal to the LS solution subspace,
where the solution clusters all data according to the class.
In addition, based on the relation, we generalized the two-
stage algorithm by enlarging the set of dependent variable
matrices.
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