
The Dynamic Chinese Restaurant Process
via Birth and Death Processes

Rui Huang
Department of Statistics

The Chinese University of Hong Kong

Fengyuan Zhu∗ and Pheng-Ann Heng
Department of Computer Science and Engineering

The Chinese University of Hong Kong

Abstract

We develop the Dynamic Chinese Restaurant Process
(DCRP) which incorporates time-evolutionary feature
in dependent Dirichlet Process mixture models. This
model can capture the dynamic change of mixture com-
ponents, allowing clusters to emerge, vanish and vary
over time. All these macroscopic changes are controlled
by tracing the birth and death of every single element.
We investigate the properties of dependent Dirichlet
Process mixture model based on DCRP and develop
corresponding Gibbs Sampler for posterior inference.
We also conduct simulation and empirical studies to
compare this model with traditional CRP and related
models. The results show that this model can provide
better results for sequential data, especially for data with
heterogeneous lifetime distribution.

1 Introduction
Dirichlet Process Mixture (DPM) model has been widely
used in statistical data analysis and machine learning, es-
pecially in modeling clustered data. Traditional DPM pos-
sesses good properties in many aspects, but its static feature
makes it not applicable in evolutionary clustering problems.
First, the exchangeability assumption embedded in a DPM
is usually questionable for data with time dependency. That
is, data generated at different time points may not be ex-
changeable. Instead, the “partial exchangeability” is more
realistic (Ahmed and Xing 2008). Second, DPM cannot cap-
ture the dynamic change of cluster weights and parameters
for an evolutionary clustering model. Third, the “rich-get-
richer” phenomenon in DP is problematic in many applica-
tions. To solve the evolutionary clustering problem, many
authors developed time varying models on dependent data.
These models include the time-sensitive DPM model (Zhu,
Ghahramani, and Lafferty 2005), the temporal DP mixture
model (Ahmed and Xing 2008), the Generalized Pólya-urn
process mixture model (Caron, Davy, and Doucet 2012) and
the Distance-dependent CRP (Blei and Frazier 2011).

Even though the existing models characterize the depen-
dency of data from different aspects and handle the evolu-
tionary clustering problem, we observe that they share some
features in common that could be further improved. First of
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all, most models operate in discrete time. This implicitly re-
quires a ‘discretization’ procedure that can lead to loss of
information. Furthermore, all existing models apply homo-
geneous rules to measure the ‘influence’ of existing data.
For example, the recurrent CRP (Ahmed and Xing 2008)
deletes all data before the previous time period, which im-
plicitly assumes that data created at the same time will have
similar influence on the generation of new data. In this case,
the evolution of clusters is expected to share a statistically
homogeneous feature.

Unfortunately, the homogeneity assumption may not be
valid in many real applications. Intuitively, it is natural to
measure the influence of an existing datum (word) on future
data by its lifetime. That is, a datum is influential as long as
it is “surviving”. The death of a datum could be defined by
some appropriate criteria based on practical considerations
and the death should be observable. In this view, the lifetime
distribution is usually heterogeneous. This could be better il-
lustrated by an Internet news modeling example, in which all
news is assumed to be generated from certain topics (clus-
ters) over time. In this example, we can claim the death of a
word if the news containing it has no more comments from
Internet users for two consecutive days. Moreover, a topic
is considered to be dead if all words generated from it are
dead. From this perspective, we can expect at least two types
of heterogeneities. First, the cluster evolution heterogeneity
occurs. A piece of news is usually triggered by an under-
lying event. Therefore, some topics based on certain type
of events are expected to be popular for a long time while
others are not, and the difference may be substantial. This
leads to the dynamic change of cluster weights. More im-
portantly, the heterogeneity in the lifetime of words within
a topic occurs. For instance, within the topic “SPORTS”,
words related to “the World Cup” may be hot for several
weeks during the game, while words related to “scandals of
athletes” may only last for a few days. This kind of hetero-
geneity leads to the dynamic change of cluster parameters.
However, even though such heterogeneities might be com-
plex, the lifetime can be usually observed under some prac-
tical criteria in real applications without substantial cost, and
these observations certainly increase our information about
the evolutionary clustering problem. In view of this, we de-
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velop a Dynamic Chinese Restaurant Process (DCRP) which
is a novel generalization of the Chinese Restaurant Process
(CRP) (Teh 2007). In our model, the emergence and disap-
pearance of data over time are modeled by a birth and death
process. For the evolutionary clustering problem, we present
a new framework of DCRP mixture model with Gibbs sam-
pling algorithms. The simulation and empirical study show
that our DCRP mixture model has good performance both
for data with homogeneous and heterogeneous lifetime. For
the latter case our model provides substantially improve-
ments compared with other related models.

2 The Dynamic Chinese Restaurant Process
and DCRP Mixture Model

2.1 The Dynamic Chinese Restaurant Process

A DCRP can be described by the following metaphor. Sup-
pose we have a Chinese restaurant with infinite many tables.
Customers are assumed to enter the restaurant in group ac-
cording to some birth process. The birth time is described by
some model Mb. For each customer entering the restaurant,
he will choose to sit at a table according to a CRP scheme.
Simultaneously, the customers existing in the restaurant will
leave according to some death process. That is, each cus-
tomer will stay in the restaurant for some lifetime (determin-
istic or stochastic), and then leave. Lifetime distribution is
described byMd. Typically,Md could be taken as determin-
istic, exponential or Weibull distribution, or a heterogeneous
model. Note that birth and death processes involved in this
model are not necessarily continuous-time. For example, if
Mb is chosen to be the case that customers enter at equally
spaced time points, and Md is taken to be deterministically
unit length, then the model is reduced to the recurrent CRP.

In order to describe the DCRP mathematically, we intro-
duce the following notations:

Table 1: Notations for Defining DCRP

SYMBOL DESCRIPTION
Ti Birth-time of i-th group
Ni Number of customers in i-th group
Li,j Lifetime of j-th customer in i-th

group
Ii,j,t Status indicator of j-th customer in

i-th group at time t. Ii,j,t = 1 if j-
th customer in i-th group is in the
restaurant at time t and Ii,j,t = 0
otherwise

Sk,t Number of survived customers (ar-
rived before time t) in table k at
time t

Kmax Largest index of tables have ever
been occupied

zi,j Table index of j-th customer in i-th
group

With these notations, a DCRP could be formulated as fol-

lows.

Ti ∼Mb (i = 1, 2, . . .)

Li,j ∼Md (i = 1, 2, . . . ; j = 1, 2, . . . , Ni)

Ii,j,t = 1{Ti + Li,j > t}

Sk,t =
i−1∑
m=1

Nm∑
n=1

1{zm,n = k, Im,n,t = 1}

zi,j | z1:i−1,·, zi,1:j−1 ∼
α1{zi,j = Kmax + 1}∑Kmax

k=1 Sk,Ti
+ j − 1 + α

+∑Kmax

k=1 (Sk,Ti
+

∑j−1
l=1 1{zi,l = k})1{zi,j = k}∑Kmax

k=1 Sk,Ti
+ j − 1 + α

Several remarks should be mentioned here to provide a clear
understanding of DCRP. First, there are two levels of pro-
cesses in DCRP. One is the birth-death process of customers,
which is controlled by the birth time and lifetime of each
customer. The other is the latent cluster assignment process,
which is a CRP-type scheme depending on the first level
birth-death process. Second, DCRP relaxes the exchange-
ability assumption of traditional CRP, while preserves the
“partial exchangeability”. That is, the customers within each
group are exchangeable, but customers in different groups
are not. Finally, it could be imagined that the existence of
death process will result in extinction of clusters, and ac-
celerate emergence of new clusters, hence allowing time-
varying parameters in the model.

(a) Number of items in differ-
ent clusters.

(b) Number of clusters.

Figure 1: Simulation results of DCRP

Figure 1 demonstrates the simulation results of DCRP.
We set Mb as Exponential(λ) with λ = 100 and Md as
Exponential(µ) with µ1 = 10 and µ2 = 50 representing
low and high death rate respectively for comparison. Figure
1a illustrates that the number of items in different clusters
can vary over time. The number of items in a cluster can
either increase or decrease. Old clusters can fade out while
new ones can emerge. Popular clusters can become unpop-
ular and vice versa. Figure 1b shows the evolution of num-
ber of clusters over time with pure birth process, birth and
death process with low death rate and high rate. With the
death process, the number of clusters can either increase or
decrease and higher death rate can lead to more significant
fluctuation.
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2.2 DCRP Mixture Model
We can establish a dependent DP mixture model by using
DCRP as prior. Consider a DCRP mixture model as follows.

θk ∼ H k = 1, 2, . . .

(zi,·, Ti, Li,·, Ni) | FT−
i
∼ DCRP (α;Mb,Md)

i = 1, 2, . . .

xi,j | zi,j ∼ F (θzi,j )

where FT−
i

denotes all the information up to time Ti. In
this model, data are observed in groups. Observable vari-
ables include Ti, Ni, Li,j , and xi,j . It should be noticed that
the L′i,js can be both uncensored or right-censored (Law-
less 2011), which means we can fully observe the lifetime
of a dead datum, while we can only observe the living time
for a survived datum. Latent variables include the zi,j and
θk. Our problem of interest is that upon observing all data
in a time interval [0, t] (where t is chosen based on prac-
tical consideration), we want to make inference on the la-
tent variables, hence estimate the whole model. After that,
predictions could be made based on the estimated model.
Note that Mb and Md here are important for prediction, and
they could be estimated by a variety of statistical approaches
based on the observations.

2.3 Inference
In this section we show how to make inference on the DCRP
mixture model. Suppose that in a time interval [0, t], we have
made the following observations:

• Birth time of i-th group: Ti, i = 1, 2, . . . , n

• Number of data in i-th group: Ni, i = 1, 2, . . . , n

• Lifetime of j-th customer in i-th group: Li,j , i =
1, 2, . . . , n − 1; j = 1, 2, . . . , Ni (uncensored or right-
censored)

• Value of j-th datum in i-th group: xi,j
Our objective is to estimate the birth modelMb, death model
Md, and find the posterior distribution of latent cluster as-
signment indicators zi,j and cluster-specific parameters θk.

Estimation of Mb and Md Estimating Mb and Md based
on the observations T1, . . . , Tn and L1,·, . . . , Ln−1,· is a
general statistics problem, and a variety of parametric or
nonparametric methods could be applied here based on the
nature of observed data. It should be noted thatMd is impor-
tant to capture the scheme of dependency (homogeneous or
heterogeneous), and bothMb andMd are needed for predict-
ing new data. Although the estimation of Mb and Md might
be complicated, we want to emphasize that it is not a trouble
if our main objective is modeling the observed data, rather
than predicting the future. In fact, as we will see later, the
posterior inference of latent cluster assignments and cluster
parameters does not depend on Mb and Md given the ob-
served birth time and lifetime.

As an illustrative example, for simplicity we assume
T1, T2 − T1, . . . , Tn − Tn−1

i.i.d.∼ Exp(λ) and Li,j
i.i.d.∼

Exp(µ). Since the birth time T1, T2, . . . , Tn can be fully ob-
served, it is easy to get the maximum likelihood estimator
(MLE) of λ

λ̂ =
n

Tn

For estimation of µ, note that the observations can be right-
censored, with censoring time ci,j = t − Ti, we can derive
the likelihood function of the observed lifetimes following
(Lawless 2011)

L(µ) =
n−1∏
i=1

Ni∏
j=1

(µe−µti,j )δi,j (e−µti,j )1−δi,j

= µr exp

−µ n−1∑
i=1

Ni∑
j=1

ti,j


where ti,j = min{Li,j , ci,j}, δi,j = 1{Li,j < ci,j} and
r =

∑n−1
i=1

∑Ni

j=1 δi,j . Therefore, the MLE for µ is

µ̂ =
r∑n−1

i=1

∑Ni

j=1 ti,j

Posterior Distribution of zi,j and θk To simplify the no-
tations, let X = (x1,1, . . . , xn,Nn), N = (N1, . . . , Nn),
T = (T1, . . . , Tn), L = (L1,1, . . . , Ln,Nn

), Z =
(z1,1, . . . , zn,Nn

), Θ = (θ1, . . . , θm), where m =
∑n
i=1Ni

is the maximum possible number of clusters given the ob-
servations. In order to draw samples from the joint posterior
distribution of (Z,Θ) via a Gibbs Sampler, we want to de-
rive the conditional distributions P (Z | Θ,X,N,T,L) and
P (Θ | Z,X,N,T,L).

First, to derive P (Z | Θ,X,N,T,L), we have
P (Z | Θ,X,N,T,L) ∝ P (Z | N,T,L)×

n∏
i=1

Ni∏
j=1

f(xi,j | θzi,j )
(1)

where P (Z | N,T,L) is the prior distribution of Z, which
is given by the DCRP and can be further decomposed as

P (Z | N,T,L) =P (zn,· | z1,·, . . . , zn−1,·)×
P (zn−1,· | z1,·, . . . , zn−2,·) . . .
P (z2,· | z1,·)

(2)

Here zi,· = (zi,1, . . . , zi,Ni) denotes all the cluster assign-
ment indicators in group i.

Then, to derive P (Θ | Z,X,N,T,L), we assume all
θ′ks are conditionally independent given (Z,X,N,T,L).
Therefore,

P (Θ | Z,X,N,T,L) ∝
m∏
k=1

P (θk | Z,X,N,T,L)

∝
m∏
k=1

h(θk) ∏
zi,j1{Ti+Li,j>t}=k

f(xi,j | θk)

 (3)

where h(θk) is the prior distribution of θk and the last pro-
duction is taken over all the survived data points in cluster k
at time t.
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2.4 Gibbs Sampling Algorithms
Based on the construction of DCRP mixture model and
posterior inference, we can now develop a Gibbs sampler
to simulate samples from the joint posterior P (Z,Θ |
X,N,T,L). The algorithm consists of two steps: First,
given Θ(k),X,N,T,L, we sample Z(k+1) from P (Z |
Θ(k),X,N,T,L). Second, given Z(k+1),X,N,T,L, we
sample Θ(k+1) from P (Θ | Z(k+1),X,N,T,L).

We start with the first step. To sample Z from P (Z |
Θ,X,N,T,L) we sequentially sample zi,·, i = 1, 2, . . . , n
from P (zi,· | z−i,·Θ,X,N,T,L), where z−i,· denote all
the cluster indicators excluding i-th group.
For i = 1, we have

P (z1,· | z−1,·Θ,X,N,T,L) ∝ P (z1,· | Θ,N,T,L)×

P (z2:n,· | z1,·,Θ,N,T,L)

N1∏
j=1

f(x1,j | θz1,j )

(4)
For i = 2, 3, . . . , n− 1, we have

P (zi,· | z−i,·Θ,X,N,T,L) ∝
P (zi,· | z1:i−1,·,Θ,N,T,L)×

P (zi+1:n,· | z1:i,·,Θ,N,T,L)

Ni∏
j=1

f(xi,j | θzi,j )

(5)
For i = n, we have

P (zn,· | z−n,·Θ,X,N,T,L) ∝

P (zn,· | z1:n−1,·,Θ,N,T,L)

Nn∏
j=1

f(xn,j | θzn,j
)

(6)

Then, we complete the whole algorithm by finishing
the second step, which is to update Θ from P (Θ |
Z,X,N,T,L). Note that this is exactly given by (3). There-
fore, we have

P (Θ | Z,X,N,T,L) ∝
m∏
k=1

h(θk) ∏
zi,j1{Ti+Li,j>t}=k

f(xi,j | θk)

 (7)

2.5 Prediction
It is often desirable to predict the distribution of new data
based on the estimated model. Since the model is time-
varying, this predictive distribution will depend on the birth
time of a new datum. Suppose that we have observations
X,N,T,L in [0, t], and we want to predict the distribution
of a new data point at time t′ > t, then the predictive distri-
bution is given by

P (x | t′,Θ,Z,X,N,T,L) =

Kn+1∑
z=1

P (z | t′,Z,X,N,T,L)f(x | θz)
(8)

where Kn + 1 is the existing number of clusters.

Obviously, analytical solution of posterior predictive dis-
tribution could hardly be obtained. Even though we can
integrate out the latent variables in equation (8) with the
posterior distributions, the calculation will be very te-
dious, even impossible. However, this problem can be eas-
ily solved with Monte Carlo simulations based on the sam-
ples (Z(j),Θ(j)) drawn from the joint posterior distribution
P (Z,Θ | X,N,T,L).

3 Comparison with Related Works
There exist a variety of generalized CRP to model the evo-
lution of mixture models over time. One such model is the
time-sensitive DP Mixture model (Zhu, Ghahramani, and
Lafferty 2005) where the contribution of each item in a clus-
ter decays exponentially. The temporal DP mixture model
(Ahmed and Xing 2008) is another approach which deletes
all previous items over discrete time. In this way, the weight
of each component is updated recurrently. The Distance-
dependent CRP (Blei and Frazier 2011) is a more general
model where the influence of each item varies by a general
decay function. The Generalized Pólya-urn Process mixture
model (Caron, Davy, and Doucet 2012) presents the varia-
tion of parameters by deleting particles with a fixed distri-
bution. The common assumption of these generalized CRP
models is that the influence rule of all data on the dynamic
mixture should be homogeneous, which is relaxed in our ap-
proach.

There also exist a number of dependent DP based on
other constructions. The pioneering work of MacEachern
introduced the “single-p DDP model” (MacEachern 2000)
which considers a DDP as a collection of stochastic pro-
cess. However, it does not consider the varying of the collec-
tion size over time. Grifin and Steel introduced the “order-
based” DDP (Griffin and Steel 2006) based on the stick-
breaking construction which reorders the stick-breaking ra-
tio over time. The “Local” DP (Chung and Dunson 2011) is
a generalized version of “order-based” DP, which regroups
stick-breaking ratios locally. Teh introduced the Hierarchi-
cal Dirichle process (Teh et al. 2006) where the base dis-
tribution of a child DP is its parent DP. This model has
been extended to the dynamic HDP (Ren, Dunson, and
Carin 2008) by combining the weighted mixture formulation
with HDP. There are also a number of models which con-
struct DDP from the perspective of the relation between DP,
Gamma Process and Poisson Process (Rao and Teh 2009)
(Lin, Grimson, and Fisher III 2010). Considering from dif-
ferent perspectives, the inference and sampling of these ap-
proaches are also different from our DCRP mixture model.

4 Experiment
4.1 Simulation Study
In this section, we perform a simulation study to demon-
strate the application of the DCRP mixture model for mod-
eling evolutionary clustered data. Also, we compare the ex-
periment results with the following benchmark models: the
traditional CRP (CRP), the recurrent CRP (rCRP) and the
Distance-dependent CRP (dd-CRP) with exponential decay
function which has best performance in the original paper.
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Experiment Setting We generate two datasets from a
time-varying mixture model. In dataset 1, lifetimes of gen-
erated data are homogeneous while they are heterogeneous
in dataset 2. We utilize the observed lifetimes of data to es-
timate the decay function in dd-CRP. We use the same base
distribution H for each model and the concentration param-
eter α of each model is set to be 2.

Figure 2: Number of clusters for dataset 1 (left) and dataset
2 (right).

Figure 3: Kullback-Leibler Distance between estimated
model and true model dataset 1 (left) and dataset 2 (right).

Results In our Gibbs sampler we ran three chains with dif-
ferent initial values and a sample of size 2000 is collected af-
ter 1200 iterations (burn-in time). We use the potential scale
reduction factor (Brooks and Gelman 1998) as the test cri-
terion for convergence. The reslut shows that all parameters
converge before the burn-in time.

Figure 2 demonstrates the number of clusters in estimated
models over time. It could be observed that our model can
better capture the dynamic change of the number of clusters
over time for both datasets. In figure 3, we compare the per-
formance of each model with the criterion of the Kullback-
Leibler divergence between the true model and the estimated
model over time. In dataset 1, all generalized CRP models
have significant improvement over the traditional CRP while
the difference of the results of these models is marginal. This
is because the lifetime distribution of each data is homo-
geneous. On the contrary, when the lifetime distribution of
each data is heterogeneous, our model has a clear improve-
ment over both traditional CRP and other generalized CRP
models.

4.2 Empirical Study
This section evaluates the proposed DCRP mixture model
on two datasets and compares the results with the traditional
CRP, the rCRP, the dd-CRP as well as two state-of-the-art
dynamic topic models: the topic over time (TOT) (Wang
and McCallum 2006) and the continuous time dynamic topic
model (CTDTM) (Wang, Blei, and Heckerman 2012).

Dataset Description We apply our model on two real
datasets:

Twitter We randomly select 10,000 Twitter users with
their full set of tweets between January 1st, 2013 and May
31st, 2013, resulting 74,593 distinct tweets. Each tweet con-
tains its content, the time it was posed and the time of its
replies. We consider the post time of a tweet as its “birth”
time and the time of its last reply plus 2 hours as its “death”
time.

NIPS We use dataset of all NIPS papers from 1987 to
2003 (17 years). We record the date of publication and the
date of its last citation plus two years, and consider they are
the “birth” and “death” time of this document.

Language Modeling We evaluate the proposed DCRP
mixture model on the two datasets with a comparison of
benchmark models. For all topic models, we set α = 2 for
both datasets while other hyper-parameters are set as sug-
gested in the original papers. The decay functions in dd-CRP
model for both datasets are trained by the observed lifetime
of each data. The twitter data are discretized on daily basis
for discrete-time models. For all models requiring Markov
Chain Monte Carlo, we run three chains with different initial
value. The burn-in time is set to be 1200 iterations and the
sample size is 2000. Convergence diagnostics is conducted
with methods mentioned above, which shows that all param-
eters converge within the burn-in period. We measure the
performance of each model by Bayes factor (BF) (Berger
and Pericchi 1996) over the traditional CRP.

The results of each model on the two datasets are illus-
trated in Table 2. The proposed model achieves a significant
improvement over baseline models for both datasets, espe-
cially for the twitter data which has a more significant intrin-
sic heterogeneity on topics over time.

Figure 4 illustrates an example of the evolution of words
distribution within a topic over time on Twitter dataset. From
01/10/2013 to 02/04/2013, the topic “SPORTS” was more
about the NFL games because of the NFL Playoffs and Su-
per Bowl. After that, the topic becomes relatively general.
Since 04/21/2013, the topic is more about basketball games
because of the start of NBA Playoffs. Figure 5 provides
the evolution of several topics discovered in NIPS data by
DCRP model. It clearly demonstrates the variation of popu-
larity of each topics over time.

Figure 6 describes two selected topics discovered by
DCRP, rCRP and ddCRP. In the twitter dataset, the topic
of “SPORTS” is identified by all models, and the shown re-
sults are top 10 words with highest probabilities within this
topic recorded at May 31st, 2013. We observe that rCRP and
dd-CRP classified the special issue of “Boston Marathon Ex-
plosion” into the topic “SPORTS”, while our DCRP model
identified it into a new cluster which is more about ter-
rorism. The interpretation is like this: intuitively, “Boston
Marathon” undoubtedly belongs to topic “SPORTS”, but
“Boston Marathon Explosion” is more likely to be gener-
ated from the topic “TERRORISM” rather than “SPORTS”.
Before the explosion, there is no topic about terrorism in our
dataset. After the explosion, our model detected the emer-
gence of a new topic about “TERRORISM”, which seems to
be a more reasonable result. For NIPS data, DCRP clearly
identified the topic of “PCA”. It also successfully identified
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Figure 4: Dynamics of topic “SPORTS” for Twitter data over time.

the emergence of the “exponential PCA” technique devel-
oped around the year of 2003. While rCRP and dd-CRP
model failed to identify that nonlinear dimensional reduc-
tion and metric learning are two techniques different from
PCA (though very similiar), and they mixed these three top-
ics together. However, DCRP has another two different top-
ics that covers nonlinear dimensional reduction and metric
learning respectively.

Table 2: Bayes Factors for Twitter and NIPS Dataset

Model Twitter NIPS

DCRP 104.3 53.5
dd-CRP 35.2 22.7
r-CRP 27.5 23.4
TOT 33.8 24.2
CTDTM 34.3 27.2

Figure 5: Dynamics of different topics for NIPS paper over
time.

Predictive Topic Coherence We examine the predictive
power of DCRP mixture model on the two datasets compar-
ing with benchmark models. For each dataset, we remove
the last 20 percent of data for cross validation. We evalu-
ate the quality of each model by estimating the topic coher-
ence(Mimno et al. 2011) of hold-out data with the predictive
distribution. The parameter setting of each model is the same
as last section.

The experiment results for each datasets have been illus-
trated in table 3. The proposed DCRP model performs better
comparing with baseline models.

Figure 6: Comparison of Different Models

Table 3: Predictive Topic Coherence for Twitter and NIPS
Data

Model Twitter NIPS

DCRP -15830 -20340
dd-CRP -17500 -21150
r-CRP -17070 -21930
CRP -18330 -23430
TOT -16930 -22730
CTDTM -17120 -21940

5 Discussion
In this paper we developed the dynamic Chinese Restaurant
Process and corresponding DCRP mixture model for model-
ing and prediction of sequential data with complex time de-
pendency. This model can successfully handle the case when
lifetime of data is observable, and provide substantially bet-
ter results for heterogeneous lifetime. The simulation and
empirical study show that our DCRP mixture model con-
sistently achieves superior performance over other related
models. In the future, we are interested in investigating the
case that “lifetime” of a data is not observable.

References
Ahmed, A., and Xing, E. P. 2008. Dynamic non-parametric
mixture models and the recurrent chinese restaurant process:

2692



with applications to evolutionary clustering. In SDM, 219–
230. SIAM.
Berger, J. O., and Pericchi, L. R. 1996. The intrinsic bayes
factor for model selection and prediction. Journal of the
American Statistical Association 91(433):109–122.
Blei, D. M., and Frazier, P. I. 2011. Distance dependent chi-
nese restaurant processes. The Journal of Machine Learning
Research 12:2461–2488.
Brooks, S. P., and Gelman, A. 1998. General methods for
monitoring convergence of iterative simulations. Journal of
computational and graphical statistics 7(4):434–455.
Caron, F.; Davy, M.; and Doucet, A. 2012. Generalized
polya urn for time-varying dirichlet process mixtures. arXiv
preprint arXiv:1206.5254.
Chung, Y., and Dunson, D. B. 2011. The local dirichlet
process. Annals of the Institute of Statistical Mathematics
63(1):59–80.
Griffin, J. E., and Steel, M. J. 2006. Order-based depen-
dent dirichlet processes. Journal of the American statistical
Association 101(473):179–194.
Lawless, J. F. 2011. Statistical models and methods for
lifetime data, volume 362. John Wiley & Sons.
Lin, D.; Grimson, E.; and Fisher III, J. W. 2010. Construc-
tion of dependent dirichlet processes based on poisson pro-
cesses.
MacEachern, S. N. 2000. Dependent dirichlet processes.
Unpublished manuscript, Department of Statistics, The Ohio
State University.
Mimno, D.; Wallach, H. M.; Talley, E.; Leenders, M.; and
McCallum, A. 2011. Optimizing semantic coherence in
topic models. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, 262–272. As-
sociation for Computational Linguistics.
Rao, V., and Teh, Y. W. 2009. Spatial normalized gamma
processes. In Advances in neural information processing
systems, 1554–1562.
Ren, L.; Dunson, D. B.; and Carin, L. 2008. The dynamic hi-
erarchical dirichlet process. In Proceedings of the 25th inter-
national conference on Machine learning, 824–831. ACM.
Teh, Y. W.; Jordan, M. I.; Beal, M. J.; and Blei, D. M. 2006.
Hierarchical dirichlet processes. Journal of the american
statistical association 101(476).
Teh, Y. W. 2007. Dirichlet processes: Tutorial and practical
course. Machine Learning Summer School.
Wang, X., and McCallum, A. 2006. Topics over time: a
non-markov continuous-time model of topical trends. In
Proceedings of the 12th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, 424–433.
ACM.
Wang, C.; Blei, D.; and Heckerman, D. 2012. Con-
tinuous time dynamic topic models. arXiv preprint
arXiv:1206.3298.
Zhu, X.; Ghahramani, Z.; and Lafferty, J. 2005. Time-
sensitive dirichlet process mixture models. Technical report,
DTIC Document.

2693




