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Abstract

Lasso is a popular method for high-dimensional vari-
able selection, but it hinges on a tuning parameter that
is difficult to calibrate in practice. In this study, we in-
troduce TREX, an alternative to Lasso with an inher-
ent calibration to all aspects of the model. This adapta-
tion to the entire model renders TREX an estimator that
does not require any calibration of tuning parameters.
We show that TREX can outperform cross-validated
Lasso in terms of variable selection and computational
efficiency. We also introduce a bootstrapped version of
TREX that can further improve variable selection. We
illustrate the promising performance of TREX both on
synthetic data and on two biological data sets from the
fields of genomics and proteomics.

Introduction
In recent years, statistical tools that can deal with high-
dimensional data and models have become pivotal in many
areas of science and engineering. The advent of high-
throughput technologies, for example, has transformed bi-
ology into a data-driven science that requires mathematical
models with many variables. The need to analyze and reduce
the complexity of these models has triggered an enormous
interest in high-dimensional statistical methods that are able
to separate relevant variables from irrelevant ones (Belloni
and Chernozhukov 2011; Bühlmann and van de Geer 2011;
Hastie, Tibshirani, and Friedman 2001). Among the many
existing methods, Lasso (Tibshirani 1996) and Square-Root
Lasso (or Scaled Lasso) (Belloni, Chernozhukov, and Wang
2011; Owen 2007; Städler, Bühlmann, and van de Geer
2010; Sun and Zhang 2012) have become very popular rep-
resentatives.

In practice, however, high-dimensional variable selection
turns out to be a difficult task. A major shortcoming of
Lasso, in particular, is its need for a tuning parameter that
is properly adjusted to all aspects of the model (Hebiri and
Lederer 2013) and therefore difficult to calibrate in prac-
tice. Using Cross-Validation to adjust the tuning parameter is
not a satisfactory approach to this problem, because Cross-
Validation is computationally inefficient and provides unsat-
isfactory variable selection performance. Replacing Lasso
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by Square-Root Lasso is also not a satisfactory approach,
because Square-Root Lasso resolves only the adjustment of
the tuning parameter to the variance of the noise but does not
address the adjustment to the tail behavior of the noise and
to the design. Similarly, more advanced Lasso-based pro-
cedures such as the Uncorrelated Lasso (Chen et al. 2013)
or the Trace Lasso (Grave, Obozinski, and Bach 2011) also
comprise tuning parameters that need proper calibration. In
conclusion, none of the present approaches simultaneously
provides parameter-free, accurate, and computationally at-
tractive variable selection.

Our contribution: In this study, we present a novel ap-
proach for high-dimensional variable selection. First, we
reveal how a systematic development of the Square-Root
Lasso approach leads to TREX, an estimator without any
tuning parameter. For optimal variable selection, we then
combine TREX with a bootstrapping scheme. Next, we de-
tail on implementations and demonstrate in a thorough nu-
merical study that TREX is both accurate and computation-
ally efficient. Finally, we discuss the findings and indicate
directions for subsequent studies.

Methodology
Framework for our study
In this study, we aim at variable selection in linear regres-
sion. We therefore consider models of the form

Y = Xβ∗ + σε, (Model)

where Y ∈ Rn is a response vector, X ∈ Rn×p a design
matrix, σ > 0 a constant, and ε ∈ Rn a noise vector. We
allow in particular for high-dimensional settings, where p ri-
vals or exceeds n, and undisclosed distributions of the noise
σε. Statistical methods for models of the above form typi-
cally target β∗ (estimation), the support of β∗ (variable se-
lection), Xβ∗ (prediction), or σ2 (variance estimation). In
this study, we focus on variable selection.

To ease the exposition of the sequel, we append some con-
ventions and notation: We allow for fixed and for random de-
sign matrices X but assume in either case the normalization(
X>X

)
jj

= n for all j ∈ {1, . . . , p}. Moreover, we assume
that the distribution of the noise vector ε has variance 1 so
that σ is the standard deviation of the entire noise σε. Fi-
nally, we denote the support (the index set of the non-zero
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entries) of a vector v by support(v) and the `q−norm and
the maximum norm of v by ‖v‖q and ‖v‖∞, respectively.

TREX and B-TREX
We now introduce two novel estimators for high-
dimensional linear regression: TREX and B-TREX. To mo-
tivate these estimators, let us first detail on the calibration of
Lasso. Recall that for a fixed tuning parameter λ > 0, Lasso
is a minimizer of a least-squares criterion with `1-penalty:

β̂Lasso(λ) ∈ argmin
β∈Rp

{‖Y −Xβ‖22
n

+ λ‖β‖1
}
. (Lasso)

The tuning parameter λ determines the intensity of the reg-
ularization and is therefore highly influential, and it is well
understood that a reasonable choice is of the order

λ ∼ σ‖X>ε‖∞
n

.

For example, this becomes apparent when looking at the
following prediction bound for Lasso (cf. (Koltchinskii,
Lounici, and Tsybakov 2011; Rigollet and Tsybakov 2011),
see also (Dalalyan, Hebiri, and Lederer 2014) for an
overview of Lasso prediction).
Lemma 1. If λ ≥ 2σ‖X>ε‖∞/n, it holds

‖Xβ̂Lasso(λ)−Xβ∗‖22
n

≤ 2λ‖β∗‖1.

This suggests a tuning parameter λ that is small (since
the bound is proportional to λ) but not too small (to satisfy
the condition λ & σ‖X>ε‖∞/n). In practice, however, the
corresponding calibration is very difficult, because it needs
to incorporate several, often unknown, aspects of the model:
(a) the design matrix X;
(b) the standard deviation of the noise σ;
(c) the tail behavior of the noise vector ε.

While one line of research approaches (a) and describes
the calibration of Lasso to the design matrix (van de
Geer and Lederer 2013; Hebiri and Lederer 2013; Dalalyan,
Hebiri, and Lederer 2014), Square-Root Lasso approaches
(b) and eliminates the calibration to the standard deviation
of the noise. To elucidate the latter approach, we first recall
that for a fixed tuning parameter γ > 0, Square-Root Lasso
is defined similarly as Lasso:

β̂√Lasso(γ) ∈ argmin
β∈Rp

{‖Y −Xβ‖2√
n

+ γ‖β‖1
}
.

(Square-Root Lasso)
Square-Root Lasso also requires a tuning parameter γ to
determine the intensity of the regularization. However, the
tuning parameter should here be of the order (see, for exam-
ple, (Belloni, Chernozhukov, and Wang 2011))

γ ∼ ‖X
>ε‖∞
n

,

so that Square-Root Lasso does not require a calibration to
the standard deviation of the noise. The origin of this fea-
ture can be readily located: Reformulating the definition of

Square-Root Lasso as

β̂√Lasso(γ) ∈ argmin
β∈Rp


‖Y−Xβ‖22

n
‖Y−Xβ‖2√

n

+ γ‖β‖1


identifies the factor ‖Y −Xβ‖2/

√
n in the denominator of

the first term as the distinction to Lasso. This additional fac-
tor acts as an inherent estimator of the standard deviation of
the noise σ and makes therefore the calibration to σ obso-
lete. On the other hand, Square-Root Lasso still contains a
tuning parameter that needs to be adjusted to (a) the design
matrix and (c) the tail behavior of the noise vector.

We now develop the Square-Root Lasso approach fur-
ther to address all aspects (a), (b), and (c). For this,
we aim at incorporating an inherent estimation not of σ
but rather of the entire quantity of interest σ‖X>ε‖∞/n.
For this, note that if β̂ is a consistent estimator of β∗,
then σ‖X>(Y −Xβ̂)‖∞/n is a consistent estimator of
σ‖X>ε‖∞/n. In this spirit, we define TREX1 according to

β̂TREX ∈ argmin
β∈Rp

{ ‖Y −Xβ‖22
1
2‖X>(Y −Xβ)‖∞

+ ‖β‖1
}
.

(TREX)
Square-Root Lasso and Lasso are equivalent families of es-
timators (there is a one-to-one mapping between the tuning
parameter paths of Square-Root Lasso and Lasso); in con-
trast, TREX is a single, tuning-free estimator, and its solu-
tion is in general not on the tuning parameter paths of Lasso
and Square-Root Lasso. However, we can establish an inter-
esting relationship between these paths and TREX (we omit
all proofs for sake of brevity):
Theorem 1. It holds that

min
β∈Rp

{
‖Y −Xβ‖22

1
2‖X>(Y −Xβ)‖∞

+ ‖β‖1

such that ‖X>(Y −Xβ)‖∞ ≤ ‖X>Y ‖∞
}

= min
0≤u≤2‖X>Y ‖∞/n

{
min
β∈Rp

{
‖Y −Xβ‖22

u
+ ‖β‖1

such that
1

2
‖X>(Y −Xβ)‖∞ = u

}}
.

In view of the Karush-Kuhn-Tucker conditions for Lasso,
the latter formulation strongly resembles the Lasso path.
This resemblance is no surprise: In fact, any consistent
estimator β̂ of β∗ is related to a Lasso solution with an
optimal (but in practice unknown) tuning parameter λ ∼
σ‖X>ε‖∞/n via the formulation of TREX:

Lemma 2. Assume that β̂ a consistent estimator of β∗ and

β̃ ∈ argmin
β∈Rp

{
‖Y −Xβ‖22

1
2‖X>(Y −Xβ̂)‖∞

+ ‖β‖1
}
.

1We call this new approach TREX to emphasize that it aims at
Tuning-free Regression that adapts to the Entire noise σε and the
design matrix X .
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Then, β̃ is close to a Lasso solution with tuning parameter
λ = 1

2‖X>ε‖∞/n, that is,

min
β∈Ω
‖β̃ − β‖2 = o(1)

for Ω = argminβ∈Rp

{
‖Y −Xβ‖22 + 1

2‖X>ε‖∞‖β‖1
}

.

Equipped with TREX to estimate the regression vector
β∗, we can tackle a broad spectrum of tasks including es-
timation, prediction, and variance estimation. In this pa-
per, however, we focus on variable selection. For this task,
we advocate an additional refinement based on sequential
bootstrapping (Rao, Pathak, and Koltchinskii 1997). More
specifically, we advocate B-TREX for a fixed number of
bootstraps b ∈ {1, 2, . . . }:

Data: (Y,X);
Result: ŜB-TREX ⊂ {1, . . . , p};
for i = 1 to b do

Generate a sequential bootstrap sample (Ỹ , X̃);
Compute β̂TREX on (Ỹ , X̃) according to (TREX);
Set Ŝi := support(β̂TREX);

end
Set ŜB-TREX := {j :

j is in more than half of the sets Ŝ1, . . . , Ŝb};
Algorithm 1: B-TREX with b sequential bootstraps.

B-TREX is the majority vote over the TREX solutions for
b sequential bootstrap samples. Note that related bootstrap-
ping schemes (based on traditional bootstrapping and dif-
ferent selection rules, however) have already been applied
to Lasso (Bach 2008; Bunea et al. 2011). In practice, it can
also be illustrative to report the selection frequencies of each
parameter over the bootstrap samples (cf. Figure 3). We fi-
nally note that B-TREX readily provides estimation and pre-
diction if a least-squares refitting on the set ŜB-TREX is per-
formed. This refitting can improve the prediction and esti-
mation accuracy if the set ŜB-TREX is a good estimator of
the true support of β∗ (Belloni and Chernozhukov 2013;
Lederer 2013).

We point out that the norms ‖ ·‖∞ and ‖ ·‖1 in the formu-
lation of TREX are dual and that extensions to other pairs of
dual norms are straightforward.

A theoretical analysis of TREX is beyond the scope of
this paper but is the subject of a forthcoming theory paper
(with different authors). Note also that theoretical results for
standard variable selection methods are incomplete: in par-
ticular, there are currently no finite sample guarantees for
approaches based on Lasso and Square-Root Lasso: Finite
sample bounds (“Oracle inequalities”) for Lasso (Bühlmann
and van de Geer 2011) and Square-Root Lasso (Bunea, Led-
erer, and She 2014) require that the tuning parameters are
properly calibrated to the model; yet, there are no guarantees
that standard calibration schemes such as Cross-Validation
or BIC-type criteria provide such tuning parameters.

Implementation of TREX
To compute TREX, we consider the objective function

fTREX : β 7→ L(β) + ‖β‖1
that comprises the data-fitting term L(β) :=
‖Y−Xβ‖22

1
2‖X>(Y−Xβ)‖∞ and the `1-regularization term ‖β‖1.
To make this objective function amenable to standard
algorithms (Nesterov 2007; Schmidt 2010), we invoke a
smooth approximation of the data-fitting term. For this,
we note that for all vectors a ∈ Rp and positive integers
q ∈ {1, 2, . . . }, it holds that

‖a‖∞ ≤ ‖a‖q ≤ p
1
q ‖a‖∞,

and the data-fitting termL(β) can therefore be approximated
by the smooth data-fitting term

L(β) =
‖Y −Xβ‖22

1
2‖X>(Y −Xβ)‖q

.

We find that any q ∈ [20, 100] works well in practice (see
supplementary material). We can calculate the gradient of
the smooth approximation L(β) and obtain

∇L(β) =
2‖Y −Xβ‖22X>X(X>(Y −Xβ))q−1

‖X>(Y −Xβ)‖q+1
q

− 4X>(Y −Xβ)

‖X>(Y −Xβ)‖q
.

The approximation L(β) + ‖β‖1 of the criterion fTREX is
now amenable to effective (local) optimization with pro-
jected scaled sub-gradient (PSS) algorithms (Schmidt 2010).
PSS schemes are specifically tailored to objective func-
tions with smooth, possibly non-convex data-fitting terms
and `1−regularization terms. PSS algorithms only require
zeroth- and first-order information about the objective func-
tion, have a linear time and space complexity per iteration,
and are especially effective for problems with sparse solu-
tions. Several PSS algorithms that fit our framework are de-
scribed in (Schmidt 2010, Chapter 2.3.1)2. Among these al-
gorithms, the Gafni-Bertsekas variant was particularly effec-
tive for our purposes.

The smooth formulation of the TREX criterion remains
non-convex; therefore, convergence to the global minimum
cannot be guaranteed. Neverthless, we show that the above
implementation is fast, scalable, and provides estimators
with excellent statistical performance.

Note also that the advent of novel optimization proce-
dures (Breheny and Huang 2011; Mazumder, Friedman,
and Hastie 2011) lead to an increasing popularity of non-
convex regularization terms such as the Smoothly Clipped
After Deviation (SCAD) (Fan and Li 2001) and Mini-
max Concave Penality (MCP) (Zhang 2010). More recently,
also objective functions with non-convex data-fitting terms
have been proved both statistically valuable and efficiently
computable (Loh and Wainwright 2013; Nesterov 2007;
Wang, Liu, and Zhang 2013).

2http://www.di.ens.fr/%7Emschmidt/Software/L1General.html
provides the implementations
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Numerical Examples
We demonstrate the performance of TREX and B-TREX on
three numerical examples. We first consider a synthetic ex-
ample inspired by (Belloni, Chernozhukov, and Wang 2011).
We then consider two high-dimensional biological data sets
that involve riboflavin production in B. subtilis (Bühlmann,
Kalisch, and Meier 2014) and mass spectrometry data from
melanoma patients (Mian et al. 2005).

We perform the numerical computations in MATLAB
2012b on a standard MacBook Pro with dual 2GHz In-
tel Core i7 and 4GB 1333MHz DDR3 memory. To com-
pute Lasso and its cross-validated version, we use the
MATLAB-internal procedure lasso.m (with standard val-
ues), which follows the popular glmnet R code. To com-
pute TREX, we use Schmidt’s PSS algorithm implemented
in L1General2 PSSgb.m to optimize the approximate
TREX objective function with q = 40. We use the PSS
algorithm with standard parameter settings and set the ini-
tial solution to the parsimonious all-zeros vector βinit =
(0, . . . , 0)> ∈ Rp. We use the following PSS stopping crite-
ria: minimum relative progress tolerance optTol=1e-7, mini-
mum gradient tolerance progTol=1e-9, and maximum num-
ber of iterations maxIter = max(0.2p, 200). As standard for
the number of bootstrap samples in B-TREX we set b = 31.

Synthetic Example
We first evaluate the scalability and the variable selection
performance of TREX and B-TREX on synthetic data. The
method of comparison is Lasso with the tuning parameter
that leads to minimal 10−fold cross-validated mean squared
error (Lasso-CV). We generate data according to the lin-
ear regression model (Model) with parameters inspired by
the Monte Carlo simulations in (Belloni, Chernozhukov, and
Wang 2011): We set the sample size to n = 100, the num-
ber of variables to p = 500 (or vary over p), and the true
regression vector to β∗ = (1, 1, 1, 1, 1, 0, . . . , 0)>; we sam-
ple standard normal errors ε ∼ N (0, In) and multiply them
by a fixed standard deviation σ ∈ {0.1, 0.5, 1, 3}; and we
sample the rows of X from the p−dimensional normal dis-
tributionN (0,Σ), where Σ is the covariance matrix with di-
agonal entries Σii = 1 and off-diagonal entries Σij = κ for
i, j ∈ {1, . . . , p} and a fixed correlation κ ∈ {0, 0.5, 0.9},
and then normalized them to Euclidean norm

√
n. We report

scalability and variable selection results averaged over 51
repetitions (thick, colored bars) and the corresponding stan-
dard deviations (thin, black bars). More precisely, we report
the runtime of plain Lasso and of TREX as a function of p
(for n = 100, σ = 0.5, κ = 0) in Figure 1, and we re-
port the runtime and the variable selection performance of
Lasso-CV, TREX, and B-TREX in Hamming distance for
fixed p = 500 in Figure 2.

The data shown in Figure 1 suggest that the runtime for
TREX is between quadratic and cubic in p (a least-squares
fit results in O(p2.4)) and, thus, illustrates the scalability of
TREX at least up to p = 4000. In comparison, the run-
time for a single Lasso path (without Cross-Validation or
any other calibration scheme), shown in Figure 1, reveals
a near-linear dependence of p (a least-squares fit results in
O(p1.1)), though with a higher offset and slope.
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Figure 1: Runtime (in seconds) of TREX and plain Lasso as
a function of p.

Figure 2 summarizes the numerical results for the settings
with κ = 0. The runtimes disclosed in Figure 2 indicate
that both TREX and B-TREX can rival Lasso-CV in terms
of speed. The variable selection results show that TREX
provides near-perfect variable selection for σ ∈ {0.1, 0.5}
and B-TREX for σ ∈ {0.1, 0.5, 1}; for stronger noise, the
Hamming distance of these two estimators to β∗ increases.
Lasso-CV, on the other hand, consistently selects too many
variables. For κ ∈ {0.5, 0.9} (see supplementary mate-
rial), the performance of TREX deteriorates as compared
to Lasso-CV. B-TREX, on the other hand, provides excel-
lent variable selection for all considered parameter settings.
In summary, the numerical results for the standard synthetic
example considered here provide first evidence that TREX
and B-TREX can outmatch Lasso-CV in terms of variable
selection.

Riboflavin Production in B. Subtilis
We next consider a recently published high-dimensional bi-
ological data set for the production of riboflavin (vitamin
B2) in B. subtilis (Bacillus subtilis) (Bühlmann, Kalisch,
and Meier 2014). The data set comprises expression pro-
files of p = 4088 genes of different B. subtilis strains
for a total of n = 71 experiments with varying settings.
The corresponding expression profiles are stored in the ma-
trix X ∈ R71×4088. Along with these expression profiles,
the associated standardized riboflavin log-production rates
Y ∈ R71 have been measured. The main objective is now to
identify a small set of genes that is highly predictive for the
riboflavin production rate.

We first report the outcomes of standard Lasso-based
approaches, which can be obtained along the lines
of (Bühlmann, Kalisch, and Meier 2014). The runtime for
the computation of a single Lasso path with the MAT-
LAB routine is approximately 58 seconds. Lasso-CV se-
lects 38 genes, that is, its solution has 38 non-zero coef-
ficients; the 20 genes with largest coefficients and the as-
sociated coefficient values are listed in Table 1. For vari-
able selection, Bühlmann et al. specifically propose stabil-
ity selection (Meinshausen and Bühlmann 2010). The stan-
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Figure 2: Runtimes (in seconds) and variable selection errors
in Hamming distance on the synthetic example with κ = 0
and p = 500.

dard stability selection approach is based on 500 Lasso
computations on subsamples of size bn2 c and the 20 co-
efficients that enter the corresponding Lasso paths first.
This approach yields three genes: LYSC at, YOAB at, and
YXLD at (Bühlmann, Kalisch, and Meier 2014).

We next apply TREX and B-TREX. The runtime for
a single TREX computation is approximately 30 seconds.
TREX selects 20 genes and therefore provides a consid-
erably sparser solution than Lasso-CV; the corresponding
genes and the associated coefficients are listed in Table 1. B-
TREX with the standard majority vote selects three genes:
YXLE at, YOAB at, and YXLD at. The outcomes of B-
TREX with selection rules different from majority vote can
be deduced from Table 1, where we list the selection fre-
quencies of the 20 genes that are selected most frequently
across the bootstraps.

The numerical results reveal three key insights: First, the
set of genes selected by TREX and the set of the 20 genes
corresponding to the highest coefficients in the Lasso-CV
solution are distinct but share a common subset of 12 genes.
Second, the sets of genes selected by B-TREX and Lasso-
CV stability selection have the two top-ranked Lasso-CV
and TREX genes in common. On the other hand, the gene
associated with the highest frequency in the B-TREX solu-
tion is not selected by stability selection. The B-TREX so-
lution is biologically plausible: Since the genes YXLD at
and YXLE at are located in the same operon, both genes
are likely to be co-expressed and involved in similar cellular
functions. Third, the runtime for a single Lasso path is about
two times larger than for a single TREX solution.

The model complexities differ considerably, ranging from
3 parameters for B-TREX to 38 for Lasso-CV, and in ap-

Lasso-CV genes �̂ TREX genes �̂ B-TREX genes frequencies

YOAB at -0.232 YXLD at -0.219 YXLE at 0.58
YXLD at -0.206 YOAB at -0.168 YOAB at 0.52
ARGF at -0.191 ARGF at -0.112 YXLD at 0.52
XHLB at -0.138 YEBC at -0.088 YCKE at 0.45
YXLE at -0.105 YCKE at -0.069 LYSC at 0.42
YEBC at -0.105 YCGO at -0.065 XTRA at 0.42
LYSC at -0.066 YEZB at -0.049 YFHE r at 0.42
YDDK at -0.063 YFHE r at -0.041 YPGA at 0.39

SPOVAA at -0.057 YHZA at -0.030 YDDK at 0.35
YCLB at -0.053 YDDK at -0.024 YEBC at 0.35

YHDS r at -0.051 LYSC at -0.024 XLYA at 0.32
DNAJ at -0.049 RPLL at -0.022 YHDS r at 0.29

YFHE r at -0.045 YXLE at -0.019 YTGB at 0.29
YKBA at -0.043 YYDA at -0.015 YYDA at 0.29
YQJU at -0.041 YCDH at -0.015 ARGF at 0.26
GAPB at -0.035 YBFI at -0.007 RPLL at 0.26
YYDA at -0.033 YHDS r at -0.006 XKDS at 0.26
YTGB at -0.030 SPOVAA at -0.003 YHCL at 0.26
YBFI at -0.022 PKSA at -0.003 YRVJ at 0.26
YFIO at -0.021 YDDH at -0.001 YURQ at 0.26

4.2 Biological example: Riboflavin production in B. subtilis

We next consider a recently published high-dimensional biological data set for the production of
riboflavin (vitamin B2) in B. subtilis (Bacillus subtilis) [27]. The data set comprises expression
profiles of p = 4088 genes of different B. subtilis strains for a total of n = 71 experiments with
varying settings. The corresponding expression profiles are stored in the matrix X � R71�4088.
Along with these expression profiles, the associated standardized riboflavin log-production rates
Y � R71 have been measured. The main objective is now to identify a small set of genes that is
highly predictive for the riboflavin production rate. Since B. subtilis is one of the main industrially
exploited sources for riboflavin, subsequent genetic modifications of the identified genes may then
improve the industrial production of riboflavin. Bühlmann et al. [27] analyze the data set with
various tools from high-dimensional statistics, including causal modeling, covariance selection, and
Lasso based regression. We reproduce their regression results and compare them with the result
provided by TREX and B-TREX.

We first report the outcome of the Lasso based approaches detailed in [27]. The runtime for the
computation of a single Lasso path with the MATLAB routine is approximately 19 seconds. Lasso-
CV selects 38 genes, that is, its solution has 38 non-zero coefficients; the 20 genes with largest
coefficients and the associated coefficient are listed in Table 2. We also depict the fit of the Lasso-
CV solution to the standardized riboflavin log-production rates in Figure 3. To obtain a smaller set
of genes, Bühlmann et al. apply a stability selection scheme [28] based on 500 subsamples of size
⇥n

2 ⇤ and the 20 coefficients that enter the corresponding Lasso paths first. This stability selection
scheme selects three genes: LYSC at, YOAB at, and YXLD at.

We now approach the biological example with TREX and B-TREX. For this, we apply TREX and
B-TREX with the same parameters as in the synthetic example. The runtime for a single TREX
computation is then approximately 18 seconds. TREX selects 20 genes and therefore provides a
considerably sparser solution than Lasso-CV; the corresponding genes and the associated coeffi-
cients are listed in Table 2. B-TREX with b = 31 sequential bootstraps and the standard majority
vote selects three genes: YXLE at, YOAB at, and YXLD at. The outcomes of B-TREX with se-
lection rules different from majority vote can be deduced from Table 2, where we list the selection
frequencies of the 20 genes that are selected most frequently across the bootstraps. We finally depict
the fit of the TREX and B-TREX solutions to the standardized riboflavin log-production rates in
Figure 3.

A joint comparison of the solutions of Lasso-CV, TREX, and B-TREX reveals four key insights:
First, the set of genes selected by TREX and the set of the 20 genes corresponding to the highest

7

Table 1: Gene rankings for riboflavin production in B. sub-
tilis. The left panel contains the 20 genes with largest co-
efficients in Lasso-CV (out of 38 genes with non-zero co-
efficients) and the associated coefficients. The center panel
contains the 20 genes with non-zero coefficients in TREX
and the associated coefficients. The right panel contains the
20 genes with largest frequencies in B-TREX and the asso-
ciated frequencies.

plications, simple models are often preferred. We evalu-
ate, therefore, the Leave-One-Out Cross-Validation errors
(LOOCV-errors) of the methods under consideration for
fixed numbers of parameters. As a reference, we report the
LOOCV-errors of Lasso-CV (with the cross-validations per-
formed on the training sets of size n − 1) in the first row
of Table 2. In the three subsequent rows, we then show the
LOOCV-errors of TREX, of TREX with least-squares refit-
ting (TREX-LS), and of Lasso with tuning parameter such
that the number of non-zero entries equals the number of
non-zero entries of TREX (Lasso-T). Finally, we give the
LOOCV-errors of B-TREX and of Lasso with tuning pa-
rameter such that the number of non-zero entries equals the
number of non-zero entries of B-TREX (Lasso-BT). The
computations for Stability Selection are very intensive and
therefore omitted. We observe that for fixed model complex-
ity, the solutions of TREX (with least-squares refitting) and
B-TREX have lower LOOCV-error than their Lasso-based
counterparts.

We conclude that the genes selected by B-TREX are com-
mensurate with biological knowledge and that B-TREX can
provide small models with good predictive performance.

Classification of Melanoma Patients
We also demonstrate the usefulness of the ranked B-TREX
list for a proteomics data set from a study on melanoma pa-
tients (Mian et al. 2005). The data3 consist of n = 205 mass
spectrometry scans of serum samples from 101 patients with
Stage I melanoma (moderately severe) and 104 patients with
Stage IV melanoma (very severe). Each scan measures the
intensities for 18 856 mass over charge (m/Z) values. The
objective is to find m/Z values that are indicators for the

3see http://www.maths.nottingham.ac.uk/%7Eild/mass-spec
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LOOCV-error # of coefficients
Lasso-CV 0.42 39
TREX 0.51 21
TREX-LS 0.45 21
Lasso-T 0.47 21
B-TREX 0.50 4
Lasso-BT 0.62 4

Table 2: Means of the Leave-One-Out Cross-Validation er-
rors and median of the corresponding numbers of non-zero
coefficients on the riboflavin dataset.
stage of the disease, eventually leading to proteins that can
serve as discriminative biomarkers (Mian et al. 2005).

We want to compare outcomes of our estimators with re-
sults described in (Vasiliu, Dey, and Dryden 2014). For this,
we use the same linear regression framework (even though
one could also argue in favor of a logistic regression frame-
work) and the same data pre-processing: We apply an ini-
tial peak filtering step that yields the p = 500 most rele-
vant m/Z values. The resulting data are then normalized and
stored in the matrix X ∈ R205×500. Next, the class labels
in Y ∈ R205 are set to Yi = −1 for i = 1, . . . , 101 (Stage
I patients) and to Yi = 1 for i = 102, . . . , 205 (Stage IV
patients).

We now demonstrate the usefulness of the ranked list of
predictors provided by B-TREX. For this, we first report
in Figure 4 the parameter values of the least-squares refit-
ted versions of the three estimators 10-fold cross-validated
Lasso (Lasso-CV), TREX, and B-TREX. Lasso-CV selects
43 predictors, TREX selects 8 predictors, and B-TREX se-
lects 2 predictors. We now use the signs of the (least-squares
refitted) responses to estimate the class labels, cf. (Vasiliu,
Dey, and Dryden 2014). We depict in Figure 4 averaged
10-fold classification errors of Sure-Independence Screen-
ing (SIS), Iterative SIS (ISIS), Elastic Net, and Penalized
Euclidean Distance (PED) (all taken from (Vasiliu, Dey,
and Dryden 2014)) and of TREX, B-TREX, and Lasso-
CV. TREX shows almost identical classification error/model
complexity as SIS and ISIS and outperforms Elastic net in
terms of model complexity. PED and Lasso-CV have lower
classification error but higher model complexity. B-TREX
with standard majority vote results in a very sparse model
with moderate error. More importantly, classification based
on the top predictors from B-TREX is insensitive with re-
spect to the threshold: For any number of predictors from 6
up to 23, B-TREX outperforms all other estimators. We con-
clude that the ranked list of B-TREX predictors can lead to
very robust and accurate model selection and, in particular,
can outperform on this data set all other standard estimators.

Conclusions
We have introduced TREX, a simple, fast, and accurate
method for high-dimensional variable selection. We have
shown that TREX avoids tuning parameters and, therefore,
challenging calibrations. Moreover, we have shown that
TREX can outmatch a cross-validated Lasso in terms of
speed and accuracy.

To further improve variable selection, we proposed B-
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Figure 3: Mean 10-fold CV classification errors vs. average
number of predictors.

TREX, a combination of TREX with a bootstrapping
scheme. This proposition is supported by the numerical re-
sults and in line with earlier claims that bootstrapping can
improve variable selection (Bach 2008; Bunea et al. 2011).
Moreover, we argue that the solution of B-TREX on the re-
cent riboflavin data set in (Bühlmann, Kalisch, and Meier
2014) is supported by biological insights. Finally, the results
on the melanoma data show that TREX can yield robust clas-
sification.

Our contribution therefore suggests that TREX and B-
TREX can challenge standard methods such as cross-
validated Lasso and can be valuable in a wide range of
applications. We will provide further theoretical guaran-
tees, optimized implementations, and tests for prediction and
estimation performance in a forthcoming paper. A TREX
MATLAB-toolbox as well as all presented numerical data
will be made publicly available at the authors’ websites.
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