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Abstract

This paper presents a large-scale sparse coding algo-
rithm to deal with the challenging problem of noise-
robust semi-supervised learning over very large data
with only few noisy initial labels. By giving an L1-norm
formulation of Laplacian regularization directly based
upon the manifold structure of the data, we transform
noise-robust semi-supervised learning into a general-
ized sparse coding problem so that noise reduction can
be imposed upon the noisy initial labels. Furthermore,
to keep the scalability of noise-robust semi-supervised
learning over very large data, we make use of both
nonlinear approximation and dimension reduction tech-
niques to solve this generalized sparse coding problem
in linear time and space complexity. Finally, we eval-
uate the proposed algorithm in the challenging task of
large-scale semi-supervised image classification with
only few noisy initial labels. The experimental results
on several benchmark image datasets show the promis-
ing performance of the proposed algorithm.

Introduction
Semi-supervised learning has been widely applied to many
challenging image analysis tasks (Lu, Zhao, and Cai 2006;
Xu and Yan 2009; Lu and Ip 2010; Fergus, Weiss, and Tor-
ralba 2010; Tang et al. 2009; Liu et al. 2009) such as image
representation, image classification, and image annotation.
In these image analysis tasks, the manual labeling of training
data is often tedious, subjective as well as expensive, while
the access to unlabeled data is much easier. In the literature,
through exploiting the large number of unlabeled data with
reasonable assumptions, semi-supervised learning (Blum
and Mitchell 1998; Zhu, Ghahramani, and Lafferty 2003;
Zhou et al. 2004) has been shown to reduce the need for
expensive labeled data and achieve promising results in dif-
ferent challenging image analysis tasks.

Among various semi-supervised learning methods, one
influential work is graph-based semi-supervised learning
(Zhu, Ghahramani, and Lafferty 2003; Zhou et al. 2004)
which models the entire dataset as a graph. The basic idea
behind this semi-supervised learning is label propagation
over the graph with the cluster consistency (Zhou et al.
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2004). Since the graph is at the heart of graph-based semi-
supervised learning, graph construction has been studied
extensively (Wang and Zhang 2008; Yan and Wang 2009;
Cheng et al. 2010; Zhuang et al. 2012; Sun, Hussain,
and Shawe-Taylor 2014). However, these graph construc-
tion methods are not developed directly for noise reduction,
and the corresponding semi-supervised learning still suffers
from significant performance degradation due to the inaccu-
rate labeling of data points commonly encountered in differ-
ent image analysis tasks. Moreover, the labeling of images
may be contributed by the community (e.g. Flickr) and we
can only obtain noisy labels for all the images.

In this paper, we focus on developing a novel noise-
robust semi-supervised learning algorithm to deal with the
challenging problem of semi-supervised learning with noisy
initial labels. As summarized in (Wang and Zhang 2008),
graph-based semi-supervised learning can be formulated as
a quadratic optimization problem based on Laplacian reg-
ularization (Zhu, Ghahramani, and Lafferty 2003; Zhou et
al. 2004; Lu and Peng 2013a). Considering the success of
L1-norm optimization for noise reduction (Elad and Aharon
2006; Mairal, Elad, and Sapiro 2008; Wright et al. 2009), if
we give a newL1-norm formulation of Laplacian regulariza-
tion, we can propose noise-robust L1-norm semi-supervised
learning. Fortunately, derived from the eigenvalue decompo-
sition of the normalized Laplacian matrix L, we can repre-
sent L in a symmetrical decomposition form and then define
L1-norm Laplacian regularization. Since all the eigenvectors
of L are explored in this symmetrical decomposition, our
L1-norm Laplacian regularization is actually defined based
upon the manifold structure of the data. By limiting the solu-
tion of semi-supervised learning to the space spanned by the
eigenvectors of L, our noise-robust semi-supervised learn-
ing is formulated as a generalized sparse coding problem.

To keep the scalability for very large data, we utilize
both nonlinear approximation and dimension reduction tech-
niques to solve this generalized sparse coding problem.
More specifically, we first construct a large graph over the
data only based upon a limited number of clustering cen-
ters (obtained by k-means clustering). Due to the special
definition of this graph, we can find the eigenvectors of
L (to be used in this generalized sparse coding problem)
in linear time complexity. For the sake of more efficiency,
we choose to only work with a small subset of eigenvec-
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tors during solving the generalized sparse coding problem.
By considering nonlinear approximation and dimension re-
duction together, we develop a large-scale sparse coding
algorithm of linear time and space complexity. In this pa-
per, the proposed algorithm is then applied to the challeng-
ing task of semi-supervised image classification over very
large data with only few noisy initial labels. Although there
exist other large-scale semi-supervised learning algorithms
(Zhang, Kwok, and Parvin 2009; Liu, He, and Chang 2010;
Fergus, Weiss, and Torralba 2010) in the literature, they are
not originally developed to deal with noisy initial labels.

To emphasize the main contributions of this paper, we
summarize the following distinct advantages of our new
semi-supervised learning algorithm:

• This is he first work to deal with the challenging problem
of semi-supervised learning over very large data with only
few noisy initial labels, to our knowledge.

• Our semi-supervised learning algorithm developed based
on large-scale sparse coding has been shown to achieve
promising results in semi-supervised image classification
over very large data with only few noisy initial labels.

• Our new L1-norm Laplacian regularization can be simi-
larly applied to many other problems in machine learning
and patter recognition, considering the wide use of Lapla-
cian regularization in the literature.

The remainder of this paper is organized as follows. In
Section 2, we develop a large-scale sparse coding (LSSC)
algorithm for semi-supervised learning over very large data
with only few noisy initial labels. In Section 3, the proposed
LSSC algorithm is applied to large-scale noise-robust image
classification. Sections 4 and 5 present our experimental re-
sults and conclusions, respectively.

Noise-Robust Semi-Supervised Learning
In this section, we first give the problem formulation for
noise-robust semi-supervised learning by defining new L1-
norm Laplacian regularization. Moreover, we extend our
noise-robust semi-supervised learning to large-scale prob-
lems by exploiting nonlinear approximation and dimen-
sion reduction techniques. Finally, we develop a large-scale
sparse coding algorithm to solve the challenging problem of
noise-robust semi-supervised learning over very large data.

Problem Formulation
We first introduce semi-supervised learning problem as fol-
lows. Here, we only consider the two-class problem, while
the multi-class problem will be discussed in Section 3. Given
a dataset X = {x1, ...,xl,xl+1, ...,xn} and a label set
{1,−1}, the first l data points xi (i ≤ l) are labeled as
yi ∈ {1,−1} and the remaining data points xu (l + 1 ≤
u ≤ n) are unlabeled with yu = 0. The goal of semi-
supervised learning is to predict the labels of the unlabeled
data points, i.e., to find a vector f = [f1, ..., fn]T corre-
sponding to a classification on X by labeling each xi with a
label sign(fi), where sign(·) denotes the sign function. Let
y = [y1, ..., yn]T , and we can observe that y is consistent
with the initial labels according to the decision rule.

We further model the whole dataset X as a graph G =
{V,W} with its vertex set V = X and weight matrix
W = [wij ]n×n, where wij denotes the similarity between
data points xi and xj . It should be noted that the weight ma-
trixW is usually assumed to be nonnegative and symmetric.
For example, we can define the weight matrix W as

wij = exp(−||xi − xj ||2/(2σ2)), (1)

where the variance σ is a free parameter that can be deter-
mined empirically. In fact, to eliminate the need to tune this
parameter, we can adopt many graph construction methods
(Wang and Zhang 2008; Yan and Wang 2009; Cheng et al.
2010; Zhuang et al. 2012; Sun, Hussain, and Shawe-Taylor
2014) that have been developed in the literature. Derived
from the weight matrix W , the normalized Laplacian ma-
trix L of the graph G can be computed by

L = I −D− 1
2WD−

1
2 , (2)

where I is an n × n identity matrix, and D is an n × n
diagonal matrix with its i-th diagonal element being equal
to the sum of the i-th row of W (i.e.

∑
j wij).

Since Laplacian regularization plays an important role
in graph-based semi-supervised learning, we then provide
a symmetrical decomposition of the normalized Laplacian
matrix L. More concretely, as a nonnegative definite matrix,
L can be decomposed into

L = V ΣV T , (3)

where V is an n × n orthonormal matrix with each column
being an eigenvector of L, and Σ is an n × n diagonal ma-
trix with its diagonal element Σii being an eigenvalue of L
(sorted as 0 ≤ Σ11 ≤ ... ≤ Σnn). Derived from the above
eigenvalue decomposition, we can denote L in a symmetri-
cal decomposition form:

L = (Σ
1
2V T )TΣ

1
2V T = BTB, (4)

where B = Σ
1
2V T . Since B is computed with all the eigen-

vectors of L, we can regard B as being explicitly defined
based upon the manifold structure of the data.

We can directly utilize B = Σ
1
2V T to define a new

L1-norm smoothness measure, instead of the traditional
smoothness measure used as Laplacian regularization for
graph-based semi-supervised learning. In spectral graph the-
ory, the smoothness of a vector f ∈ Rn is measured by
Ω(f) = fTLf . Different from the traditional smoothness
Ω(f), in this paper, the L1-norm smoothness of a vector f ∈
Rn is measured by Ω̃(f) = ||Bf ||1, just as our recent work
(Lu and Peng 2012; 2013b; Lu and Wang 2015). Consid-
ering the success of L1-norm optimization for noise reduc-
tion (Elad and Aharon 2006; Mairal, Elad, and Sapiro 2008;
Wright et al. 2009), we then define the objective function of
our noise-robust semi-supervised learning as follows

Q̃(f) =
1

2
||f − y||22 + λ||Bf ||1. (5)

The first term of Q̃(f) is the fitting constraint, while the
second term is the L1-norm smoothness constraint used as
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Laplacian regularization. Here, the fitting constraint is not
formulated as an L1-norm term. The reason is that, oth-
erwise, most elements of f would tend to zeros (i.e. spar-
sity) by solving minf ||f − y||1 + λ||Bf ||1 given that y has
very few nonzero elements (i.e. very few initial labeled data
are usually provided for semi-supervised learning). In other
words, the labels of data points are almost not propagated
across the entire dataset, which actually conflicts with the
original goal of semi-supervised learning. Hence, the fitting
constraint of Q̃(f) remains as an L2-norm term.

It is worth noting that our L1-norm formulation of Lapla-
cian regularization plays an important role in the explanation
of noise-robust semi-supervised learning in the framework
of sparse coding. Concretely, by limiting the solution f to the
space spanned by the eigenvectors V (i.e. f = V α), we can
readily formulate our noise-robust semi-supervised learning
as a sparse reconstruction problem (see the next subsection).
In fact, the sparsity can be considered to be induced into the
compressed domain for our noise-robust semi-supervised
learning, since sparse coding is regarded as learning com-
pressible model (Zhang, Schneider, and Dubrawski 2010) in
the literature. Furthermore, we can also readily apply dimen-
sion reduction to our noise-robust semi-supervised learning
by working with only a small subset of eigenvectors (i.e.
only partial columns of V are used), which is especially suit-
able for image analysis tasks where the datasets are com-
monly very large. Although there exist other L1-norm gen-
eralizations of Laplacian regularization in (Chen et al. 2011;
Petry, Flexeder, and Tutz 2011; Zhou and Scholköpf 2005;
Zhou, Lu, and Peng 2013) which approximately take the
form of

∑
i<j wij |fi − fj |, they are not defined based upon

the eigenvectors of the Laplacian matrix and the strategy of
dimension reduction is difficult to be used for f . Hence, the
sparse coding algorithms developed directly using these L1-
norm generalizations incur very large time cost.

Large-Scale Extension
To keep the scalability of our noise-robust semi-supervised
learning over very large data, we can reduce the dimension
of f dramatically by working only with a small subset of
eigenvectors of L, instead of f = V α. That is, similar to
(Fergus, Weiss, and Torralba 2010; Chapelle, Scholköpf, and
Zien 2006), we significantly reduce the dimension of f by re-
quiring it to take the form of f = Vmαwhere Vm is an n×m
matrix whose columns are the m eigenvectors with smallest
eigenvalues (i.e. the first m columns of V ). In fact, such di-
mension reduction can ensure that f is as smooth as possible
in terms of our L1-norm smoothness. Hence, the objective
function of our noise-robust semi-supervised learning can
now be derived from Eq. (5) as follows:

Q̃(α) =
1

2
||(Vmα)− y||22 + λ||(Σ 1

2V T )(Vmα)||1

=
1

2
||Vmα− y||22 + λ||

m∑
i=1

Σ
1
2 (V TV.i)αi||1

=
1

2
||Vmα− y||22 + λ

m∑
i=1

Σ
1
2
ii|αi|. (6)

The first term of Q̃(α) denotes the reconstruction error,
while the second term denotes the weighted L1-norm spar-
sity regularization over the reconstruction coefficients. That
is, our L1-norm semi-supervised learning problem f∗ =
arg minf Q̃(f) has been successfully transformed into a gen-
eralized sparse coding problem α∗ = arg minα Q̃(α).

It should be noted that the formulation f = Vmα used
in Eq. (6) has two distinct advantages. Firstly, we can de-
rive a sparse reconstruction problem from the original semi-
supervised learning problem, and correspondingly we can
explain our noise-robust semi-supervised learning in the
framework of sparse coding. In fact, the second term of
Q̃(α) corresponds to both Laplacian regularization and spar-
sity regularization. By unifying these two types of regular-
ization, we thus obtain novel noise-robust semi-supervised
learning. Secondly, since Q̃(α) is minimized with respect to
α ∈ Rm (m � n), we can readily develop fast sparse cod-
ing algorithms for our noise-robust semi-supervised learn-
ing. That is, although many sparse coding algorithms scale
polynomially with m, they have linear time complexity with
respect to n. More importantly, we have eliminated the need
to compute the full matrix B in Eq. (5), which is especially
suitable for image analysis on large datasets. In fact, we only
need to compute the m smallest eigenvectors of L.

We further pay our main attention to finding the m small-
est eigenvectors of L. Fortunately, we can keep the scala-
bility of this step by exploiting the following nonlinear ap-
proximation technique. Concretely, given k clustering cen-
ters {u1,u2, ...,uk} obtained by k-means clustering over
the datasetX , we find the approximation x̂i of any data point
xi by Nadaraya-Watson kernel regression (Härdle 1992):

x̂i =

k∑
j=1

zijuj , (7)

where Z = [zij ]n×k collects the regression coefficients. A
natural assumption here is that zij should be larger if xi is
closer to uj . We can emphasize this assumption by setting
zij = 0 as uj is not among the r(≤ k) nearest neighbors
of xi. This restriction naturally leads to a sparse matrix Z.
Let Nr(i) denote the indexes of r clustering centers that are
nearest to xi. We compute zij (j ∈ Nr(i)) as

zij =
exp(−||xi − uj ||2/(2σ2))∑

j′∈Nr(i)
exp(−||xi − uj′ ||2/(2σ2))

, (8)

where the parameter σ is defined the same as Eq. (1). The
weight matrix W ∈ Rn×n of the graph G over the dataset X
can now be computed as:

W = ẐẐT , (9)

where Ẑ = ZD
−1/2
z and Dz is a k×k diagonal matrix with

its i-th diagonal element being the sum of the i-th column of
Z. Since each row of Z sums up to 1, the degree matrix is I
and the normalized Laplacian matrixL is I−W . This means
that finding the m smallest eigenvectors of L is equivalent
to finding the m largest eigenvectors of W .

Let the singular value decomposition (SVD) of Ẑ be:

Ẑ = VzΣzU
T
z , (10)
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Algorithm 1 Large-Scale Sparse Coding (LSSC)
Input: X , y, k, σ, r,m, and λ
Output: the predicted labels by sign(f∗)
Step 1. Find k clustering centers {u1,u2, ...,uk} by k-
means clustering over the dataset X .
Step 2. Compute the weight matrixW of the graph G over
the dataset X according to Eq. (9).
Step 3. Find them largest eigenvectors ofW according to
Eq. (12) and store them in Vm.
Step 4. Solve the problem α∗ = arg minα Q̃(α) using the
modified FISTA.
Step 5. Compute f∗ = Vmα

∗.

where Σz = diag(σ1, ..., σk) with σi being a singular value
of Ẑ (sorted as σ1 ≥ σ2 ≥ ... ≥ σk ≥ 0), Vz is an n × k
matrix with each column being a left singular vector of Ẑ,
and Uz is a k × k matrix with each column being a right
singular vector of Ẑ. It is easy to check that each column of
Vz is an eigenvector of W = ẐẐT , and each column of Uz
is an eigenvector of ẐT Ẑ (the eigenvalues are σ2

1 , ..., σ
2
k in

both cases). Since ẐT Ẑ ∈ Rk×k, we can computeUz within
O(k3) time. Vz can then be computed as:

Vz = ẐUzΣ
−1
z . (11)

Hence, to find the m (m < k) smallest eigenvectors of L =
I−W , we first find them largest eigenvectors Um ∈ Rk×m
of ẐT Ẑ (the eigenvalues store in Σ2

m = diag(σ2
1 , ..., σ

2
m))

and then compute the m largest eigenvectors Vm of W as:

Vm = ẐUmΣ−1m . (12)

which can then be used in Eq. (6). Since both finding Vm
(including k-means) and solving minα Q̃(α) have a linear
time and space complexity with respect to n (m, k, r � n),
our semi-supervised learning is scalable to very large data.

The Proposed Algorithm
In theory, any fast sparse coding algorithm can be adopted
to solve the problem minα Q̃(α). In this paper, we only con-
sider the Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) (Beck and Teboulle 2009), since its implementation
mainly involves lightweight operations such as vector opera-
tions and matrix-vector multiplications. To adjust FISTA for
our noise-robust semi-supervised learning, we only need to
modify the soft-thresholding function as:

soft(αi,
λΣ

1
2
ii

||Vm||2s
) = sign(αi) max{|αi| −

λΣ
1
2
ii

||Vm||2s
, 0}, (13)

where ||Vm||s represents the spectral norm of the matrix Vm.
For large problems, it is often computationally expensive to
directly compute the Lipschitz constant ||Vm||2s. In practice,
it can be efficiently estimated by a backtracking line-search
strategy (Beck and Teboulle 2009). The complete large-scale
sparse coding (LSSC) algorithm for our noise-robust semi-
supervised learning is outlined in Algorithm 1.

Application to Image Classification
To show the advantage of the proposed LSSC algorithm, we
apply it to semi-supervised image classification over very
large data with only few noisy initial labels. It should be
noted that semi-supervised image classification has been
studied extensively (Xu and Yan 2009; Lu and Ip 2010;
Fergus, Weiss, and Torralba 2010; Tang et al. 2009), which
can be considered as the basis of many image analysis tasks
such as image annotation and retrieval. In these tasks, the
manual labeling of training data is often tedious and expen-
sive, while the access to unlabeled data is much easier. The
original motivation of semi-supervised image classification
is just to reduce the need for expensive labeled data by ex-
ploiting the large number of unlabeled data. In other words,
the original task of semi-supervised image classification is
to learn with both labeled and unlabeled data.

In this paper, we consider a more challenging task, i.e.,
semi-supervised image classification with both correctly and
incorrectly labeled data. In general, the occurrence of noisy
initial labels may be due to the subjective manual labeling
of training data. Fortunately, this challenging problem can
be addressed to some extent by our LSSC algorithm. That
is, due to the use of L1-norm Laplacian regularization, our
LSSC algorithm can effectively suppress the negative effect
of noisy initial labels. Since we focus on verifying this noise-
robustness advantage, we directly apply our LSSC algorithm
to semi-supervised image classification over very large data
with only few noisy initial labels. Hence, we only need to
extend Algorithm 1 to multi-class problems commonly en-
countered in image classification.

We first introduce multi-class semi-supervised image
classification problem similar to (Zhou et al. 2004). Given
a dataset X = {x1, ...,xl,xl+1, ...,xn} and a label set
{1, ..., C} (C is number of classes), the first l images xi (i ≤
l) are labeled as: yij = 1 if xi belongs to class j (1 ≤
j ≤ C) and yij = 0 otherwise, while the remaining images
xu (l+ 1 ≤ u ≤ n) are unlabeled with yuj = 0. The goal of
semi-supervised image classification is to predict the labels
of the unlabeled images, i.e., to find a matrix F = [fij ]n×C
corresponding to a classification on the dataset X by la-
beling each image xi with a label arg max1≤j≤C fij . Let
Y = [yij ]n×C , and we can readily observe that Y is ex-
actly consistent with the initial labels according to the de-
cision rule. When noisy initial labels are provided for semi-
supervised image classification, some entries of Y may be
inconsistent with the ground truth labels.

Based on the above preliminary notations, we further for-
mulate our multi-class LSSC problem for semi-supervised
image classification as:

min
F

Q̃(F ) = min
F

1

2
||F − Y ||2fro + λ||BF ||1, (14)

where || · ||fro denotes the Frobenius norm of a matrix. The
above multi-class LSSC problem can then be decomposed
into the following C independent subproblems:

min
F.j

Q̃(F.j) = min
F.j

1

2
||F.j − Y.j ||22 + λ||BF.j ||1, (15)

where F.j and Y.j denote the j-th column of F and Y ,
respectively. Since each subproblem, minF.j

Q̃(F.j) (1 ≤
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Table 1: Details of the four large image datasets.

Datasets #classes #features #images #labeled
MNIST HALF 10 784 35K 100

MNIST 10 784 70K 100
NUS HALF 81 1500 135K 405
NUS WIDE 81 1500 269K 405

j ≤ C), can be regarded as two-class semi-supervised learn-
ing, we can readily solve it by Algorithm 1. Let F ∗.j =

arg minF.j
Q̃(F.j), and we can classify image xi into the

class that satisfies arg max1≤j≤C f
∗
ij .

Experimental Results
In this section, we evaluate the proposed LSSC algorithm
on four large image datasets listed in Table 1, where
MNIST HALF and NUS HALF are derived from MNIST1

and NUS WIDE2 (Chua et al. 2009), respectively. The pro-
posed LSSC algorithm is compared with three state-of-
the-art large-scale semi-supervised learning methods: PVM
(Zhang, Kwok, and Parvin 2009), Eigenfunction (Fergus,
Weiss, and Torralba 2010), and LGC-SSL (Liu, He, and
Chang 2010). We also report the performance of one base-
line method LIBLINEAR (i.e. large-scale SVM) (Fan et al.
2008). All these methods are implemented in MATLAB 7.12
and run on a 3.40 GHz, 32GB RAM Core 2 Duo PC.

Experimental Setup
In the experiments, we consider three noise levels (i.e. 0%,
15%, and 30%) for large-scale semi-supervised image clas-
sification. Here, the noise level denotes the percentage of
inaccurately labeled images among a limited number of ini-
tial labeled images. In this paper, to generate an inaccurately
labeled image, we first randomly select a labeled image and
then change each of its initial labels to a random wrong la-
bel. It should be noted that a labeled image may have multi-
ple labels (i.e. belong to multiple classes) for the two natural
image datasets (i.e. NUS HALF and NUS WIDE).

The classification results on unlabeled images are aver-
aged over 10 splits of each dataset just as in (Karlen et
al. 2008) and then used for overall performance evaluation.
In particular, we choose accuracy as the measure of clas-
sification results for the two handwritten digit datasets (i.e.
MNIST HALF and MNIST), while mean average precision
(MAP) is used as the measure for the two natural images
datasets given that we actually perform multi-label image
classification over these two datasets.

We find that our LSSC algorithm is not sensitive to λ in
our experiments, and thus fix this parameter at λ = 0.01 for
all the four datasets. Meanwhile, we uniformly set k = 5000
by considering a tradeoff of running efficiency and effec-
tiveness. We follow the strategy of parameter selection used
in (Chapelle and Zien 2005) and select the rest parameters
(i.e. σ, r, and m) for our LSSC algorithm by five-fold cross-
validation over initial labeled images (to generate the labeled

1http://yann.lecun.com/exdb/mnist/
2http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

set and validation set, with the other images forming the un-
labeled set). In our experiments, the fold generation process
is repeated randomly two times for a total of 10 splits of each
dataset. The optimal values of these parameters are chosen
with respect to the validation results. For example, we set
σ = 0.4, r = 3, and m = 18 for the two handwritten digit
datasets. For fair comparison, the same strategy of parameter
selection is adopted for all the other related methods.

Classification Results
Although our original motivation is to apply our LSSC al-
gorithm to large-scale noise-robust image classification, we
first make comparison in the less challenging task of large-
scale semi-supervised image classification with clean initial
labeled images to verify its effectiveness in dealing with the
scarcity of labeled images. The number of initial labeled im-
ages provided for each dataset is listed in Table 1, where
the initial labeled images are indeed scarce for all the four
datasets. The comparison results are reported in Tables 2 and
3 (with the noise level being 0%). In general, we can observe
that our LSSC algorithm performs better than (or at least
comparably to) the other four methods for large-scale image
classification. That is, due to the use of L1-norm Laplacian
regularization for problem formulation, our LSSC algorithm
can effectively suppress the negative effect of the compli-
cated manifold structure hidden among all the images on
large-scale image classification.

We make further comparison in the challenging task of
large-scale noise-robust image classification with noisy ini-
tial labeled images. The comparison results are reported
in Tables 2 and 3, where two noise levels (i.e. 15% and
30%) are considered for initial labeled images. The im-
mediate observation is that our LSSC algorithm generally
achieves obvious gains over the other three SSL methods,
especially when more noisy labels are provided initially for
each dataset. That is, our L1-norm Laplacian regularization
indeed can help to find a smooth and also sparse solution
for large-scale semi-supervised learning and thus effectively
suppress the negative effect of noisy initial labels. More im-
portantly, although all the four SSL methods suffer from
more performance degradation when the percentage of noisy
initial labels grows, the performance of Eigenfunction and
our LSSC is shown to degrade degrade most slowly in large-
scale noise-robust image classification.

The comparison in terms of both accuracy and running
time over the MNIST dataset is shown in Table 4. Here,
only 30% noise level is considered. We find that the run-
ning time taken by our LSSC algorithm is comparable to
that taken by PVM and LGC-SSL. Since our LSSC algo-
rithm is shown to achieve significant gains over these two
closely related methods, it is preferred by overall consider-
ation in practice. Moreover, excluding the running time (i.e.
237.5 seconds) taken by k-means clustering to find cluster-
ing centers (e.g. random sampling can be used instead of k-
means), our LSSC algorithm itself is considered to run very
efficiently over such a large dataset.

As we have mentioned, the parameter k is uniformly set to
k = 5000 for all the four datasets by considering a tradeoff
of running efficiency and effectiveness of our LSSC algo-
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Table 2: Comparison of different large-scale learning algorithms with varying noise levels on the two handwritten digit datasets.
The classification results are measured by accuracy (%) along with standard deviation (in brackets). The first three methods
make use of k-means clustering (k = 5000) to find clustering centers.

Datasets Noise level LSSC (ours) PVM LGC-SSL Eigenfunction LIBLINEAR
0% 89.8 (1.1) 80.3 (0.8) 88.9 (1.0) 73.8 (2.3) 74.3 (2.1)

MNIST HALF 15% 88.8 (1.7) 73.1 (1.0) 82.5 (0.6) 67.3 (1.4) 67.1 (1.1)
30% 86.1 (3.6) 63.1 (2.1) 72.1 (1.7) 60.4 (2.6) 57.8 (2.5)
0% 93.1 (0.7) 81.4 (0.9) 90.4 (0.7) 73.8 (1.6) 75.5 (1.3)

MNIST 15% 91.1 (2.0) 73.1 (1.4) 83.5 (1.6) 68.6 (2.8) 67.3 (3.0)
30% 89.0 (3.6) 64.3 (2.1) 74.4 (2.8) 61.9 (4.0) 58.9 (3.2)

Table 3: Comparison of different large-scale learning algorithms with varying noise levels on the two natural image datasets.
The classification results are measured by MAP (%) along with standard deviation (in brackets). The first three methods make
use of k-means clustering (k = 5000) to find clustering centers.

Datasets Noise level LSSC (ours) PVM LGC-SSL Eigenfunction LIBLINEAR
0% 19.1 (0.5) 17.8 (0.8) 18.9 (0.4) 12.1 (0.2) 18.0 (0.4)

NUS HALF 15% 17.3 (0.5) 14.7 (0.7) 15.8 (0.7) 10.9 (0.2) 13.9 (0.7)
30% 15.4 (0.6) 12.4 (0.3) 13.3 (0.4) 9.9 (0.3) 10.8 (0.2)
0% 18.5 (0.6) 18.2 (0.4) 18.8 (0.4) 11.8 (0.3) 18.0 (0.3)

NUS WIDE 15% 16.8 (0.6) 14.2 (0.6) 15.6 (0.4) 10.3 (0.3) 14.0 (0.4)
30% 14.6 (0.4) 11.6 (0.4) 12.6 (0.2) 8.7 (0.4) 10.1 (0.3)

Table 4: The classification results in terms of both accuracy
and running time (including k-means clustering if applica-
ble) over the MNIST dataset. Here, only 30% noise level is
considered and the running time taken by k-means cluster-
ing (k = 5000) is 237.5 seconds.

Methods accuracy (%) Running time (sec.)
LSSC (ours) 89.0 23.7+237.5

PVM 64.3 21.5+237.5
LGC-SSL 74.4 19.4+237.5

Eigenfunction 61.9 18.9
LIBLINEAR 58.9 2.7

Table 5: The classification accuracies (%) for different num-
ber of clustering centers (i.e. k) over the MNIST dataset.
Here, only 30% noise level is considered.

k 1000 2000 3000 4000 5000 6000
LSSC (ours) 84.2 86.6 87.0 88.3 89.0 89.0

PVM 63.9 63.3 63.6 64.1 64.3 64.2
LGC-SSL 71.5 72.8 74.0 74.3 74.4 74.5

rithm. To make this clearer, the comparison among LSSC,
PVM, and LGC-SSL with different number of clustering
centers is shown in Table 5. Here, only 30% noise level over
the MNIST dataset is considered. It can be clearly observed
that all the three methods tend to achieve better results when
more clustering centers are used for nonlinear approxima-
tion (see Eq. (7)). In particular, our LSSC algorithm is shown
to approach the highest accuracy for k = 5000. Addition-
ally, we can still find that our LSSC algorithm performs the
best, when k changes from 1000 to 6000.

Conclusions
We have proposed a large-scale sparse coding algorithm
to deal with the challenging problem of noise-robust semi-
supervised learning over very large data with only few noisy
initial labels. By giving an L1-norm formulation of Lapla-
cian regularization directly based upon the manifold struc-
ture of the data, we have transformed noise-robust semi-
supervised learning into a generalized sparse coding prob-
lem so that noise reduction can be imposed upon the noisy
initial labels. Furthermore, to keep the scalability of noise-
robust semi-supervised learning over very large data, we
have adopted both nonlinear approximation and dimension
reduction techniques to solve this generalized sparse cod-
ing problem in linear time and space complexity. When ap-
plied to the challenging task of large-scale noise-robust im-
age classification, our LSSC algorithm has been shown to
achieve promising results on several benchmark datasets. In
the future work, considering the wide use of Laplacian reg-
ularization in the literature, we will apply our new L1-norm
Laplacian regularization to other challenging problems in
machine learning and pattern recognition.
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