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Abstract

Existing multi-view clustering algorithms require that
the data is completely or partially mapped between each
pair of views. However, this requirement could not be sat-
isfied in most practical settings. In this paper, we tackle
the problem of multi-view clustering for unmapped data
in the framework of NMF based clustering. With the
help of inter-view constraints, we define the disagree-
ment between each pair of views by the fact that the
indicator vectors of two instances from two different
views should be similar if they belong to the same clus-
ter and dissimilar otherwise. The overall objective of our
algorithm is to minimize the loss function of NMF in
each view as well as the disagreement between each pair
of views. Experimental results show that, with a small
number of constraints, the proposed algorithm gets good
performance on unmapped data, and outperforms exist-
ing algorithms on partially mapped data and completely
mapped data.

Introduction

Multi-view clustering gains increasing attention in the past
decade (Bickel and Scheffer 2004) (Kumar and III 2011)
(Kumar, Rai, and III 2011) (Liu et al. 2013) (Blaschko and
Lampert 2008) (Chaudhuri et al. 2009) (Tzortzis and Likas
2012). Most existing multi-view clustering algorithms re-
quire that the data is completely mapped, i.e., every object
has representations in all the views, representations from dif-
ferent views representing a same object are exactly known,
and the representations of the same object have the same
index in different views. However, this requirement could
not be satisfied in most practical settings. Since data from
different views are usually collected, processed, and stored
independently, it is hard to ensure the complete mapping. For
example, a same news maybe reported by many reporters
from different views, thus a period’s news could be clustered
from multiple views. However, a news may not be reported
by all the concerned news agencies, and the same news may
be named with different titles and reported in different ways
(even in different languages), thus it will need much effort to
identify which reports from different agencies represent the
same news. Also, the news agencies have no consistency in
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indexing the news, since they may regard different news as
important ones.

Recently, (Eaton, desJardins, and Jacob 2012) proposed a
constrained multi-view clustering algorithm that deal with
incompletely mapped data with the help of intra-view con-
straints. This algorithm propagates constraints in each view
to those instances that can be mapped to the other views. Nev-
ertheless, partial mapping is still necessary in this work. And
the more partial mapping provided, the better the algorithm
performs.

In this paper, based on the fact that a small number of
constraints could be easily obtained in many real applications
(Kulis et al. 2009) (Lu and Peng 2013), we propose a con-
strained multi-view clustering algorithm for unmapped data
in the framework of NMF (Nonnegative Matrix Factorization)
based clustering. We use inter-view constraints (Lu and Peng
2013) to establish the connections between different views.
We define the disagreement between each pair of views by the
fact that the indicator vectors of two instances from different
views should be similar if they belong to the same cluster and
dissimilar otherwise. We use the disagreement between the
views to guide the factorization of the matrices. The overall
objective of our algorithm is to minimize the loss function of
NMF in each view as well as the disagreement between each
pair of views. Experimental results show that, with a small
number of constraints, the proposed CMVNMF (Constrained
Multi-View clustering based on NMF) algorithm gets good
performance on unmapped data, and outperforms existing
algorithms on partially mapped data and completely mapped
data.

NMF and Clustering

NMF (Lee and Seung 2001) aims to factorize a matrix into
two or more non-negative matrices whose product approxi-
mates to the original matrix. It emphasizes the non-negativity
of the factor matrices. Let X = [x1, . . . , xn] ∈ Rd×n

+ be
the original matrix, each data point xi(1 ≤ i ≤ n) is d-
dimensional. The basic form of NMF tries to optimize the
following problem:

min
U,V

‖X − UV T ‖2F s.t. U ≥ 0, V ≥ 0

where U ∈ Rd×K
+ , V ∈ Rn×K

+ , ‖.‖F is the Frobenius norm.
Obviously, the objective function is not convex to both U
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and V , it’s hard to find its global minima. However, there
are plenty of approaches that can be used to obtain its local
minima, one possible solution is to iteratively execute the
following rules in eq.(1). Also, some fast algorithms are
proposed for near-separable NMF (Recht et al. 2012) (Gillis
and Vavasis 2013) (Kumar, Sindhwani, and Kambadur 2013).

Uij ← Uij
(XV )ij

(UV TV )ij
, Vij ← Vij

(XTU)ij
(V UTU)ij

(1)

NMF can be used for clustering (Ding and He 2005)
(Kuang, Park, and Ding 2012) (Li and Ding 2006), if each
cluster can be represented by a single basis vector and differ-
ent clusters correspond to different basis vectors. As in (Liu
et al. 2013), NMF can also be written as

xj ≈ U(Vj,.)
T =

K∑
k=1

U.,kVj,k

where U.,k is the k-th column vector of U and Vj,. is the
j-th row vector of V. If K represents the number of clusters,
U.,k can be seen as the centroid of the k-th cluster and Vj,. is
the indicator vector, i.e., the instance belongs to the cluster
having largest value in the indicator vector.

The CMVNMF Algorithm

Objective Function

We are given a dataset X with v views. Let X(a) =

{x(a)
1 , x

(a)
2 , · · · , x(a)

na } denote the set of instances, where na

is the number of its instances in view a. If X is a mapped
dataset, x(a)

i and x
(b)
i represent the same instance, else, x(a)

i

and x
(b)
i may represent different instances. In an unmapped

dataset, the number of instances may also be different in
different views, i.e., na �= nb. We aim to deal with the multi-
view clustering problem on unmapped data.

We are also given a set of must-link constraints MLa,b

between view a and view b in which (x
(a)
i , x

(b)
j ) ∈ MLa,b

means that x(a)
i and x

(b)
j should belong to the same clus-

ter, and a set of cannot-link constraints CLa,b in which
(x

(a)
i , x

(b)
j ) ∈ CLa,b means that x(a)

i and x
(b)
j should be-

long to different clusters. A constraint is intra-view if a = b,
and inter-view otherwise.

The main challenge of multi-view clustering is to explore
the relationship between each pair of the views. Since the
data has v views, we have v indicator matrixes. The indicator
vectors of two instances from two different views should be
similar if they belong to the same cluster and dissimilar other-
wise. So we establish the relationship between two different
views by minimizing the deviation of indicator vectors if
two instances from the two views belong to the same cluster
and maximizing the deviation if they belong to two different
clusters. We use inter-view constraints to accomplish the task
and use the following function to measure the disagreement

between the indicator vectors from view a and view b.

Δa,b =
∑

(x
(a)
i ,x

(b)
j )∈MLa,b

(V
(a)
i − V

(b)
j )2

+ 2
∑

(x
(a)
i ,x

(b)
j )∈CLa,b

V
(a)
i V

(b)
j

s.t. i ∈ [1, na], j ∈ [1, nb],

a ∈ [1, v], b ∈ [1, v], a > b

where V (a)
i is the indicator vector of the i-th instance in view

a and V
(b)
j is the indicator vector of the j-th instance in view

b. We set the coefficient of cannot-link to 2 to simplify the
iteration of V in eq.(4).

We use the disagreement between the views to guide the
factorization of the matrices. The overall objective of our al-
gorithm is to minimize the loss function of NMF in each view
as well as the disagreement between each pair of views. The
objective function is as follows, where β is the regularization
parameter controlling importance of different parts.

φ =
∑
a

‖X(a) − U (a)V (a)T ‖2F + β
∑

a,b∈[1,v],a>b

Δa,b

s.t. U (a) ≥ 0, V (a) ≥ 0 (2)

Solution

Denote matrix Ma,b ∈ Rna×nb and Ca,b ∈ Rna×nb ,

Ma,b
ij =

{
1, (x

(a)
i , x

(b)
j ) ∈MLa,b

0, otherwise.

Ca,b
ij =

{
1, (x

(a)
i , x

(b)
j ) ∈ CLa,b

0, otherwise.
Δa,b can be rewritten as the form of matrix.

Δa,b = tr(V (a)TDa,bV (a)) + tr(V (b)TDb,aV (b))

−2tr(V (a)TMa,bV (b)) + 2tr(V (a)TCa,bV (b))

where tr(.) is the trace function. Da,b and Db,a are the diag-
onal matrix, and their ii-th element are separately the sum of
the i-th row of Ma,b and the i-th column of Ma,b. We solve
U (a) and V (a) by the following multiplicative updating rules
(for brevity, we use X , U , V to represent X(a), U (a), V (a))
in the following.

Fixing V (a), computing U (a) In this case, the second part
of eq.(2) is a constant, and the solution of U (a) is the same
with that of NMF.

Uij ← Uij
(XV )ij

(UV TV )ij
(3)

Fixing U (a), V (b), computing V (a) At first, we introduce
the definition and lemma of auxiliary function (Lee and Se-
ung 2001).
Definition 1 (Lee and Seung 2001) G(H,Ht) is an auxil-
iary function for Φ(H) if the conditions

G(H,Ht) ≥ Φ(H), G(Ht, Ht) = Φ(Ht)

are satisfied.
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Lemma 1 (Lee and Seung 2001) If G is an auxiliary func-
tion, then Φ(H) is non-increasing under the update rule

Ht+1 = argmin
H

G(H,Ht)

The key process is to find the auxiliary function for eq.(2).
Like (Cai et al. 2008), we define the auxiliary function as

G(Vij , V
t
ij) = φ(V t

ij) + φ′(V t
ij)(Vij − V t

ij)

+ Ω(V t
ij)(Vij − V t

ij)
2

where ϕ = Da,bV t + Ca,bV (b),

φ′(V t
ij) = 2(V tUTU −XTU)ij

+ 2β
v∑

b=1,b �=a

(ϕ−Ma,bV (b))ij

Ω(V t
ij) =

(V tUTU)ij + β
∑v

b=1,b �=a ϕij

V t
ij

It’s easy to verify that if V t
ij = Vij , then G(Vij , V

t
ij) =

φ(V t
ij) is obviously. We only need to prove G(Vij , V

t
ij) ≥

φ(Vij) if V t
ij �= Vij . We compare the Taylor expansion of

φ(Vij)

φ(Vij) = φ(V t
ij)+φ′(V t

ij)(Vij−V t
ij)+

φ′′(V t
ij)

2
(Vij−V t

ij)
2

with G(Vij , V
t
ij) and

φ′′(V t
ij) = 2(UTU)jj + 2β

v∑
b=1,b �=a

Da,b
ii

Since

(V tUTU)ij =
k∑

s=1

V t
is(U

TU)sj ≥ V t
ij(U

TU)jj

and

ϕij =

na∑
s=1

(Da,b
is V t

sj) + (Ca,bV (b))ij ≥ Da,b
ii V t

ij

thus G(Vij , V
t
ij) ≥ φ(Vij) holds. Replacing G(H,Ht) in

eq.(1) by eq.(4) results in the update rule:

Vij = −−2Ω(V
t
ij)V

t
ij + φ′(V t

ij)

2Ω(V t
ij)

(4)

= V t
ij

(XTU)ij + β
∑v

b=1,b �=a(M
a,bV (b))ij

(V tUTU)ij + β
∑v

b=1,b �=a ϕij

Algorithm

Summarizing the former analysis, we give the algorithm
framework (names as CMVNMF) in Algorithm 1. We initial-
ize the algorithm by the result of a basic clustering method,
e.g. k-means, in each view. We normalize the dataset in each
view at first. CMVNMF will work in the case that V in each
view is comparable. Analyzing the updating rule of U and V ,

Algorithm 1: CMVNMF algorithm
Input:
X(a) = {x(a)

1 , x
(a)
2 , · · · , x(a)

na }: the multi-view data sets
Ma,b: matrix represent the must-link constraints
between view a and view b
Ca,b: matrix represent the cannot-link constraints
between view a and view b
k: number of clusters

Output:
label(a): the labels of each instance in view a
For every view a, normalize X(a);
For every two view a and b, compute Da,b;
Initialize U (a), V (a);
repeat

for a = 1 to v do

Fixing V (a), update U (a) by eq.(3);
Fixing U (a) and V (b), update V (a) by eq.(4);

end

until eq.(2) is converged;
Label each data point x(a)

i using label
(a)
i ,

label
(a)
i = argmax1≤j≤k V

(a)
ij .

it can be seen that if X and the initializations of U and V are
comparable, V will be comparable.

Given a dataset X(a) ∈ Rda×na with k clusters, the com-
plexity of updating U (a) is O(danak), which is the same
with NMF. In terms of the updating of V (a), CMVNMF
needs more calculation than NMF. The complexity of updat-
ing V (a) is O(danak +

∑v
b=1,b �=a nanbk). The more views,

the more multiplication operation. This is reasonable because
CMVNMF tries to learn from all views.

Discussion

CMVNMF uses the same basic NMF framework as (Liu et
al. 2013) (Liu and Han 2013). However, the work in (Liu
et al. 2013) (Liu and Han 2013) uses a regularization term
between different views, which can only work on mapped
data. CMVNMF uses inter-view constraints to build connec-
tions between different views and can work on mapped data,
partially mapped data and unmapped data.

We separately use squared error to penalize the deviation of
indication vectors on inter-view must-link constraints and use
dot product to penalize the deviation of indication vectors on
inter-view cannot-link constraints. This is because that they
have opposite impacts, thus the different penalization ensures
the non-negativity of each part in the objective function.

Note that Δa,b can also utilize intra-view constraints to
indicate the deviation of indication vectors of two instances
in the same view, this can be realized be setting a = b.
However, with the same number of constraints, mixed inter-
view constraints and intra-view constraints do not provide as
much as inter-view connection information as pure inter-view
constraints.
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Experiments

Experiments on Unmapped Data

Datasets We use three benchmark datasets, UCI Handwrit-
ten Digit1, Reuters2 and Webkb3 to investigate the impact
of inter-view constraints on CMVNMF. UCI Handwritten
consists of handwritten digits (0-9). We experiment on 3
views: 76 Fourier coefficients of the character shapes, 240
pixel averages and 47 Zernike moments. Webkb is composed
of web pages collected from computer science department
websites of four universities: Cornell, Texas, Washington and
Wisconsin. The web pages are classified into 7 categories.
Here, we choose four most populous categories (course, fac-
ulty, project, student) for clustering. A web page is made of
three views: the text on it, the anchor text on the hyperlinks
pointing to it and the text in its title. Reuters contains 1200
documents over the 6 labels. Each sample is translated into
five languages. We experiment on the English, French and
German views. UCI Handwritten, Reuters and Webkb are all
benchmarks for traditional multi-view clustering algorithms,
thus they are arranged with complete mapping. To get un-
mapped datasets, we randomly select 95% samples on each
view, then permute each view and regardless the new indices
of representations of an object in all the views.

Settings As both inter-view must-link constraints and inter-
view cannot-link constraints are helpful in our method, in
these experiments and the following experiments we use both
of the two type of constraints4. We get the inter-view con-
straints by randomly selecting representations of two objects
from different views, judge whether they belong to the same
ground truth cluster or not, and set them must-link or cannot-
link. We set β = 1 in all experiments. We use accuracy
(ACC) and normalized mutual information (NMI) (Xu, Liu,
and Gong 2003) to measure the performance. To avoid ran-
domness, we conduct the algorithms 20 runs with different
initializations and report the average results.

Results Figure 1 ∼ Figure 3 show the clustering perfor-
mances with increasing the number of inter-view constraints
between any two views by using 0.5% to 10% constraints
with step 0.5%. From the results it can be seen that the perfor-
mance of CMVNMF generally increases with the increasing
of the number of constraints. From 0.5% constraints to some
inflection point between 1% to 3%, the performance increases
sharply with the number of constraints. After the inflection
point, the increasing slows down, and finally the performance
becomes stable. This is because that inter-view constraints
can transfer the information across views and guide the clus-
tering process. When the number of constraints reaches the
inflection point, they can provide enough mutual information
to guide multi-view clustering.

1http://archive.ics.uci.edu/ml/datasets/Multiple+Features
2http://membres-liglab.imag.fr/grimal/data.html
3http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-

20/www/data/
4We also try using only must-links and cannot-links, but these

settings perform worth than using both, due to space limitation, we
do not report these results.

Figure 1: ACC and NMI on Handwritten w.r.t Number of
Constraints

Figure 2: ACC and NMI on Reuters w.r.t Number of Con-
straints

Experiments on Partially Mapped Data

Datasets We use two benchmark datasets, 3-Sources5 and
Wikipedia (Rasiwasia et al. 2010) to demonstrate the effec-
tiveness of CMVNMF on partially mapped data. 3-Sources
is collected from three online news sources. There are totally
948 news stories covering 416 distinct ones. Some stories are
not reported by all three sources, thus 3-Sources is originally
partially mapped. The Wikipedia benchmark dataset contains
2800 documents derived from Wikipedia. Each document is
actually a text-image pair, annotated with a label from the
vocabulary of 10 semantic classes. Wikipedia is completely
mapped, and we randomly select 2000 documents in each
view and make 70% of them mapped.

Settings We compare CMVNMF with Constraint Prop
(Eaton, desJardins, and Jacob 2012), which is designed for
partially mapped data. For CMVNMF, we use 5% inter-view
constraints. For Constraint Prop, we use 5% intra-view con-
straints, and set the parameter t using cross validation.

Results The results are shown in Table1, which show that
CMVNMF performs much better than Constraint Prop using

5http://mlg.ucd.ie/datasets/3sources.html
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(a) Cornell (b) Texas

(c) Washington (d) Wisconsin

Figure 3: ACC and NMI on Webkb w.r.t Number of Constraints

Table 1: ACC and NMI on Partially Mapped Data

DATASET ALGORITHM
ACC(%) NMI(%)

VIEW 1 VIEW 2 VIEW 3 VIEW 1 VIEW 2 VIEW 3

THREESOURCES CONSTRAINT PROP(5%) 55.1 ± .51 52.9 ± 1.72 34.5 ± .15 46.9 ± .61 41.0 ± 1.19 34.0 ± 2.84

CMVNMF(5%) 66.7 ± 7.06 71.4 ± 6.53 74.9 ± 5.68 74.6 ± 6.58 77.3 ± 6.89 79.2 ± 5.50

WIKIPEDIA CONSTRAINT PROP(5%) 17.6 ± .13 77.0 ± .71 – 4.46 ± .02 85.8 ± .21 –

CMVNMF(5%) 86.7 ± 2.49 86.7 ± 2.66 – 94.6 ± 1.31 94.5 ± 1.28 –

the same number of (inter-view v.s. intra-view) constraints.
This is because that the inter-view constraints of CMVNMF
provide enough mutual information for multi-view clustering,
and CMVNMF uses NMF as the building block, which has
been proved to be very effective for clustering.

Experiments on Completely Mapped Data

Datasets We use two datasets, Cora2 and UCI Handwritten
Digits1, to demonstrate the effectiveness of CMVNMF on
completely mapped data. Cora is comprised of 2708 doc-
uments over 7 labels. Every document is represented by 4
views (content, inbound, outbound, cites). Because cites is
the sum of inbound and outbound, we only use the content,
inbound and outbound views.

Settings We compare CMVNMF with NMF, one fast NMF
algorithm XRAY (Kumar, Sindhwani, and Kambadur 2013),

two NMF based multi-view clustering algorithms, multiNMF
(Liu et al. 2013) and ConcatNMF (Kumar, Rai, and III 2011),
and one spectral multi-view clustering algorithm, CoReguar
(Kumar, Rai, and III 2011). The baseline algorithms are set
with their original settings. For CMVNMF, we use 5% inter-
view constraints. Since the data is completely mapped, we
also test CMVNMF with 0 constraints.

Results Table 2 shows the clustering results on Cora and
Handwritten. From the results it can be seen that CMVNMF
(0%) show no superiority over the baseline algorithms, but
CMVNMF (5%) performs much better than the other algo-
rithms. This is because that the inter-view constraints not
only boost the mutual information between views upon map-
ping, but also guide the clustering processing to get better
results, i.e, inter-view must-links try to minimize the distance
between objects from different views in the same cluster, and
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Table 2: ACC and NMI on Completely Mapped Data

DATASET ALGORITHM
ACC(%) NMI(%)

VIEW 1 VIEW 2 VIEW 3 VIEW 1 VIEW 2 VIEW 3

CORA NMF 38.3 ± 3.16 29.1 ± 1.83 36.9 ± 2.56 16.3 ± 2.95 11.0 ± .90 23.3 ± 1.78

XRAY 32.6 ± .39 30.1 ± .15 33.4 ± .00 16.0 ± 1.40 4.30 ± .52 19.6 ± .00

CONCATNMF 34.8 ± .00 34.8 ± .00 34.8 ± .00 20.0 ± .00 20.0 ± .00 20.0 ± .00

MULTINMF 33.9 ± 2.16 34.8 ± 1.54 35.7 ± 3.21 13.2 ± 1.30 12.0 ± 1.03 21.3 ± 1.46

COREGUAR 40.6 ± 2.53 42.6 ± 2.60 42.0 ± 2.56 22.8 ± .60 23.3 ± .45 23.1 ± .57

CMVNMF(0%) 37.9 ± 1.16 33.6 ± 1.35 40.7 ± 3.87 16.0 ± .00 13.8 ± .44 23.9 ± 2.75

CMVNMF(5%) 58.6 ± 12.2 65.8 ± 9.24 64.3 ± 8.94 64.1 ± 9.00 68.5 ± 7.66 65.4 ± 8.45

HANDWRITTEN NMF 71.6 ± 3.18 71.8 ± 4.95 52.2 ± 1.41 66.1 ± 1.24 69.7 ± 1.95 49.7 ± .74

XRAY 58.6 ± .69 67.8 ± .10 50.5 ± .11 56.2 ± .65 60.5 ± .15 46.5 ± .11

CONCATNMF 75.8 ± .87 75.8 ± .87 75.8 ± .87 68.9 ± .43 68.9 ± .43 68.9 ± .43

MULTINMF 82.4 ± 3.22 83.5 ± 3.51 62.5 ± 3.22 73.6 ± 2.49 74.6 ± 3.29 57.4 ± 2.19

COREGUAR 75.0 ± 5.19 76.0 ± 3.15 76.5 ± 3.92 68.9 ± 2.09 68.8 ± 1.41 69.7 ± 1.51

CMVNMF(0%) 72.9 ± 3.37 76.4 ± 6.27 54.6 ± 3.64 69.7 ± 1.93 70.1 ± 3.10 52.0 ± 1.18

CMVNMF(5%) 82.6 ± 8.71 82.1 ± 7.44 82.1 ± 8.73 93.7 ± 3.78 93.5 ± 3.44 93.5 ± 3.85

inter-view cannot-links try to maximize the distance between
objects from different views in different clusters.

Related Work

Multi-view Clustering

Spectral algorithms (de Sa 2005) creates a bipartite graph
based on the nodes’ co-occurring in both views and find a cut
that crosses fewest lines. (Zhou and Burges 2007) generalizes
the normalized cut from a single view to multiple views via a
random walk. (Kumar and III 2011) reconstructs the similar-
ity matrix of one view by the eigenvectors of the Laplacian in
other views. (Kumar, Rai, and III 2011) integrates multiple
information by co-regularizing the clustering hypotheses.

NMF based algorithms (Akata, Thurau, and Bauckhage
2011) enforces a shared coefficient matrix among different
views. (Greene and Cunningham 2009) assumes that cluster-
ing results have been obtained from each view, and employs
NMF over the clustering results. (Liu et al. 2013) (Liu and
Han 2013) minimizes the difference between coefficient ma-
trix of each view and the consensus matrix.

Other algorithms (Bickel and Scheffer 2004) applies Co-
EM for multi-view clustering. (Blaschko and Lampert 2008)
(Chaudhuri et al. 2009) extracts a shared subspace among
the views and conduct clustering in the shared subspace.
(Tzortzis and Likas 2012) learns a unified kernel through
a weighted combination of kernels of all the views. (Bruno
and Marchand-maillet 2009) utilizes consensus analysis to
integrate single-view clustering results.

Constrained Clustering

Constrained single-view algorithms Due to the fact that
a small number of constraints are easy to obtain in many real
applications, constraints have been widely used for clustering.
Many constrained (sing-view) clustering methods have been
proposed (Wang, Li, and Zhang 2008) (Chen et al. 2008) (Li,

Ding, and Jordan 2007) (Kulis et al. 2009) (Wang and David-
son 2010). They use constraints to adjust clustering objective
functions or learn new distances, showing that constraints are
much helpful to improve clustering result.

Constrained multi-view algorithms (Eaton, desJardins,
and Jacob 2012) proposes a constrained multi-view clustering
algorithm that deal with incompletely mapped data with the
help of intra-view constraints. This algorithm propagates
constraints in each view to those instances that can be mapped
to the other views. Iteratively, constraints in each view are
transferred across views via the partial mapping. (Lu and
Peng 2013) propagates both intra-view pairwise constraints
and inter-view pairwise constraints to accomplish the task of
cross-view retrieval. Our proposed algorithm uses inter-view
constraints (intra-view constraints could also be used, but they
are not as effective as inter-view constraints). Different from
all existing multi-view clustering algorithms, our algorithm
can work on unmapped data.

Conclusion

In this paper, in the context of constrained clustering, we
have addressed the problem of multi-view clustering for un-
mapped data, on which existing algorithms do not work. The
proposed algorithm CMVNMF uses NMF as the basic clus-
tering framework, and uses a small number of inter-view
constraints instead of mapping to get mutual information
between views. Experimental results on several benchmark
datasets for multi-view clustering show that, with a small
number of constraints, CMVNMF obtains high clustering
accuracy on unmapped data, and outperforms existing algo-
rithms on partially mapped data and completely mapped data.
For future work we will investigate how to improve the ef-
fectiveness of both inter-view and intra-view constraints with
constraint propagation, and study robustness of the algorithm
to some mis-specification of constraints.
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