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Abstract

In this paper, we study multi-task algorithms from the
perspective of the algorithmic stability. We give a defini-
tion of the multi-task uniform stability, a generalization
of the conventional uniform stability, which measures
the maximum difference between the loss of a multi-task
algorithm trained on a data set and that of the multi-
task algorithm trained on the same data set but with a
data point removed in each task. In order to analyze
multi-task algorithms based on multi-task uniform sta-
bility, we prove a generalized McDiarmid’s inequality
which assumes the difference bound condition holds by
changing multiple input arguments instead of only one in
the conventional McDiarmid’s inequality. By using the
generalized McDiarmid’s inequality as a tool, we can
analyze the generalization performance of general multi-
task algorithms in terms of the multi-task uniform stabil-
ity. Moreover, as applications, we prove generalization
bounds of several representative regularized multi-task
algorithms.

Introduction
Multi-task learning (Caruana 1997) aims to learn multiple
related tasks simultaneously to improve the generalization
performance of each task by leveraging the useful informa-
tion among all tasks. Multi-task learning has many real-world
applications in various areas, such as data mining, computer
vision, bioinformatics, healthcare, and so on.

In the past decades, many multi-task learning models have
been proposed. Among all the existing models, the multi-
layer feedforward neural network (Caruana 1997), where
the hidden layers provide the common feature representa-
tions for all tasks, is among the earliest learning models
for multi-task learning. Then some regularized methods are
developed for multi-task learning by adapting the single-
task learners. One example is the multi-task support vector
machine in (Evgeniou and Pontil 2004) which proposes a
regularizor to enforce the model parameters of all tasks to
approach the average. Some other representative regularized
multi-task models include learning shared subspace (Ando
and Zhang 2005), multi-task feature selection (Obozinski,
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Taskar, and Jordan 2006) by using the group sparse reg-
ularization, learning shared feature covariance (Argyriou,
Evgeniou, and Pontil 2006), learning from the given task
relations (Evgeniou, Micchelli, and Pontil 2005; Kato et
al. 2007), learning the task relation from data in different
ways (Jacob, Bach, and Vert 2008; Zhang and Yeung 2010a;
Solnon, Arlot, and Bach 2012; Zhang and Yeung 2013;
2014), decomposition methods (Chen, Liu, and Ye 2010;
Jalali et al. 2010; Lozano and Swirszcz 2012; Zweig and
Weinshall 2013) which decomposes the model parameters
into two or more parts with each part modeling one type of
sparsity, and constructing multi-task local learners (Zhang
2013). As well as the aforementioned multi-task models,
some Bayesian models have been extended to multi-task set-
ting by using Gaussian process (Bonilla, Chai, and Williams
2007), Dirichlet process (Xue et al. 2007), t process (Zhang
and Yeung 2010b) and so on.

Besides the algorithmic development, several theoretical
analysis has been conducted for multi-task learning. For
example, Baxter (2000) analyzes the multi-task general-
ization bound via the VC dimension. Also based on the
VC dimension, Ben-David and Borbely (2008) study the
generalization bound for multi-task algorithms where the
data distributions of any pair of tasks are assumed to be
transformable. Ando and Zhang (2005) provide a gener-
alization bound for a multi-task method, which learns the
shared subspace among tasks, by using the covering num-
ber. Maurer (2006) uses the Rademacher complexity to an-
alyze linear multi-task methods. Kolar et al. (2011) investi-
gate to recover sparse patterns. Kakade et al. (2012) inves-
tigate the regularization techniques for learning with ma-
trices and apply the analysis to multi-task learning. The
generalization bound for the multi-task sparse coding is
analyzed in (Maurer, Pontil, and Romera-Paredes 2013;
Maurer, Pontil, and Romera-Paredes 2014). Pontil and Mau-
rer (2013) study the generalization bound of multi-task algo-
rithms which upper-bound the trace norm as a constraint to
learn low-rank parameter matrix. Besides the generalization
bound, the oracle inequality is studied in (Lounici et al. 2009;
Solnon, Arlot, and Bach 2012; Solnon 2013). Even though
there is so much analysis for multi-task learning, most of
them analyze multi-task algorithms whose objective func-
tions are formulated as constrained optimization problems
with the constraints achieving regularization on the model pa-
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rameters. However, many algorithms with regularized instead
of constrained optimization problems have been proposed for
multi-task learning and hence few of the above analysis can
be a principal tool to analyze those regularized algorithms.
As a complementary tool to the existing ones for multi-task
learning such as the VC dimension, covering number, and
Rademacher complexity, the algorithmic stability (Bousquet
and Elisseeff 2002) is very suitable to analyze regularized
single-task learning algorithms. According to the analysis in
(Bousquet and Elisseeff 2002), the algorithmic stability has
a close connection to the generalization in that an algorithm
with its stability coefficient satisfying some property can gen-
eralize. Even though the stability is so important, to the best
of our knowledge, there is no work to even define stability
for general multi-task algorithms where different tasks have
different training datasets.

In this paper, we aim to fill this gap and provide a prin-
cipal tool to analyze regularized multi-task algorithms. In
order to achieve this objective, first we define the multi-task
uniform stability which is to measure the maximum differ-
ence between the loss of a multi-task algorithm trained on
a data set and that of the multi-task algorithm trained on
the same data set but with one data point of each task re-
moved. The multi-task uniform stability is different from the
single-task uniform stability since m data points, where m
is the number of tasks, are removed from the training set
instead of only one data point removed in the single-task
uniform stability. In order to analyze multi-task algorithms
based on the multi-task uniform stability, we prove a general-
ized McDiarmid’s inequality which assumes that the differ-
ence bound condition holds when replacing multiple input
arguments of a function instead of only one replaced in the
conventional McDiarmid’s inequality. By using the general-
ized McDiarmid’s inequality as a tool, we can analyze the
generalization bound of multi-task algorithms in terms of
the multi-task uniform stability. Moreover, as applications,
we analyze the generalization bounds of several represen-
tative regularized multi-task algorithms including learning
with task covariance matrix, learning with trace norm, and
learning with composite sparse norms. To the best of our
knowledge, we are not aware of any other work to analyze
those regularized multi-task algorithms.

Stability of Multi-Task Algorithms
In this section, we define the stability for multi-task algo-
rithms.

To facilitate the presentation, we first introduce some no-
tations. Suppose we are given m learning tasks {Ti}mi=1.
The training set for each task Ti consists of ni data points
{(xij , yij)}

ni
j=1 with the data xij ∈ Rd and its label yij ∈

{−1, 1} corresponding to a binary classification problem or
yij ∈ R for a regression problem. A training example zij
is defined as a pair of a data point xij and its label yij , i.e.,
zij = (xij , y

i
j). The training set of the ith task is defined as

Si = {zi1, . . . , zini
} which are drawn from some unknown

distribution Di. S denotes the union of the training sets of
all tasks. A multi-task algorithm, which maps the training
set S to a function, is denoted by AS where the subscript

indicates the training set. Each algorithm AS is assumed to
be symmetric with respect to S , i.e., it does not depend on the
order of the training data points in the training set. Given Si,
we can modify the training set by removing the jth element,
i.e., S\ji = {zi1, . . . , zij−1, zij+1, . . . , z

i
ni
}, or replacing the

jth element, i.e., Sji = {zi1, . . . , zij−1, ẑij , zij+1, . . . , z
i
ni
}

where the replacement ẑij is drawn from Di and is indepen-
dent of Si. Similarly, the removing and replacing operators
can be defined for S, i.e., S\I = {S\Iii |1 ≤ i ≤ m} and
SI = {SIii |1 ≤ i ≤ m} where I is a m × 1 vector with
its ith element Ii (1 ≤ Ii ≤ ni) as the index of the data
point to be removed or replaced in the ith task. The loss of
a hypothesis f with respect to an example z = (x, y) is de-
fined as l(f, z) = c(f(x), y) where c(·, ·) is a cost function.
The generalization error of a multi-task algorithm A which
is trained on a training set S is defined as

R(A,S) =
m∑
i=1

Ezi∼Di
[l(AS , zi)], (1)

where E[ · ] denotes the expectation operator and z ∼ Di
means that z is sampled from distribution Di. The empirical
loss of a multi-task algorithm A trained on a training dataset
S is defined as

Remp(A,S) =
m∑
i=1

1

ni

ni∑
j=1

l(AS , zij). (2)

There are many types of the stability in (Bousquet and
Elisseeff 2002). In this paper, our study mainly focuses on
the uniform stability and gives a definition for the uniform
stability under the multi-task setting in the following. For
other types of stability, we can generalize them to the multi-
task setting in a similar way and this is left for our future
investigation.

Definition 1 (Multi-Task Uniform Stability) A multi-task
algorithm A has uniform stability τ with respect to the loss
function l if the following holds

∀S, ∀I, ∀zi ∼ Di,

∣∣∣∣∣
m∑
i=1

(
l(AS , zi)− l(AS\I , zi)

)∣∣∣∣∣ ≤ τ.
And τ is called the stability coefficient of algorithm A.

Remark 1 Note that the multi-task uniform stability is
different from the single-task uniform stability in (Bousquet
and Elisseeff 2002). The single-task uniform stability com-
pares the losses between a single-task algorithm trained on
a dataset and the single-task algorithm trained on the same
dataset but with only one training data point removed. How-
ever, the multi-task uniform stability compares the loss of
a multi-task algorithm trained on a dataset with that of the
multi-task algorithm trained on the same dataset by removing
m training data points with one for each task. Moreover, the
multi-task uniform stability can be viewed as a generaliza-
tion of the single-task uniform stability since when m = 1
the multi-task uniform stability reduces to the single-task
uniform stability.
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Then we define a σ-admissible loss function which is use-
ful for the subsequent analysis.

Definition 2 A loss function l(·, ·) is σ-admissible if the as-
sociated cost function c(·, ·) is convex with respect to its first
argument and the following condition holds

∀y1, y2, y3, |c(y1, y3)− c(y2, y3)| ≤ σ|y1 − y2|.

Recall that the main tool to study the single-task general-
ization bound based on the single-task uniform stability in
(Bousquet and Elisseeff 2002) is the McDiarmid’s inequality
(McDiarmid 1989). However, in the definition of the multi-
task uniform stability, there are m data points removed in
the training set instead of only one data point removed in
the definition of the single-task uniform stability and so the
McDiarmid’s inequality cannot be applied here. In order to
study the multi-task generalization bound based on the multi-
task uniform stability, in the following we prove a general-
ization of the McDiarmid’s inequality which can allow more
than one input argument of the function under investigation
to be changed.1

Theorem 1 (Generalized McDiarmid’s Inequality) Let
X1, . . . , Xn be n independent random variables taking
values from some set C, and assume that f : Cn → R
satisfies the following bounded differences condition when
changing any q input arguments:

sup
x1,...,xm,x̂j1 ,...,x̂jq

∣∣f(x1, . . . , xj1 , . . . , xjq , . . . , xn)
−f(x1, . . . , x̂j1 , . . . , x̂jq , . . . , xn)

∣∣ ≤ a,
where {j1, . . . , jq} ⊂ {1, . . . , n}, n is assumed to be divis-
ible by q, and a is a fixed constant. Then for any ε > 0, we
have

p
(
f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] ≥ ε

)
≤ exp

{
−2qε2

na2

}
,

Remark 2 When q = 1, the generalized McDiarmid’s in-
equality becomes the conventional McDiarmid’s inequality
with the same upper bound a and so the inequality intro-
duced in Theorem 1 is a generalization of the conventional
McDiarmid’s inequality. The constant a can be generalized
to multiple constants, which depend on the indices of the
changed input arguments, with small modification in the
proof and here for notational simplicity we just use the same
upper bound.

Generalization Bound for General Multi-Task
Algorithms

In this section, we present a generalization bound for gen-
eral multi-task algorithms based on the multi-task uniform
stability.

Here we assume that the numbers of training data points in
different tasks are the same, i.e., ni = n0 for i = 1, . . . ,m.
Based on the generalized McDiarmid’s inequality introduced

1Due to the page limit, we omit the proofs of all the theorems.

in Theorem 1, we can prove the following generalization
bound of general multi-task algorithms by using the multi-
task uniform stability.

Theorem 2 Let A be a multi-task algorithm with uniform
stability τ with respect to a loss function l(·, ·) such that
0 ≤ l(AS , z) ≤ M for all z and S. Then, for any n0 ≥ 1
and any δ ∈ (0, 1) the following bound holds with probability
at least 1− δ,

R(A,S) ≤ Remp(A,S) + 2τ + (4n0τ +mM)

√
ln(1/δ)

2n0
.

(3)

Remark 3 Note that Theorem 2 requires that only the loss
of the optimal learner produced by a multi-task algorithm
but not for any learning function is bounded, which is easily
satisfied by many regularized multi-task algorithms as we
will see later.

Remark 4 We say that a learning algorithm generalizes if
the empirical error converges in probability to the expected
error when the size of the training dataset increases. In order
to achieve the generalization, τ needs to satisfy that τ =

o(n
− 1

2
0 ) based on Theorem 2, that is,

lim
n0→+∞

τ

n
− 1

2
0

= 0. (4)

Based on Theorem 2, we can compare the bounds of
both the single-task and multi-task learners. Suppose that
the single-task and multi-task learners are of the same type,
i.e., having the same loss function and similar regularizers.
According to (Bousquet and Elisseeff 2002), the following
single-task generalization bound for the ith task holds with
probability at least 1− δ,

RSTi ≤ RSTemp,i + 2τi + (4n0τi +M)

√
ln(1/δ)

2n0
, (5)

where RSTi and RSTemp,i denote the single-task generalization
error and the single-task empirical loss for the ith task re-
spectively and τi is the stability coefficient of the single-task
algorithm for the ith task. We can prove that the following
bound holds with probability at least 1− δ

RST ≤ RSTemp + 2
m∑
i=1

τi + (4n0

m∑
i=1

τi +mM)

√
ln(m/δ)

2n0
,

(6)
where RST =

∑m
i=1R

ST
i and RSTemp =

∑m
i=1R

ST
emp,i are

the aggregated generalization error and aggregated empirical
loss of all the single-task learners on the m tasks respectively.
By comparing the two bounds in Eqs. (6) and (3), we can see
that those two bounds have similar structures. The first terms
in the right-hand side of the two bounds are the empirical
errors, the second ones are about the stability coefficients,
and the last ones are to measure the confidences. For the
empirical errors in the two bounds, we can assume the multi-
task empirical loss is comparable with and even lower than
the single-task one since multi-task algorithms can access
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more labeled training data (i.e., the training data in all the
tasks) than its single-task counterparts, making the multi-task
algorithms have more expressive power. The confidence part
in the multi-task bound is better than that in the aggregated
single-task bound (i.e., Eq. (6)) given that τ is comparable
to or smaller than

∑m
i=1 τi since in the aggregated single-

task bound there is an additional constant m appearing in
the numerator of the logarithm function. So if the multi-task
uniform stability coefficient is smaller than the sum of all
the single-task uniform stability coefficients, the multi-task
bound is more likely to be better than the single-task bound,
implying that multi-task learning is helpful in improving the
performance of all tasks. This rule (i.e., τ ≤

∑m
i=1 τi) may be

used to determine when we can use the multi-task algorithm
instead of its single-task counterpart, which is an advantage
of the multi-task stability over other analysis tools.

Applications to Regularized Multi-Task
Algorithms

In this section, we apply the analysis in the previous sec-
tion to analyze several representative regularized multi-task
algorithms.

Here we consider a linear model for the ith task with the
linear function defined as fi(x) = wT

i x. The additional
offset bi is absorbed into wi and correspondingly a constant
1 is included in the feature representation of each data point.
Moreover, the dot product 〈x,x〉 for any x is assumed to be
upper-bounded by κ2.

The general objective function of regularized multi-task
algorithms is formulated as

min
W

1

n0

m∑
i=1

n0∑
j=1

c
(
wT
i xij , y

i
j

)
+ g(W), (7)

where W = (w1, . . . ,wm). The first term in problem (7) is
to measure the empirical loss on the training set and g(W),
the regularization term, is to specify the relations among tasks
as well as penalizing the complexity of W. Here we assume
that the loss function l(·, ·) or equivalently the cost function
c(·, ·) satisfies the following two properties:
(i) there exists a constant η > 0 such that for all y, we have
c(0, y) ≤ η;

(ii) the loss function l(·, ·) is nonnegative and σ-admissible.
Remark 5 Note that the two properties listed above are rea-
sonable and are satisfied by most commonly used loss func-
tions. For example, the hinge loss c(y1, y2) = max(0, 1 −
y1y2) satisfies the two properties and so does the square loss
c(y1, y2) = (y1 − y2)2 if the output space is bounded.
To ensure that the minimizer of problem (7) exists, g(W)
is assumed to be coercive, that is, lim‖W‖F→+∞ g(W) =
+∞.

In the following sections, we investigate three types of reg-
ularized multi-task algorithms with different regularizers, i.e.,
a Frobenius-norm-style regularizer parameterized by a task
covariance matrix, the (squared) trace norm regularization,
and composite sparse regularizers where the model parameter
consists of two components with each one capturing one type
of sparsity.

Learning with Task Covariance Matrix
Here we investigate a regularized multi-task algorithm with
the objective function formulated as

min
W

1

n0

m∑
i=1

n0∑
j=1

c
(
wT
i xij , y

i
j

)
+ tr(WΩ−1WT ), (8)

where tr(·) denotes the trace of a square matrix. Ω, a positive
definite matrix, can be viewed as a task covariance matrix to
describe the pairwise relations between tasks. From the per-
spective of probabilistic modeling, the regularizer in problem
(8) corresponds to a matrix-variate normal prior on W with
Ω describing the covariance between columns (Zhang and
Yeung 2010a). Moreover, according to the analysis in (Zhang
and Yeung 2010b), we can see that problem (8) is related
to the weight-space view of a multi-task Gaussian process
model proposed in (Bonilla, Chai, and Williams 2007). Prob-
lem (8) can be viewed as a generalization of the objective
functions of regularized single-task learners. For example,
when Ω is a diagonal matrix, problem (8) will be decomposed
into m independent single-task formulations with squared
`2 regularization and when m = 1, Ω reduces to a positive
scalar, making problem (8) an `2-regularized single-task al-
gorithm such as the ridge regression model. On the other
hand, problem (8) has been studied by many existing works,
such as (Evgeniou and Pontil 2004; Evgeniou, Micchelli, and
Pontil 2005; Kato et al. 2007) which assume that Ω is given
as a priori information and (Jacob, Bach, and Vert 2008;
Zhang and Yeung 2010a; Solnon, Arlot, and Bach 2012;
Solnon 2013) which aim to learn Ω from data in different
ways.

Then we will analyze the multi-task uniform stability coef-
ficient of the multi-task algorithm in problem (8).

Theorem 3 The learning algorithm A defined by problem
(8) has uniform stability coefficient τ as

τ ≤ λ1(Ω)κ2σ2m

2n0
,

where λi(Ω) is the ith largest eigenvalue of Ω.

In order to use Theorem 2 to give the generalization bound,
we prove that the optimal solution of problem (8) produces
bounded loss for any data point in the following theorem.

Theorem 4 For the optimal solution W? of problem (8), we
have

c
(
(w?

i )
Tx, y

)
≤ σκ

√
λ1(Ω)mη + η

for any x and y, where w?
i is the ith column of W?.

By combining Theorems 4 and 3 with Theorem 2, we
can easily obtain the generalization bound of the multi-task
algorithm in problem (8).

Remark 6 According to Theorem 3, the stability coefficient
τ of problem (8) satisfies Eq. (4), which implies that the multi-
task algorithm induced by problem (8) generalizes, given that
Ω is positive definite.

Remark 7 According to (Bousquet and Elisseeff 2002), the
single-task uniform stability coefficient of an `2-regularized

3184



single-task method such as the ridge regression model is
upper-bounded, i.e., τi ≤ µiσ

2κ2

2n0
where 1

µi
‖ · ‖22 is used as a

regularizer with ‖·‖2 denoting the `2 norm of a vector. For the
multi-task algorithm in problem (8), its stability coefficient
τ satisfies τ ≤ λ1(Ω)σ2mκ2

2n0
based on Theorem 3. If λ1(Ω)

is smaller than 1
m

∑m
i=1 µi, τ is likely to be smaller than∑m

i=1 τi and hence the multi-task algorithm is likely to have
smaller generalization error than the single-task algorithm.

Remark 8 As revealed in Theorem 3, the bound on τ sug-
gests that if we want to learn the task covariance matrix
Ω from data, the spectrum of Ω can be used to define the
regularizer. For example, we can use tr(Ω) as a regularizer,
leading to the following objective function as

min
W,Ω

1

n0

m∑
i=1

n0∑
j=1

c
(
wT
i xij , y

i
j

)
+tr(WΩ−1WT )+αtr(Ω),

(9)
where α is a regularization parameter. By setting the deriva-
tive with respect to Ω to be zero, we can get the analytical
solution of Ω as Ω? = 1√

α
(WTW)1/2. By plugging Ω?

into problem (9), we can find that the regularizer on W is
just the trace norm of W, which is what we want to analyze
in the next section.

Learning with Trace Norm
The trace norm is widely used in multi-task learning as a
regularizer (Argyriou, Evgeniou, and Pontil 2006; Zhang and
Yeung 2010a; Pong et al. 2010; Chen, Liu, and Ye 2010;
Chen, Zhou, and Ye 2011; Chen, Liu, and Ye 2012) since the
trace norm regularization can learn a low-rank matrix which
matches the assumption of multi-task learning that multiple
task are related in terms of the model parameters. The ob-
jective function for learning with trace norm is formulated
as

min
W

1

n0

m∑
i=1

n0∑
j=1

c
(
wT
i xij , y

i
j

)
+α‖W‖∗+

β

2
‖W‖2F , (10)

where ‖ · ‖∗ denotes the trace norm or equivalently the nu-
clear norm of a matrix, ‖ · ‖F denotes the matrix Frobenius
norm, and α and β are the regularization parameters. In the
following, we analyze the stability coefficient of problem
(10) and prove the boundedness of the cost function at the
optimal solution of problem (10).

Theorem 5 The learning algorithm A defined by problem
(10) has uniform stability coefficient τ as

τ ≤ 2κ2σ2m

βn0
.

Theorem 6 For the optimal solution W? of problem (10),
we have

c
(
(w?

i )
Tx, y

)
≤ σκ

β

(√
α2 + 2mηβ − α

)
+ η

for any x and y, where w?
i is the ith column of W?.

Combining Theorem 5, 6 and 2 yields the generalization
bound of problem (10).

Remark 9 If only trace norm is used for regularization, i.e.,
β equals 0 in problem (10), we can see that according to
Theorem 5 the corresponding stability coefficient cannot sat-
isfy Eq. (4), and hence the corresponding multi-task algo-
rithm, which is to learn the low-rank parameter matrix, is
not stable, implying that it may not generalize. This state-
ment is similar to a fact that sparse learning algorithms are
not stable as proved in (Xu, Caramanis, and Mannor 2012).
On the other hand, by adding a squared `2 regularizer in
terms of the matrix Frobenius norm, the multi-task algorithm
induced by problem (10) can generalize since its stability co-
efficient satisfies Eq. (4). Similar phenomena is also observed
in single-task learning (Xu, Caramanis, and Mannor 2012).

The squared trace norm regularization is also used for
multi-task learning, e.g., (Argyriou, Evgeniou, and Pontil
2006; Zhang and Yeung 2010a). The objective function is
formulated as

min
W

1

n0

m∑
i=1

n0∑
j=1

c
(
wT
i xij , y

i
j

)
+
α

2
‖W‖2∗+

β

2
‖W‖2F , (11)

Similar to the trace norm regularization, we can analyze
problem (11) with the results in the following theorems.
Theorem 7 The learning algorithm A defined by problem
(11) has uniform stability coefficient τ as

τ ≤ 2κ2σ2m

(α+ β)n0
.

Theorem 8 For the optimal solution W? of problem (11),
we have

c
(
(w?

i )
Tx, y

)
≤ σκ

√
2mη

α+ β
+ η

for any x and y, where w?
i is the ith column of W?.

Remark 10 According to Theorem 7, we can see that if only
the squared trace norm is used for regularization, i.e., β being
0 in problem (11), the stability coefficient of the correspond-
ing multi-task algorithm also satisfies Eq. (4), meaning that
it is stable and also generalizes, which is different from the
situation that only the trace norm is used as the regularizer.
Remark 11 Similar to the trace norm regularization, the
squared `2 regularizer (i.e., β2 ‖W‖

2
F ) can make the stability

coefficient smaller and as a consequence, the generalization
performance can become better.
Remark 12 In (Pontil and Maurer 2013), the effect of the
trace norm on multi-task algorithms has been studied. How-
ever, different from multi-task algorithms investigated in prob-
lems (10) and (11), the multi-task algorithms in (Pontil and
Maurer 2013) use the trace norm of the parameter matrix of
all tasks to define a constraint to achieve regularization. The
analysis in (Pontil and Maurer 2013) uses the Rademacher
complexity as a tool and the proof is more complicated than
ours. Moreover, (Pontil and Maurer 2013) only analyzes the
trace norm case and it seems that the proof cannot be easily
extended to analyze the squared trace norm. Similar to (Pontil
and Maurer 2013), the analysis in (Kakade, Shalev-Shwartz,
and Tewari 2012) can only be applied to the multi-task al-
gorithms with the trace norm as a constraint instead of as a
regularizer.
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Learning with Composite Sparse Norms
There are some works (e.g., (Chen, Liu, and Ye 2010;
Jalali et al. 2010; Chen, Zhou, and Ye 2011; Chen, Liu, and
Ye 2012; Gong, Ye, and Zhang 2012)) to decompose the
model parameters of all tasks into two components which
are assumed to pursue some sparse properties. For exam-
ple, in (Chen, Liu, and Ye 2010; Chen, Zhou, and Ye 2011;
Chen, Liu, and Ye 2012) one component is to capture the
low-rank property of the model parameters and another one
learns the (group) sparse parameters but in (Jalali et al. 2010;
Gong, Ye, and Zhang 2012) both components learn the
(group) sparse parameters. As an example, we investi-
gate the method introduced in (Chen, Liu, and Ye 2010;
2012) with the objective function formulated as

min
L,S

1

n0

m∑
i=1

n0∑
j=1

c
(
(li + si)

Txi
j , y

i
j

)
+ α‖L‖∗ + β‖S‖1

+
γ

2

(
‖L‖2F + ‖S‖2F

)
, (12)

where li and si denote the ith columns of L and S respec-
tively and ‖ · ‖1 denotes the `1 norm of a matrix, the sum of
the absolute values of all the elements in the matrix. Problem
(12) is slightly different from the original objective function
in (Chen, Liu, and Ye 2010; 2012) by adding squared Frobe-
nius norm as a regularizer, which is inspired by the analysis
on the trace norm regularization in the previous section. Sim-
ilar to the previous cases, we can analyze problem (12) with
the results shown as follows.

Theorem 9 The learning algorithm A defined by problem
(12) has uniform stability coefficient τ as

τ ≤ 2
√
2κ2σ2m

√
m

γn0
.

Theorem 10 For the optimal solution L? and S? of problem
(12), we have

c
(
(w?

i )
Tx, y

)
≤ 2σκ

γ

(√
θ2 +mηγ − θ

)
+ η

for any x and y, where w?
i is the ith column of L? + S? and

θ = min{α, β}.
By combining Theorems 10, 2, and 9, we can analyze the

generalization bound of problem (12).

Remark 13 Similar to the trace norm regularization, with-
out the squared Frobenius regularizer, the multi-task algo-
rithm corresponding to γ = 0 may not generalize since its
stability coefficient does not satisfy Eq. (4).

Remark 14 For other algorithms in (Jalali et al. 2010; Chen,
Zhou, and Ye 2011; Gong, Ye, and Zhang 2012), we can
analyze them in a similar way and due to page limit, we omit
the results.

Related Works
The most related work to ours is (Audiffren and Kadri 2013)
which also investigates the stability of multi-task regres-
sion algorithms. However, different from our work, in (Aud-
iffren and Kadri 2013) all the tasks share the same training
dataset, making the analysis not applicable to the general

multi-task setting where different tasks can have different
training datasets. The uniform stability studied in (Aud-
iffren and Kadri 2013) is just the single-task uniform sta-
bility proposed in (Bousquet and Elisseeff 2002) and so
it is different from our proposed multi-task uniform stabil-
ity. Moreover, stability has been applied in (Maurer 2005;
Kuzborskij and Orabona 2013) to analyze transfer learn-
ing algorithms which are related to multi-task learning but
have different settings since transfer learning aims to im-
prove the performance of only the target task by leverag-
ing the information from the source tasks. Similar to (Aud-
iffren and Kadri 2013), the stability studied in (Maurer 2005;
Kuzborskij and Orabona 2013) is still the single-task uniform
stability in (Bousquet and Elisseeff 2002) but different from
ours. In summary, our work is totally different from those
existing works.

Conclusion
In this paper, we extend the uniform stability to the multi-task
setting and use the proposed multi-task uniform stability to
analyze several types of regularized multi-task algorithms by
using the proposed generalized McDiarmid’s inequality as a
tool.

In our future work, we are interested in extending the anal-
ysis to other multi-task learning models. Moreover, we will
study the multi-task extension of other stabilities defined in
(Bousquet and Elisseeff 2002) based on the proposed gener-
alized McDiarmid’s inequality.
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