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Abstract

The global financial crisis occurred in 2008 and its
contagion to other regions, as well as the long-lasting
impact on different markets, show that it is increas-
ingly important to understand the complicated cou-
pling relationships across financial markets. This is in-
deed very difficult as complex hidden coupling rela-
tionships exist between different financial markets in
various countries, which are very hard to model. The
couplings involve interactions between homogeneous
markets from various countries (we call intra-market
coupling), interactions between heterogeneous markets
(inter-market coupling) and interactions between cur-
rent and past market behaviors (temporal coupling).
Very limited work has been done towards modeling
such complex couplings, whereas some existing meth-
ods predict market movement by simply aggregating in-
dicators from various markets but ignoring the inbuilt
couplings. As a result, these methods are highly sensi-
tive to observations, and may often fail when financial
indicators change slightly. In this paper, a coupled deep
belief network is designed to accommodate the above
three types of couplings across financial markets. With
a deep-architecture model to capture the high-level cou-
pled features, the proposed approach can infer market
trends. Experimental results on data of stock and cur-
rency markets from three countries show that our ap-
proach outperforms other baselines, from both technical
and business perspectives.

Introduction
The global financial crisis in 2008 and its contagion from
the US to other regions and from one market to others show
the importance of understanding the interactions across fi-
nancial markets and the challenge of predicting future mar-
ket movements. This is because financial markets are com-
plex, evolutionary and non-linear dynamic systems; markets
are no longer as independent as before due to globalization,
there are explicit and implicit couplings between homoge-
neous and heterogeneous markets within and between coun-
tries. Accordingly, the price dynamics of a financial market
cannot be simply informed by itself rather a systematic out-
come of complex interactions across all related markets, as
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verified by the 2008 financial crisis (Longstaff 2010).
Figure 1 illustrates complex couplings across markets. In

addition to other factors, the movement of US stock mar-
kets is affected by three major types of cross-market inter-
actions: the intra-market coupling, referring to the interac-
tions between homogeneous markets (e.g. UK stock market
and Chinese stock market); the inter-market coupling, indi-
cating the interactions between heterogeneous markets (e.g.
US currency market and stock market); and the temporary
coupling, describing the transitional influence across differ-
ent time points in a market. Such couplings are embedded
across different relevant markets and countries, which need
to be considered in estimating the dynamics of a market.

However, it is very difficult to capture such couplings
across financial markets. Let us explore the possible un-
derlying challenges. Firstly, such complex interactions are
driven by features that are not observable directly from mar-
ket indexes (Chan et al. 2011); while we need to understand
what such hidden factors (which may be abstract) are in or-
der to find out the drivers of couplings. Secondly, the three
types of couplings depicted in Figure 1 make it very dif-
ficult to build a model that is not too complex but expres-
sive enough to capture the various interactions. Finally, these
couplings behave in a highly non-linear and dynamic man-
ner, which increases the difficulty to qualify them.

Modeling such couplings fundamentally challenges exist-
ing approaches for financial market forecasting, which can
be roughly categorized into two groups: time series analy-
sis represented by typical models including Logistic regres-
sion (Laitinen and Laitinen 2001), Autoregressive Integrated
Moving Average (ARIMA) and Generalized AutoRegres-
sive Conditional Heteroscedasticity (GARCH) (Marcucci
2005) models, which use historical observations to infer
future trend behaviors; and machine learning-based meth-
ods to forecast financial market movements, such as the ap-
plications of Artificial Neural Networks (ANN) and Hid-
den Markov Models (HMM) (Hassan and Nath 2005). The
main challenges lie in their deficiencies: linear time series
models rely on the linear assumption of financial markets,
which often exhibit nonlinear behaviors; more importantly,
many models predict market trends directly based on obser-
vations, while ignoring the underlying complex couplings.
As a result, the outcomes may be either biased or too sen-
sitive to observations available. The machine learning-based
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Figure 1: A demonstration of complex couplings between
financial markets

models are shown more effective for capturing relationships
within observations, especially non-linear interactions; how-
ever, limited work has been reported that it can jointly cap-
ture the above three types of interactions across markets.

To model such complex coupled relations, in this paper,
we propose to use the deep-learning approach to construct
effective representation of cross-market couplings while
maintains its reasonably size and expressiveness in captur-
ing the three types of couplings. This is motivated by the re-
cent theoretical results that show that the deep-architecture
models (Bengio 2009) can be exponentially more efficient
and expressive than shallow-structure ones. According to the
couplings illustrated in Figure 1, we design a Coupled Tem-
poral Deep Belief Network (CTDBN) to encode the intra-
market coupling, inter-market coupling and temporary cou-
pling within global financial markets. More specifically, in
the first layer we employ Conditional Gaussian Restricted
Boltzmann Machines (CGRBMs) to learn the abstract fea-
tures to represent intra-market interactions and correspond-
ing temporal dependence between homogenous markets. In
the second layer, Coupled Conditional RBMs (CCRBMs)
are built on the features learned from the first-layer mod-
els, so as to capture the high-level inter-market coupling be-
tween heterogeneous markets.

Related Work
Here we mainly discuss the approaches related to time se-
ries analysis and machine learning-based models, which are
widely used for cross-market analysis.

Time Series Models
In financial markets, time series analysis uses historical data
to infer future trend behaviors; typical representatives are
ARIMA and Logistic models. The linear ARIMA model
was used in (Contreras et al. 2003) to analyze time series
from mainland Spain and California markets to predict next-
day electricity market price. The Logistic model was used in
(Laitinen and Laitinen 2001) to solve the bankruptcy predic-
tion problem. In (Chen and Chen 2011), fuzzy multivariate
time series analysis was used to forecast the daily Taiwan
stock index. However, this kind of method suffer from mar-
ket changes of the corresponding input variables, as they
make predictions highly dependent on historical observa-
tions and input variables. Very limited work can be found
that addresses the underlying complex interactions between
market indicator series, which fundamentally drive cross-
market movements.

Machine Learning Models
Machine learning-based models have been increasingly ex-
plored for financial market analysis. The typical models in-
clude ANN (Olson and Mossman 2003; Pan, Tilakaratne,
and Yearwood 2005) and HMM (Hassan and Nath 2005;
Cao et al. 2010), which check any systematic patterns in
time series for prediction. In (Huarng and Yu 2006), ANN
was used to establish fuzzy relationships in fuzzy time se-
ries for stock forecasting, and the volatility of stock price
index is predicted by ANN in (Hyup Roh 2007). In (Has-
san and Nath 2005), HMM was used to forecast stock price
for interrelated markets. Although these methods explored
temporal couplings in a market or correlations between mar-
kets, they do not effectively address the intra- and inter-
market couplings between homogeneous and heterogeneous
markets with multiple distinct financial indicators. Recently,
Coupled Hidden Markov Model (CHMM) was deployed to
learn the coupled market behaviors (Cao, Ou, and Yu 2012),
which captures the hidden couplings between multiple time
series. However, the modeling structure of CHMM is not
powerful enough to model the complex cross-market cou-
plings due to its structural limitation.

Preliminaries
We introduce some concepts used in this paper and then for-
malize the complex interactions in financial markets. After
this, we give a brief review on conditional RBM (CRBM)
model which is the building block of our CTDBN model.

Problem Formalization
Suppose there are J countries, and each country owns I fi-
nancial markets. mij represents the observations from mar-
ket i in country j. In this paper, we focus on representing
three types of couplings (cf. Figure 1): intra-market cou-
pling, inter-market coupling and temporal coupling. The
corresponding definitions are as follows:

Definition 1. Intra-market Coupling : This is the interac-
tion between homogeneous markets from all countries. For-
mally, the representation of intra-market interaction w.r.t the
market i is given by:

θi = {⊗J
j=1(mij)} (1)

where ⊗ denotes the coupled interactions among market i’s
observations over all countries.

Definition 2. Inter-market Coupling: This is the high-
level interaction between heterogeneous financial markets,
which is built on {θi}. Formally, the representation of inter-
market interaction is given by:

η = {~I
i=1(θi)} (2)

where ~ denotes the couplings among all different markets.
Definition 3. Temporal Coupling: This denotes the influ-

ences from past information. The representation of n-order
temporal coupling w.r.t. θi and η is given by:

θi,t|{mij,[t−n,t−1]}Jj=1 (3)

ηt|{θi,[t−n,t−1]}Ii=1 (4)
which denotes the representation of coupled interaction at
time t influenced by the past period from t− n to t− 1.

2519



 Legend

Currency Markets

Stock Markets

  Inter-market Coupling (2nd layer CCRBMs)

θt θt

mt

θt

mtmt

θt

mt

ηt ηt ηt

θt θt

mt

θt

mtmt

θt

mt

θt

?t ?t ?t

ηt

θt

?t ?t ?t

...

...

...

...

...

t=2 t=3t=1 t=T t=T+1 
(Forecasting)t=...

mtmt

mtmt

t=4 t=5

Past to Hidden 
Connection

Autoregressive
Connection

mt
Intra-market Observations

θt
Features of Intra-market Coupling

ηt
Features of Inter-Market Coupling

Figure 2: Modeling framework of CTDBN. Here, the demonstration shows two heterogeneous financial markets, stock and
currency. The first-layer are CGRBMs to model the intra-maket couplings while CCRBMs are built on the first layer to model
inter-market couplings.

Conditional Restricted Boltzmann Machines
In order to model temporal coupling, we need to use CRBM
(Taylor 2009) instead of RBM. The CRBM assign a proba-
bility to any joint setting of the visible units v and hidden
units h conditional on u by

P (v,h | u) = exp(−E(v,h,u))/Z (5)
where Z is a normalization constant and E(v,h,u) is an
energy function:

E(v,h,u) = −vTWh− uTAv − uTBh− aTv − bTh (6)

where v ∈ {0, 1}D is a vector of binary visible units, h ∈
{0, 1}F is a vector of binary hidden units and u ∈ {0, 1}D
is a vector of binary visible units. W ∈ RD×F encodes the
interactions between v and h, A ∈ RD×D encodes the in-
teractions between u and v, B ∈ RD×F encodes the inter-
actions between u and h. a ∈ RD and b ∈ RF denote the
biases of v and h separately. Hence, Ω = {W,A,B,a,b}
are the model parameters that need to learn.

The conditional distributions w.r.t. visible units and hid-
den units are factorial (Bengio, Courville, and Vincent
2013), which can easily derived from Eq. (5):

P (hf = 1 | u,v) = s(bf + uTB:,f + vTW:,f ) (7)

P (vd = 1 | v,u) = s(ad + uTA:,d +Wd,:h) (8)

where s(x) = 1/1+exp(−x) is the logistic function, Wd,:

denotes the dth row of W and A:,d denotes the dth column
of A. Such a notation will be used in the rest of this paper.

Moreover, to model real-valued data (e.g. stock return),
we need to employ a generalized CRBM with Gaussian vis-
ible units, so-called conditional Gaussian RBM (CGRBM).
The corresponding energy function has the following form:

E(v,h,u) = (9)

−vTWh

σ
− uTAv − uTBh+

(v − a)T(v − a)

2σ2
− bTh

where each visible unit vd ∈ R, with the variance σ2. Then
the corresponding conditional distributions are given by:

P (hf = 1 | v,u) = s(bf + uTB:,f + vTW:,f/σ) (10)

P (vd | v,u) = N (ad + uTA:,d + σWd,:h, σ
2) (11)

In many applications, it is much easier to normalize each
visible unit to zero mean and unit variance (Taylor and Hin-
ton 2009), so that we can simply set σ = 1. In this paper, we
also preprocess our data following this way.

Parameter Estimation Generally, the estimator is derived
from a maximum likelihood learning procedure. Hence, we
can minimize the following negative log-likelihood w.r.t.
each parameter ω ∈ Ω:

−
∂logp(v)

∂ω
= EP (h|v,u)(

∂E(v,h,u)

∂ω
)− EP (v,h,u)(

∂E(v,h,u)

∂ω
) (12)

The first term on the right hand, a.k.a. data-dependent ex-
pectation, is tractable but the second term, a.k.a. model-
dependent expectation is intractable and must be approxi-
mated (Bengio, Courville, and Vincent 2013). In practice,
Contrastive Divergence (CD) (Hinton, Osindero, and Teh
2006) can be used to approximate the expectation with a
short k − step (e.g. k = 1) Gibbs sampling using Eq. (7),
(8) and (10), (11), denoted as CDk.

The stochastic gradient descent update using CDk w.r.t.
each parameter ω ∈ Ω can be given by:

ω ← ω − α(∂E(v0,h0,u)

∂ω
− ∂E(vk,hk,u)

∂ω
) (13)

where v0 are the visible data, h0 is sampled by Eq. (7) or
(10), vk and hk are sampled from the k-step Gibbs chain.

Modeling and Forecasting
In this section, we focus on modeling the coupled relations
in the global financial markets as formalized by Definitions
1, 2 and 3. We design a CTDBN to hierarchically model such
complex interactions. Figure 2 demonstrates a CTDBN that
models the couplings between stock and currency markets in
various countries. Similar to a DBN stacking RBMs layer by
layer, our CTDBN consists of multiple wings of CRBMs in
the first layer, where each wing models one type of homo-
geneous markets, e.g. stock markets in different countries.
Obviously, the first-layer model is used to model the intra-
market coupling and temporal coupling. The second layer
model is built on these wings, i.e. heterogeneous markets,
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where the hidden units of the first layer serve as the visible
units of the second layer CRBMs. Hence, the second layer
model is used to model the inter-market coupling and tem-
poral coupling. Thus, our CTDBN is eligible to represent all
above defined coupled relations by such a deep structure.

θt
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B W
mt-1mt-2

(a)
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ηt

θi,tAi

WiBi
θi,t-1θi,t-2

(b)

Figure 3: (a) A CGRBM to model intra-market coupling at
time t; (b) A CCRBM to model inter-market coupling at
time t

Representation of Intra-market Coupling
Given a vector of observations mi of the financial market i
within a period t− n to t (e.g. n = 2 represents three week
stock market indexes) from J countries. Each element mijt

denotes the observation of market i in country j at time t.
Here, we employ CGRBMs to model the representation of
intra-market coupling between the given homogeneous mar-
kets, as illustrated in Figure 3 (a). Note that we omit the
subscript i for concise in following, when we focus on dis-
cussing the coupling in a specific financial market i.

As shown in Figure 3 (a), a vector of Gaussian units
is used to represent the current market observations mt.
Moreover, to model the n-order temporal coupling, the past
market observations mt−1,mt−2, . . . ,mt−n are used to
serve as the conditionals. Therefore, we use Al for mod-
eling the weights of autoregressive connections from mt−l

to mt. θt ∈ {0, 1}F is a vector of hidden units serving
as the abstract representation of intra-market coupling. In
addition, the weights of connections from the past obser-
vations mt−l to θt are denoted as Bl. Now, let m<t =
[mt−1,mt−2, . . . ,mt−n] denote a stacked history vector,
and correspondingly the stacked weight matrices are de-
noted as A = [A1, . . . ,An] and B = [B1, . . . ,Bn]. There-
fore, the energy function of this CGRBM can be given as
follows (we assume the variance equal to 1), according to
Eq. (9).

E(mt,θt,m<t) =
(mt − a)T (mt − a)

2
− (14)

mT
t θt −mT

<tAmt −mT
<tBθt − bTθt

Then the conditional distributions can be immediately ob-
tained according to Eq. (10) and (11).

P (θft = 1 |mt,m<t) = s(bf +mT
<tB:,f +mT

t W:,f ) (15)

P (mjt | θt,m<t) = N (aj ++mT
<tA:,j +Wi,:θt, 1) (16)

Formalism Mapping We easily find that the intra-market
coupling operator ⊗ in Eq. (1) is implemented by encoding
{mjt}Jj=1 with the parameter W, and the temporal coupling
is encoded with the parameter B. Therefore, θt serves as
features of intra-market coupling and associated temporal
coupling.

Parameter Learning Given Eq. (14), (15) and (16), the
stochastic gradient update equations using CDk can be ob-
tained according to Eq. (13).

W←W − α(m(0)
t θ

(0)T
t −m

(k)
t θ

(k)T
t ) (17)

A← A− α(m(0)
<tm

(0)T
t −m

(k)
<tm

(k)T
t ) (18)

B← B− α(m(0)
<tθ

(0)T
t −m

(k)
<t θ

(k)T
t ) (19)

a← a− α(m(0)
t −m

(k)
t ) (20)

b← b− α(θ(0)
t − θ

(k)
t ) (21)

Representation of Inter-market Coupling
As shown in Figure 1, inter-market coupling describes the
interactions between heterogeneous markets. In fact, it can
be viewed as a higher level relation that jointly models the
coupling of all intra-market couplings as given by the Def-
inition 2. Therefore, to model the representation of such a
high-level inter-market coupling, we can build the second
layer model on the first layer CGRBMs which hidden units,
i.e. the representation of intra-market coupling, serve as the
visible units of the second layer CRBM. In particular, the
second layer CRBM couples all heterogeneous markets, so
we call it Coupled CRBM (CCRBM).

Figure 3 (b) illustrates the graphical model of the second
layer CCRBM, where the plate notation is used to repeat-
edly represent the feature vector θi,t learned from first layer
CGRBMs w.r.t. each heterogeneous market i. θt ∈ {0, 1}H
is a vector of hidden units which serve as the features to rep-
resent intra-market coupling. Similar to the notation of first
layer CGRBM, let θi,<t = [θi,t−1,θi,t−2, . . . ,θi,t−n] de-
notes a stacked history vector w.r.t. market i. and Ai, Bi are
the stacked weight matrices associated with θi,<t for mod-
eling the temporal couplings. Then, we can write the energy
function of this CCRBM as follows:

E({θi,t},ηt, {θi,<t}) = −bTηt −
I∑

i=1

aT
i θi,t − (22)

I∑
i=1

θT
i,tWiηt −

I∑
i=1

θT
i,<tAiθi,t −

I∑
i=1

θT
i,<tBiηt

According to the energy function, we can respectively ob-
tain the conditional distribution w.r.t. each inter-coupled fea-
ture ηlt, and each intra-coupled feature θjrt.

P (θift = 1 | ηht, {θi,<t}) = (23)

s(aif + θT
i,<t(Ai):,f + (Wi)f,:ηt)

P (ηht = 1 | {θi,t}, {θi,<t}) = (24)

s(bh +

I∑
i=1

θT
i,t(Wi):,h +

I∑
i=1

θT
i,<t(Bi):,h)

Formalism Mapping We can find that the coupling en-
coding operator ~ given in Eq. (2) is implemented by term∑I

i=1 θ
T
i,t(Wi):,h in Eq. (24), which encodes the interac-

tion between intra-market couplings to features for repre-
senting inter-market coupling. In addition, the temporal cou-
pling from each heterogeneous market i is encoded with the
parameter Bi. Therefore, ηht serves as features of the inter-
market coupling and associated temporal coupling.
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Parameter Learning The stochastic gradient update
equations usingCDk can be obtained according to Eq. (13).

Wi ←Wi − α(θ(0)
i,t η

(0)T
t − θ

(k)
i,t η

(k)T
t ) (25)

Ai ← Ai − α(θ(0)
i,<tθ

(0)T
i,t − θ

(k)
i,<tθ

(k)T
i,t ) (26)

Bi ← Bi − α(θ(0)
i,<tη

(0)T
t − θ

(k)
i,<tη

(k)T
t ) (27)

ai ← ai − α(θ(0)
i,t − θ

(k)
i,t ) (28)

bi ← bi − α(η(0)
t − η

(k)
t ) (29)

Forecasting Based on CTDBN
Our ultimate goal is to forecast the trends of financial mar-
kets derived from the underlying complex interactions. Our
CTDBN is a generative model, where mi,t is generated from
the hidden units θi,t as depicted by the Figure 2. Therefore,
we firstly need to infer θi,T+1 so as to predict mi,T+1. Fur-
thermore, θi,T+1 and ηT+1 are jointly dependent, so we
need to infer ηT+1 as well. Since each layer is a n-order
temporal model, we totally need 2n past observations, i.e.
[mi,T+1−2n, . . . ,mi,T ].

In particular, we perform mean-field inference (Welling
and Hinton 2002) to reconstruct θi,T+1 and ηT+1
instead of a stochastic reconstruction to avoid sam-
pling noise. The prediction steps are given as follows:

1. Estimate θi,t for 1 ≤ i ≤ I , T + 1− 2n ≤ t ≤ T .
Given the parameters {b,B,W} of the first layer CGRBM
w.r.t market i, θi,t is set to the mean of Eq. (15)
θi,t ∼ s(b + mT

i,<tB + mT
i,tW)

2. Initialize θi,T+1 for 1 ≤ i ≤ I .
θi,T+1 ← θi,T

3. Estimate θi,T+1 for 1 ≤ i ≤ I by K-iteration mean-field
update on second layer CCRBM, c.f. Eq. (23, 24).
ηt ← s(b +

∑I
i=1 θ

(K)T
i,T+1Wi +

∑I
i=1 θ

T
i,<tBi)

θK
i,T+1 ← s(ai + θT

i,<T+1Ai + Wiη
K
t )

4. Generate predicted observations mi,T+1 for 1 ≤ i ≤ I .
Given the parameters {a,A,W} of the first layer CGRBM
w.r.t market i, the prediction mi,T+1 is set to the mean of
Eq. (15)
mi,T+1 ← a + mT

<tA + Wθi,t

So far we generate the forecasting of each market at time
t = T + 1. This procedure can carry forward indefinitely.

Experiment
Data Preparation
In this section, we illustrate the use of the CTDBN for pre-
dicting financial market movements based on capturing the
complex interactions between different financial markets.
Thus, the data set of interest is the historical prices of mar-
ket indexes in various countries. In this paper we choose five
countries: USA and BRIC (Brazil, Russia, India and China),
the reason choose BRIC here is the BRIC accounted for
more than 25% of the world’s total GDP according to the In-
ternational Monetary Fund (IMF). Two types of markets: the

stock market and currency market of each country is chosen
1, as shown in Table 1.

The data set used includes weekly closing prices from Jan
2007 to Dec 2013 2, and the prices are decoded into returns
by RIt = PIt−PIt−1

PIt−1
∗ 100%, here RIt and PIt are, respec-

tively, the return and closing price at time t. As indexes in
different markets may appear on different trading days, we
delete those days on which some market data is missing and
only choose the days with data from all financial markets.

Table 1: Trading indexes

Country Market
Stock Market Currency Market

USA ∧DJI SDR/USD
Brazil ∧BVSP SDR/BRL
Russia RTS.RS SDR/RUB
India ∧BSESN SDR/INR
China 000001.SS SDR/CNY

Evaluation Metrics and Comparative Methods
Technical Perspective
• Accuracy. Accuracy= TN+TP

TP+FP+FN+TN , where TP, TN,
FP and FN represent true positive, true negative, false pos-
itive and false negative, respectively. We treat the upward
trend cases as the positive class here.

• Precision. Precision= TP
TP+FP .

• Recall. Recall= TP
TP+FN .

Business Perspective We analyze the return gained by an
investor who uses the predictive outcomes of each approach
to trade the indexes. The trading strategy adopted by an
investor is as follows: if an approach forecasts an upward
trend, the investor takes a buy position in the index; other-
wise, if there is a downward trend from the forecasting, a
sell action is taken.
• Annualized Rate of Return (ARR).
ARR = Return in Period A+···+Return in Period N

Number of Periods .

Comparative Methods To evaluate our approach, we take
the following methods which are either typically used in fi-
nancial markets or directly address market couplings:
• ARIMA: This is a statistical method for analyzing and

building a forecasting model which best represents a time
series by modeling the correlations in the data. we use it
as a baseline method.

• Logistic: We use this approach with indicators from the
different markets in various countries, and the parameters
can be obtained through MLE.

• ANN: We use the back-propagation algorithm in
(Hyup Roh 2007) with indicators from the the different
markets in various countries to train the model.
1Here we choose Special Drawing Right (SDR) as its numeraire

is a potential claim on the freely usable currencies of IMF (Jang,
Lee, and Chang 2011).

2http://research.stlouisfed.org/
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Table 2: Performance of comparative methods in US, China and India markets

Model
Accuracy ARR

Stock Currency Stock Currency
US China India US China India US China India US China India

ARIMA 0.5357 0.5071 0.5029 0.5471 0.5353 0.5214 -0.1356 0.0415 -0.0675 0.1479 -0.0116 0.0304
Logistic 0.5643 0.55 0.5196 0.6 0.6059 0.5386 0.0226 0.0796 0.0558 0.0269 0.0428 0.0645

ANN 0.6 0.6 0.5752 0.6235 0.6059 0.5747 0.1217 0.1486 0.0788 0.1332 0.1244 0.1032
CHMM 0.6533 0.6214 0.5852 0.6471 0.6353 0.5709 0.1934 0.1426 0.1132 0.1645 0.1498 0.1555
CGRBM 0.6357 0.6235 0.5898 0.6565 0.64 0.5932 0.1568 0.1526 0.1410 0.1758 0.1456 0.1660
CTDBN 0.6729 0.6324 0.6258 0.6734 0.6535 0.6152 0.2073 0.1682 0.2261 0.1926 0.1792 0.1972

• CHMM (Zhong and Ghosh 2001): CHMM consists of
multiple HMM chains, where each chain corresponds to
model one type of financial market in a country.

• CTDBN: This is our deep learning approach, where the
order n of the both CGRBM and CCRBM are set equal to
2 which yields good results in this experiment.

• CGRBM: This is a sub-model of CTDBN, which sim-
ply models the intra-market coupling by the first-layer
CGRBMs without considering inter-market coupling.

Results
Due to space limit, we present results in three countries.
Therefore, our testing consists of two heterogeneous mar-
kets: stock and currency markets, w.r.t. USA, China and
India. The testing data includes the financial crisis period
(2007-2009) and a non-crisis period (2010-2013) (Here we
split the data by years, and we use the last five years data
as the training set before the testing year so as to learn the
model parameters). This arrangement aims to disclose the
model performance against different situations with interac-
tions.

The results of Accuracy and ARR are reported in Table
2, where ARR is an important indicator for investors to val-
idate the actionability of outcomes in real financial market.
From both technique and business perspectives, the baseline
method of ARIMA does not achieve a good performance,
this is because ARIMA is built on stationary data (constant
mean and variance), and pays no attention on the underlying
complex hidden interactions between the different markets.
For the similar reason, the Logistic and ANN approaches do
not perform very well. Note that the ANN outperforms the
Logistic approach, the main reason here is that Logistic ap-
proach is under a linear assumption, but the financial market,
especially the hidden couplings, are not linear. The CHMM
and CGRBM perform much better than Logistic and ANN,
this is because they construct predictions on the hidden cou-
pled features.

Our CTDBN outperforms all baselines regardless of tech-
nique or business perspective. This can be interpreted as
follows: firstly, unlike those methods that predict market
movements directly from the observations, CTDBN builds
a deep architecture to learn the hidden features which re-
moves the vulnerabilities of observations; secondly, it learns
the three kinds of couplings across homogeneous and het-
erogeneous markets, which serve as the key factors driv-
ing market dynamics. More specifically, CTDBN outper-

forms CHMM as CTDBN relies on a deep architecture,
which learns inter-market coupling from low-level intra-
market coupling, while CHMM cannot. In addition, CTDBN
outperforms its sub-model CGRBM, because CGRBM does
not built inter-market coupling, it only simply considers the
intra-market coupling and temporal coupling.
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(b) Recall

Figure 4: Precision and recall of comparative methods

Figure 4 plots the precision and recall of all comparative
approaches in the US stock market, where the horizontal
axis stands for the number of predicted trading weeks in
upward trends, and the vertical axis represents the values
of technical measures. We can see that our CTDBN outper-
forms all other comparative methods. For example, preci-
sion improvement in Figure. 4 (a) could be as high as 20%
against the ARIMA approach, and around 5% against the
CHMM and CGRBM methods when k equals to 75. And
Figure 4 (b) shows the CTDBN achieve higher recall than
other models with any number of predicted trading weeks.

Conclusion and Future Applications
In this paper, we propose a deep learning approach to cap-
ture the underlying complex couplings across multiple fi-
nancial markets. Our model aims to learn hidden features
and capture complex couplings across markets. The empir-
ical results of trading the market trends predicted by the
model in real financial market show that the proposed ap-
proach achieves better outcomes compared to the state-of-
the-art methods, from technique and business perspectives.

Obviously, CTDBN has the potential to capture couplings
within other inter-dependent scenarios. As CTDBN is a gen-
eral temporal model, it can be applied to model temporal
data, such as human motion (Taylor, Hinton, and Roweis
2006), music generation (Boulanger-Lewandowski, Bengio,
and Vincent 2012) and so on. We also further test our model
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for learning coupled group/community behaviors which are
widely seen in the real world but very challenging to model.
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