
Optimizing the CVaR via Sampling

Aviv Tamar, Yonatan Glassner, and Shie Mannor
Electrical Engineering Department

The Technion - Israel Institute of Technology
Haifa, Israel 32000

{avivt, yglasner}@tx.technion.ac.il, shie@ee.technion.ac.il

Abstract

Conditional Value at Risk (CVaR) is a prominent risk
measure that is being used extensively in various do-
mains. We develop a new formula for the gradient of the
CVaR in the form of a conditional expectation. Based
on this formula, we propose a novel sampling-based es-
timator for the gradient of the CVaR, in the spirit of the
likelihood-ratio method. We analyze the bias of the es-
timator, and prove the convergence of a corresponding
stochastic gradient descent algorithm to a local CVaR
optimum. Our method allows to consider CVaR opti-
mization in new domains. As an example, we consider
a reinforcement learning application, and learn a risk-
sensitive controller for the game of Tetris.

1 Introduction
Conditional Value at Risk (CVaR; Rockafellar and Uryasev,
2000) is an established risk measure that has found exten-
sive use in finance among other fields. For a random payoff
R, whose distribution is parameterized by a controllable pa-
rameter θ, the α-CVaR is defined as the expected payoff over
the α% worst outcomes of Z:

Φ(θ) = Eθ [R|R ≤ να(θ)] ,

where να(θ) is the α-quantile ofR. CVaR optimization aims
to find a parameter θ that maximizes Φ(θ).

When the payoff is of the structure R = fθ(X), where
fθ is a deterministic function, and X is random but does
not depend on θ, CVaR optimization may be formulated as
a stochastic program, and solved using various approaches
(Rockafellar and Uryasev 2000; Hong and Liu 2009; Iyen-
gar and Ma 2013). Such a payoff structure is appropriate for
certain domains, such as portfolio optimization, in which
the investment strategy generally does not affect the asset
prices. However, in many important domains, for example
queueing systems, resource allocation, and reinforcement
learning, the tunable parameters also control the distribu-
tion of the random outcomes. Since existing CVaR opti-
mization methods are not suitable for such cases, and due
to increased interest in risk-sensitive optimization recently
in these domains (Tamar, Di Castro, and Mannor 2012;

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Prashanth and Ghavamzadeh 2013), there is a strong incen-
tive to develop more general CVaR optimization algorithms.

In this work, we propose a CVaR optimization approach
that is applicable when θ also controls the distribution of X .
The basis of our approach is a new formula that we derive
for the CVaR gradient ∂Φ(θ)

∂θ in the form of a conditional
expectation. Based on this formula, we propose a sampling-
based estimator for the CVaR gradient, and use it to optimize
the CVaR by stochastic gradient descent.

In addition, we analyze the bias of our estimator, and use
the result to prove convergence of the stochastic gradient
descent algorithm to a local CVaR optimum. Our method
allows us to consider CVaR optimization in new domains.
As an example, we consider a reinforcement learning ap-
plication, and learn a risk-sensitive controller for the game
of Tetris. To our knowledge, CVaR optimization for such a
domain is beyond the reach of existing approaches. Consid-
ering Tetris also allows us to easily interpret our results, and
show that we indeed learn sensible policies.

We remark that in certain domains, CVaR is often not
maximized directly, but used as a constraint in an opti-
mization problem of the form maxθ Eθ[R] s.t. Φ(θ) ≥ b.
Extending our approach to such problems is straightfor-
ward, using standard penalty method techniques (see, e.g.,
Tamar, Di Castro, and Mannor, 2012, and Prashanth and
Ghavamzadeh, 2013, for a such an approach with a variance-
constrained objective), since the key component for these
methods is the CVaR gradient estimator we provide here.
Another appealing property of our estimator is that it natu-
rally incorporates importance sampling, which is important
when α is small, and the CVaR captures rare events.

Related Work Our approach is similar in spirit to the
likelihood-ratio method (LR; Glynn, 1990), that estimates
the gradient of the expected payoff. The LR method has
been successfully applied in diverse domains such as queue-
ing systems, inventory management, and financial engineer-
ing (Fu 2006), and also in reinforcement learning (RL;
Sutton and Barto, 1998), where it is commonly known
as the policy gradient method (Baxter and Bartlett 2001;
Peters and Schaal 2008). Our work extends the LR method
to estimating the gradient of the CVaR of the payoff.

Closely related to our work are the studies of Hong and
Liu (2009) and Scaillet (2004), who proposed perturbation

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

2993

analysis style estimators for the gradient of the CVaR, for the
setting mentioned above, in which θ does not affect the dis-
tribution of X . Indeed, their gradient formulae are different
than ours, and do not apply in our setting.

LR gradient estimators for other risk measures have been
proposed by Borkar (2001) for exponential utility functions,
and by Tamar, Di Castro, and Mannor (2012) for mean–
variance. These measures, however, consider a very differ-
ent notion of risk than the CVaR. For example, the mean–
variance measure is known to underestimate the risk of rare,
but catastrophic events (Agarwal and Naik 2004).

Risk-sensitive optimization in RL is receiving increased
interest recently. A mean-variance criterion was considered
by Tamar, Di Castro, and Mannor (2012) and Prashanth and
Ghavamzadeh (2013). Morimura et al. (2010) consider the
expected return, with a CVaR based risk-sensitive policy
for guiding the exploration while learning. Their method,
however, does not scale to large problems. Borkar and Jain
(2014) optimize a CVaR constrained objective using dy-
namic programming, by augmenting the state space with
the accumulated reward. As such, that method is only suit-
able for a finite horizon and a small state-space, and does
not scale-up to problems such as the Tetris domain we con-
sider. A function approximation extension of (Borkar and
Jain 2014) is mentioned, using a three time scales stochastic
approximation algorithm. In that work, three different learn-
ing rates are decreased to 0, and convergence is determined
by the slowest one, leading to an overall slow convergence.
In contrast, our approach requires only a single learning
rate. Recently, Prashanth (2014) used our gradient formula
of Proposition 2 (from a preliminary version of this paper) in
a two time-scale stochastic approximation scheme to show
convergence of CVaR optimization. Besides providing the
theoretical basis for that work, our current convergence re-
sult (Theorem 5) obviates the need for the extra time-scale,
and results in a simpler and faster algorithm.

2 A CVaR Gradient Formula
In this section we present a new LR-style formula for the
gradient of the CVaR. This gradient will be used in subse-
quent sections to optimize the CVaR with respect to some
parametric family. We start with a formal definition of the
CVaR, and then present a CVaR gradient formula for 1-
dimensional random variables. We then extend our result to
the multi-dimensional case.

Let Z denote a random variable with a cumulative distri-
bution function (C.D.F.) FZ(z) = Pr(Z ≤ z). For conve-
nience, we assume that Z is a continuous random variable,
meaning that FZ(z) is everywhere continuous. We also as-
sume thatZ is bounded. Given a confidence level α ∈ (0, 1),
the α-Value-at-Risk, (VaR; or α-quantile) of Z is denoted
να(Z), and given by

να(Z) = F−1
Z (α)

.
= inf {z : FZ(z) ≥ α} . (1)

The α-Conditional-Value-at-Risk of Z is denoted by Φα(Z)
and defined as the expectation of the α fraction of the worst
outcomes of Z

Φα(Z) = E [Z|Z ≤ να(Z)] . (2)

We next present a formula for the sensitivity of Φα(Z) to
changes in FZ(z).

2.1 CVaR Gradient of a 1-Dimensional Variable
Consider again a random variable Z, but now let its proba-
bility density function (P.D.F.) fZ(z; θ) be parameterized by
a vector θ ∈ Rk. We let να(Z; θ) and Φα(Z; θ) denote the
VaR and CVaR of Z as defined in Eq. (1) and (2), when the
parameter is θ, respectively.

We are interested in the sensitivity of the CVaR to the pa-
rameter vector, as expressed by the gradient ∂

∂θj
Φα(Z; θ). In

all but the most simple cases, calculating the gradient analyt-
ically is intractable. Therefore, we derive a formula in which
∂
∂θj

Φα(Z; θ) is expressed as a conditional expectation, and
use it to calculate the gradient by sampling. For technical
convenience, we make the following assumption:
Assumption 1. Z is a continuous random variable, and
bounded in [−b, b] for all θ.

We also make the following smoothness assumption on
να(Z; θ) and Φα(Z; θ)

Assumption 2. For all θ and 1 ≤ j ≤ k, the gradients
∂να(Z;θ)
∂θj

and ∂Φα(Z;θ)
∂θj

exist and are bounded.

Note that since Z is continuous, Assumption 2 is satisfied
whenever ∂

∂θj
fZ(z; θ) is bounded. Relaxing Assumptions 1

and 2 is possible, but involves technical details that would
complicate the presentation, and is left to future work. The
next assumption is standard in LR gradient estimates
Assumption 3. For all θ, z, and 1 ≤ j ≤ k, we have that
∂fZ(z;θ)
∂θj

/fZ(z; θ) exists and is bounded.

In the next proposition we present a LR-style sensitivity
formula for Φα(Z; θ), in which the gradient is expressed as
a conditional expectation. In Section 3 we shall use this for-
mula to suggest a sampling algorithm for the gradient.
Proposition 1. Let Assumptions 1, 2, and 3 hold. Then
∂Φα(Z;θ)

∂θj
=Eθ

[
∂logfZ(Z; θ)

∂θj
(Z−να(Z; θ))

∣∣∣∣Z≤να(Z;θ)

]
.

Proof. Define the level-set Dθ =
{z ∈ [−b, b] : z ≤ να(Z; θ)} . By definition, Dθ ≡
[−b, να(Z; θ)], and

∫
z∈Dθ fZ (z; θ) dz = α. Taking a

derivative and using the Leibniz rule we obtain

0 =
∂

∂θj

∫ να(Z;θ)

−b
fZ (z; θ) dz

=

∫ να(Z;θ)

−b

∂fZ (z; θ)

∂θj
dz +

∂να(Z; θ)

∂θj
fZ (να(Z; θ); θ) .

(3)

By definition (2) we have Φα(Z; θ) =
∫
z∈Dθ

fZ(z;θ)z
α dz =

α−1
∫ να(Z;θ)

−b fZ (z; θ) zdz.Now, taking a derivative and us-
ing the Leibniz rule we obtain

∂

∂θj
Φα(Z; θ) =α−1

∫ να(Z;θ)

−b

∂fZ (z; θ)

∂θj
zdz

+α−1 ∂να(Z; θ)

∂θj
fZ(να(Z; θ); θ) να(Z; θ).

(4)

2994

Rearranging, and plugging (3) in (4) we obtain
∂
∂θj

Φα(Z; θ) = α−1
∫ να(Z;θ)

−b
∂fZ(z;θ)
∂θj

(z − να(Z; θ)) dz.

Finally, using the likelihood ratio trick – multiplying and di-
viding by fZ (z; θ) inside the integral, which is justified due
to Assumption 3, we obtain the required expectation.

Let us contrast the CVaR LR formula of Proposition 1
with the standard LR formula for the expectation (Glynn
1990) ∂

∂θj
Eθ[Z] = Eθ

[
∂log fZ(Z;θ)

∂θj
(Z − b)

]
, where the

baseline b could be any arbitrary constant. Note that in the
CVaR case the baseline is specific, and, as seen in the proof,
accounts for the sensitivity of the level-set Dθ. Quite sur-
prisingly, this specific baseline turns out to be exactly the
VaR, να(Z; θ), which, as we shall see later, also leads to an
elegant sampling based estimator.

In a typical application, Z would correspond to the per-
formance of some system, such as the profit in portfo-
lio optimization, or the total reward in RL. Note that in
order to use Proposition 1 in a gradient estimation algo-
rithm, one needs access to ∂

∂θj
log fZ(Z; θ): the sensitiv-

ity of the performance distribution to the parameters. Typi-
cally, the system performance is a complicated function of a
high-dimensional random variable. For example, in RL and
queueing systems, the performance is a function of a trajec-
tory from a stochastic dynamical system, and calculating its
probability distribution is usually intractable. The sensitivity
of the trajectory distribution to the parameters, however, is
often easy to calculate, since the parameters typically con-
trol how the trajectory is generated. We shall now generalize
Proposition 1 to such cases. The utility of this generalization
is further exemplified in Section 5, for the RL domain.

2.2 CVaR Gradient Formula – General Case
Let X = (X1, X2, . . . , Xn) denote an n−dimensional ran-
dom variable with a finite support [−b, b]n, and let Y denote
a discrete random variable taking values in some countable
set Y . Let fY (y; θ) denote the probability mass function of
Y , and let fX|Y (x|y; θ) denote the probability density func-
tion of X given Y . Let the reward function r be a bounded
mapping from [−b, b]n × Y to R, and consider the random
variable R .

= r(X, Y). We are interested in a formula for
∂
∂θj

Φα(R; θ).
We make the following assumption, similar to Assump-

tions 1, 2, and 3.

Assumption 4. The reward R is a continuous random vari-
able for all θ. Furthermore, for all θ and 1 ≤ j ≤ k, the gra-
dients ∂

∂θj
να(R; θ) and ∂

∂θj
Φα(R; θ) are well defined and

bounded. In addition ∂log fX|Y (x|y;θ)

∂θj
and ∂log fY (y;θ)

∂θj
exist

and are bounded for all x, y, and θ.

Define the level-set Dy;θ =
{x ∈ [−b, b]n : r(x, y) ≤ να(R; θ)} . We require some
smoothness of the function r, that is captured by the
following assumption on Dy;θ.

Assumption 5. For all y and θ, the set Dy;θ may be
written as a finite sum of Ly;θ disjoint, closed, and con-

nected componentsDi
y;θ, each with positive measure:Dy;θ=∑Ly;θ

i=1 D
i
y;θ.

Assumption 5 may satisfied, for example, when r(x, y) is
Lipschitz in x for all y ∈ Y . We now present a sensitivity
formula for Φα(R; θ).
Proposition 2. Let Assumption 4 and 5 hold. Then

∂

∂θj
Φα(R; θ) = Eθ

[(
∂log fY (Y ; θ)

∂θj
+

∂log fX|Y (X|Y ; θ)

∂θj

)
(R− να(R; θ))

∣∣∣∣R ≤ να(R; θ)

]
.

The proof of Proposition 2 is similar in spirit to the proof
of Proposition 1, but involves some additional difficulties of
applying the Leibnitz rule in a multidimensional setting. It is
given in (Tamar, Glassner, and Mannor 2014). We reiterate
that relaxing Assumptions 4 and 5 is possible, but is techni-
cally involved, and left for future work. In the next section
we show that the formula in Proposition 2 leads to an effec-
tive algorithm for estimating ∂

∂θj
Φα(R; θ) by sampling.

3 A CVaR Gradient Estimation Algorithm
The sensitivity formula in Proposition 2 suggests a natu-
ral Monte–Carlo (MC) estimation algorithm. The method,
which we label GCVaR (Gradient estimator for CVaR), is
described as follows. Let x1, y1 . . . ,xN , yN be N samples
drawn i.i.d. from fX,Y (x, y; θ), the joint distribution of X
and Y . We first estimate να(R; θ) using the empirical α-
quantile1 ṽ

ṽ = inf
z
F̂ (z) ≥ α, (5)

where F̂ (z) is the empirical C.D.F. of R: F̂ (z)
.
=

1
N

∑N
i=1 1r(xi,yi)≤z. The MC estimate of the gradient

∆j;N ≈ ∂
∂θj

Φα(R; θ) is given by

∆j;N =
1

αN

N∑
i=1

(
∂log fY (yi; θ)

∂θj
+
∂log fX|Y (xi|yi; θ)

∂θj

)
×

×(r(xi, yi)− ṽ)1r(xi,yi)≤ṽ. (6)

It is known that the empirical α-quantile is a biased esti-
mator of να(R; θ). Therefore, ∆j;N is also a biased estima-
tor of ∂

∂θj
Φα(R; θ). In the following we analyze and bound

this bias. We first show that ∆j;N is a consistent estimator.
The proof is similar to the proof of Theorem 4.1 in (Hong
and Liu 2009), and given in (Tamar, Glassner, and Mannor
2014).
Theorem 3. Let Assumption 4 and 5 hold. Then ∆j;N →
∂
∂θj

Φα(R; θ) w.p. 1 as N →∞.

With an additional smoothness assumption we
can explicitly bound the bias. Let fR(·; θ) denote
the P.D.F. of R, and define the function g(β; θ)

.
=

Eθ
[(

∂log fY (Y ;θ)
∂θj

+
∂log fX|Y (X|Y ;θ)

∂θj

)
(R−να(R; θ))

∣∣∣R = β
]
.

1Algorithmically, this is equivalent to first sorting the
r(xi, yi)’s in ascending order, and then selecting ṽ as the dαNe
term in the sorted list.

2995

Algorithm 1 GCVaR
1: Given:
• CVaR level α
• A reward function r(x, y) : Rn × Y → R
• Derivatives ∂

∂θj
of the probability mass function fY (y; θ)

and probability density function fX|Y (x|y; θ)

• An i.i.d. sequence x1, y1, . . . ,xN , yN ∼ fX,Y (x, y; θ).
2: Set rs1, . . . , r

s
N = Sort (r(x1, y1), . . . , r(xN , yN))

3: Set ṽ = rsdαNe
4: For j = 1, . . . , k do

∆j;N =
1

αN

N∑
i=1

(
∂log fY (yi; θ)

∂θj
+
∂log fX|Y (xi|yi; θ)

∂θj

)
×

×(r(xi, yi)− ṽ)1r(xi,yi)≤ṽ

5: Return:∆1;N , . . . ,∆k;N

Assumption 6. For all θ, fR(·; θ) and g(·; θ) are continuous
at να(R; θ), and fR(να(R; θ); θ) > 0.

Assumption 6 is similar to Assumption 4 of (Hong
and Liu 2009), and may be satisfied, for example, when
∂log fX|Y (x|y;θ)

∂θj
is continuous and r(x, y) is Lipschitz in x.

The next theorem shows that the bias is O(N−1/2). The
proof, given in (Tamar, Glassner, and Mannor 2014), is
based on separating the bias to a term that is bounded us-
ing a result of Hong and Liu (2009), and an additional term
that is bounded using well-known results for the bias of em-
pirical quantiles.
Theorem 4. Let Assumptions 4, 5, and 6 hold. Then
E [∆j;N]− ∂

∂θj
Φα(R; θ) is O(N−1/2).

At this point, let us again contrast GCVaR with the stan-
dard LR method. One may naively presume that applying
a standard LR gradient estimator to the α% worst samples
would work as a CVaR gradient estimator. This corresponds
to applying the GCVaR algorithm without subtracting the ṽ
baseline from the reward in (6). Theorems 3 and 4 show that
such an estimator would not be consistent. In fact, in (Tamar,
Glassner, and Mannor 2014) we give an example where the
gradient error of such an approach may be arbitrarily large.

In the sequel, we use GCVaR as part of a stochastic gradi-
ent descent algorithm for CVaR optimization. An asymptot-
ically decreasing gradient bias, as may be established from
Theorem 3, is necessary to guarantee convergence of such
a procedure. Furthermore, the bound of Theorem 4 will al-
low us to quantify how many samples are needed at each
iteration for such convergence to hold.

Variance Reduction by Importance Sampling
For very low quantiles, i.e., α close to 0, the GCVaR estima-
tor would suffer from a high variance, since the averaging
is effectively only over αN samples. This is a well-known
issue in sampling based approaches to VaR and CVaR esti-
mation, and is often mitigated using variance reduction tech-

niques such as Importance Sampling (IS; Rubinstein and
Kroese, 2011; Bardou, Frikha, and Pagès, 2009). In IS, the
variance of a MC estimator is reduced by using samples
from a different sampling distribution, and suitably modify-
ing the estimator to keep it unbiased. It is straightforward to
incorporate IS into LR gradient estimators in general, and to
our GCVaR estimator in particular. Due to space constraints,
and since this is fairly standard textbook material (e.g., Ru-
binstein and Kroese, 2011), we provide the full technical de-
tails in (Tamar, Glassner, and Mannor 2014). In our experi-
ments we show that IS indeed improves performance signif-
icantly.

4 CVaR Optimization
In this section, we consider the setting of Section 2.2, and
aim to solve the CVaR optimization problem:

max
θ∈Rk

Φα(R; θ). (7)

For this goal we propose CVaRSGD: a stochastic gradient
descent algorithm, based on the GCVaR gradient estima-
tor. We now describe the CVaRSGD algorithm in detail, and
show that it converges to a local optimum of (7).

In CVaRSGD, we start with an arbitrary initial param-
eter θ0 ∈ Rk. The algorithm proceeds iteratively as fol-
lows. At each iteration i of the algorithm, we first sample
ni i.i.d. realizations x1, y1, . . . , xni , yni of the random vari-
ables X and Y , from the distribution fX,Y (x, y; θi). We
then apply the GCVaR algorithm to obtain an estimate ∆j;ni

of ∂
∂θj

Φα(R; θi), using the samples x1, y1, . . . , xni , yni . Fi-
nally, we update the parameter according to

θi+1
j = Γ

(
θij + εi∆j;ni

)
, (8)

where εi is a positive step size, and Γ : Rk → Rk is a
projection to some compact set Θ with a smooth boundary.
The purpose of the projection is to facilitate convergence
of the algorithm, by guaranteeing that the iterates remain
bounded (this is a common stochastic approximation tech-
nique; Kushner and Yin, 2003). In practice, if Θ is chosen
large enough so that it contains the local optima of Φα(R; θ),
the projection would rarely occur, and would have a negligi-
ble effect on the algorithm. Let Γ̂θ(ν)

.
= limδ→0

Γ(θ+δν)−θ
δ

denote an operator that, given a direction of change ν to the
parameter θ, returns a modified direction that keeps θ within
Θ. Consider the following ordinary differential equation:

θ̇ = Γ̂θ (∇Φα(R; θ)) , θ(0) ∈ Θ. (9)

Let K denote the set of all asymptotically stable equilibria
of (9). The next theorem shows that under suitable technical
conditions, the CVaRSGD algorithm converges to K almost
surely. The theorem is a direct application of Theorem 5.2.1
of Kushner and Yin (2003), and given here without proof.
Theorem 5. Consider the CVaRSGD algorithm (8).
Let Assumptions 4, 5, and 6 hold, and assume that
Φα(R; θ) is continuously differentiable in θ. Also, as-
sume that

∑∞
i=1 εi = ∞,

∑∞
i=1 ε

2
i < ∞, and that∑∞

i=1 εi

∣∣∣E [∆j;ni]− ∂
∂θj

Φα(R; θi)
∣∣∣ < ∞ w.p. 1 for all j.

Then θi → K almost surely.

2996

Note that from the discussion in Section 3, the require-
ment

∑∞
i=1 εi

∣∣∣E [∆j;ni]− ∂
∂θj

Φα(R; θi)
∣∣∣ < ∞ implies

that we must have limi→∞ ni =∞. However, the rate of ni
could be very slow, for example, using the bound of Theo-
rem 4 the requirement may be satisfied by choosing εi = 1/i
and ni = (log i)4.

5 Application to Reinforcement Learning
In this section we show that the CVaRSGD algorithm may
be used in an RL policy-gradient type scheme, for optimiz-
ing performance criteria that involve the CVaR of the total
return. We first describe some preliminaries and our RL set-
ting, and then describe our algorithm.

We consider an episodic2 Markov Decision Problem
(MDP) in discrete time with a finite state space S and a fi-
nite action space A. At time t ∈ {0, 1, 2, . . . } the state is st,
and an action at is chosen according to a parameterized pol-
icy πθ, which assigns a distribution over actions fa|h(a|h; θ)
according to the observed history of states ht = s0, . . . , st.
Then, an immediate random reward ρt ∼ fρ|s,a(ρ|s, a) is
received, and the state transitions to st+1 according to the
MDP transition probability fs′|s,a(s′|s, a). We denote by ζ0
the initial state distribution and by s∗ a terminal state, and
we assume that for all θ, s∗ is reached w.p. 1.

For some policy πθ, let s0, a0, ρ0, s1, a1, ρ1, . . . , sτ de-
note a state-action-reward trajectory from the MDP under
that policy, that terminates at time τ , i.e., sτ = s∗. The tra-
jectory is a random variable, and we decompose3 it into a
discrete part Y .

= s0, a0, s1, a1, . . . , s
∗ and a continuous

part X .
= ρ0, ρ1, . . . , ρτ−1. Our quantity of interest is the

total reward along the trajectory R
.
=
∑τ
t=0 ρt. In stan-

dard RL, the objective is to find the parameter θ that max-
imizes the expected return V (θ) = Eθ [R]. Policy gradient
methods (Baxter and Bartlett 2001; Marbach and Tsitsik-
lis 1998; Peters and Schaal 2008) use simulation to esti-
mate ∂V (θ)/∂θj , and then perform stochastic gradient as-
cent on the parameters θ. In this work we are risk-sensitive,
and our goal is to maximize the CVaR of the total return
J(θ)

.
= Φα(R; θ). In the spirit of policy gradient methods,

we estimate ∂J(θ)/∂θj from simulation, using GCVaR, and
optimize θ using CVaRSGD. We now detail our approach.

First, it is well known (Marbach and Tsitsiklis 1998) that
by the Markov property of the state transitions:

∂ log fY (Y ; θ) /∂θ =
τ−1∑
t=0

∂ log fa|h(at|ht; θ)/∂θ. (10)

Also, note that in our formulation we have

∂ log fX|Y (xi|yi; θ) /∂θ = 0, (11)

since the reward does not depend on θ directly.
To apply CVaRSGD in the RL setting, at each it-

eration i of the algorithm we simulate ni trajectories
2Also known as a stochastic shortest path (Bertsekas 2012).
3This decomposition is not restrictive, and used only to illus-

trate the definitions of Section 2. One may alternatively consider a
continuous state space, or discrete rewards, so long as Assumptions
4, 5, and 6 hold.

x1, y1, . . . , xni , yni of the MDP using policy πθi (each xk
and yk here together correspond to a single trajectory, as re-
alizations of the random variables X and Y defined above).
We then apply the GCVaR algorithm to obtain an esti-
mate ∆j;ni of ∂J(θ)/∂θj , using the simulated trajectories
x1, y1, . . . , xni , yni , Eq. (10), and Eq. (11). Finally, we up-
date the policy parameter according to Eq. (8). Note that
due to Eq. (10), the transition probabilities of the MDP,
which are generally not known to the decision maker, are
not required for estimating the gradient using GCVaR. Only
policy-dependent terms are required.

We should remark that for the standard RL criterion V (θ),
a Markov policy that depends only on the current state suf-
fices to achieve optimality (Bertsekas 2012). For the CVaR
criterion this is not necessarily the case. Bäuerle and Ott
(2011) show that under certain conditions, an augmentation
of the current state with a function of the accumulated re-
ward suffices for optimality. In our simulations, we used a
Markov policy, and still obtained useful and sensible results.

Assumptions 4, 5, and 6, that are required for convergence
of the algorithm, are reasonable for the RL setting, and may
be satisfied, for example, when fρ|s,a(ρ|s, a) is smooth, and
∂ log fa|h(a|h; θ)/∂θj is well defined and bounded. This
last condition is standard in policy gradient literature, and
a popular policy representation that satisfies it is softmax
action selection (Sutton et al. 2000; Marbach and Tsitsiklis

1998), given by fa|h(a|h; θ) = exp(φ(h,a)
>
θ)∑

a′ exp(φ(h,a′)>θ)
, where

φ(h, a) ∈ Rk are a set of k features that depend on the his-
tory and action.

In some RL domains, the reward takes only discrete val-
ues. While this case is not specifically covered by the theory
in this paper, one may add an arbitrarily small smooth noise
to the total reward for our results to hold. Since such a mod-
ification has negligible impact on performance, this issue is
of little importance in practice. In our experiments the re-
ward was discrete, and we did not observe any problem.

5.1 Experimental Results
We examine Tetris as a test case for our algorithms. Tetris
is a popular RL benchmark that has been studied exten-
sively. The main challenge in Tetris is its large state space,
which necessitates some form of approximation in the so-
lution technique. Many approaches to learning controllers
for Tetris are described in the literature, among them are
approximate value iteration (Tsitsiklis and Van Roy 1996),
policy gradients (Kakade 2001; Furmston and Barber 2012),
and modified policy iteration (Gabillon, Ghavamzadeh, and
Scherrer 2013). The standard performance measure in Tetris
is the expected number of cleared lines in the game. Here,
we are interested in a risk-averse performance measure, cap-
tured by the CVaR of the total game score. Our goal in this
section is to compare the performance of a policy optimized
for the CVaR criterion versus a policy obtained using the
standard policy gradient method. As we will show, optimiz-
ing the CVaR indeed produces a different policy, character-
ized by a risk-averse behavior. We note that at present, the
best results in the literature (for the standard performance
measure) were obtained using a modified policy iteration

2997

Figure 1: GCVaR vs. policy gradient. (A,B) Average return (A) and CVaR (α = 0.05) of the return (B) for CVaRSGD and
standard policy-gradient vs. iteration. (C) Histogram (counts from 10,000 independent runs) of the total return of the final
policies. The lower plot is a zoom-in on the left-tail, and clearly shows the risk-averse behavior of the CVaRSGD policy. (D)
Final policy parameters. Note the difference in the Board Well feature, which encourages risk taking. (E) CVaR (α = 0.01) of
the return for CVaRSGD vs. iteration, with and without importance sampling.

approach (Gabillon, Ghavamzadeh, and Scherrer 2013), and
not using policy gradients. We emphasize that our goal here
is not to compete with those results, but rather to illustrate
the application of CVaRSGD. We do point out, however,
that whether the approach of Gabillon, Ghavamzadeh, and
Scherrer (2013) could be extended to handle a CVaR objec-
tive is currently not known.

We used the regular 10 × 20 Tetris board with the 7
standard shapes (a.k.a. tetrominos). In order to induce risk-
sensitive behavior, we modified the reward function of the
game as follows. The score for clearing 1,2,3 and 4 lines is
1,4,8 and 16 respectively. In addition, we limited the maxi-
mum number of steps in the game to 1000. These modifica-
tions strengthened the difference between the risk-sensitive
and nominal policies, as they induce a tradeoff between
clearing many ’single’ lines with a low profit, or waiting for
the more profitable, but less frequent, ’batches’.

We used the softmax policy, with the feature set of Thiery
and Scherrer (2009). Starting from a fixed policy parameter
θ0, which was obtained by running several iterations of stan-
dard policy gradient (giving both methods a ’warm start’),
we ran both CVaRSGD and standard policy gradient4 for
enough iterations such that both algorithms (approximately)
converged. We set α = 0.05 and N = 1000.

In Fig. 1A and Fig. 1B we present the average return V (θ)
and CVaR of the return J(θ) for the policies of both algo-
rithms at each iteration (evaluated by MC on independent
trajectories). Observe that for CVaRSGD, the average return
has been compromised for a higher CVaR value.

This compromise is further explained in Fig. 1C, where
we display the reward distribution of the final policies. It
may be observed that the left-tail distribution of the CVaR
policy is significantly lower than the standard policy. For
the risk-sensitive decision maker, such results are very im-
portant, especially if the left-tail contains catastrophic out-
comes, as is common in many real-world domains, such
as finance. To better understand the differences between

4Standard policy gradient is similar to CVaRSGD when α = 1.
However, it is common to subtract a baseline from the reward in
order to reduce the variance of the gradient estimate. In our exper-
iments, we used the average return < r > as a baseline, and our
gradient estimate was 1

N

∑N
i=1

∂log fY (yi;θ)
∂θj

(r(xi, yi)− < r >).

the policies, we compare the final policy parameters θ in
Fig. 1D. The most significant difference is in the parame-
ter that corresponds to the Board Well feature. A well is a
succession of unoccupied cells in a column, such that their
left and right cells are both occupied. The controller trained
by CVaRSGD has a smaller negative weight for this feature,
compared to the standard controller, indicating that actions
which create deep-wells are repressed. Such wells may lead
to a high reward when they get filled, but are risky as they
heighten the board.

To demonstrate the importance of IS in optimizing
the CVaR when α is small, we chose α = 0.01, and
N = 200, and compared CVaRSGD against its IS version,
IS CVaRSGD, described in (Tamar, Glassner, and Mannor
2014). As Fig. 1E shows, IS GCVaRSGD converged signifi-
cantly faster, improving the convergence rate by more than a
factor of 2. The full details are provided in (Tamar, Glassner,
and Mannor 2014).

6 Conclusion and Future Work
We presented a novel LR-style formula for the gradient of
the CVaR performance criterion. Based on this formula,
we proposed a sampling-based gradient estimator, and a
stochastic gradient descent procedure for CVaR optimiza-
tion that is guaranteed to converge to a local optimum. To
our knowledge, this is the first extension of the LR method
to the CVaR performance criterion, and our results extend
CVaR optimization to new domains.

We evaluated our approach empirically in an RL domain:
learning a risk-sensitive policy for Tetris. To our knowl-
edge, such a domain is beyond the reach of existing CVaR
optimization approaches. Moreover, our empirical results
show that optimizing the CVaR indeed results in useful risk-
sensitive policies, and motivates the use of simulation-based
optimization for risk-sensitive decision making.

Acknowledgments
The authors thank Odalric-Ambrym Maillard for many help-
ful discussions. The research leading to these results has
received funding from the European Research Council un-
der the European Union’s Seventh Framework Program
(FP/2007-2013) / ERC Grant Agreement n. 306638.

2998

References
Agarwal, V., and Naik, N. Y. 2004. Risks and portfolio de-
cisions involving hedge funds. Review of Financial Studies
17(1):63–98.
Bardou, O.; Frikha, N.; and Pagès, G. 2009. Computing
VaR and CVaR using stochastic approximation and adaptive
unconstrained importance sampling. Monte Carlo Methods
and Applications 15(3):173–210.
Bäuerle, N., and Ott, J. 2011. Markov decision processes
with average-value-at-risk criteria. Mathematical Methods
of Operations Research 74(3):361–379.
Baxter, J., and Bartlett, P. L. 2001. Infinite-horizon policy-
gradient estimation. JAIR 15:319–350.
Bertsekas, D. P. 2012. Dynamic Programming and Optimal
Control, Vol II. Athena Scientific, 4th edition.
Borkar, V., and Jain, R. 2014. Risk-constrained Markov
decision processes. IEEE TAC PP(99):1–1.
Borkar, V. S. 2001. A sensitivity formula for risk-sensitive
cost and the actor–critic algorithm. Systems & Control Let-
ters 44(5):339–346.
Fu, M. C. 2006. Gradient estimation. In Henderson, S. G.,
and Nelson, B. L., eds., Simulation, volume 13 of Hand-
books in Operations Research and Management Science. El-
sevier. 575 – 616.
Furmston, T., and Barber, D. 2012. A unifying perspective
of parametric policy search methods for Markov decision
processes. In Advances in Neural Information Processing
Systems 25.
Gabillon, V.; Ghavamzadeh, M.; and Scherrer, B. 2013. Ap-
proximate dynamic programming finally performs well in
the game of tetris. In Advances in Neural Information Pro-
cessing Systems 26.
Glynn, P. W. 1990. Likelihood ratio gradient estimation for
stochastic systems. Communications of the ACM 33(10):75–
84.
Hong, L. J., and Liu, G. 2009. Simulating sensitivities of
conditional value at risk. Management Science.
Iyengar, G., and Ma, A. 2013. Fast gradient descent method
for mean-CVaR optimization. Annals of Operations Re-
search 205(1):203–212.
Kakade, S. 2001. A natural policy gradient. In Advances in
Neural Information Processing Systems 14.
Kushner, H., and Yin, G. 2003. Stochastic approximation
and recursive algorithms and applications. Springer Verlag.
Marbach, P., and Tsitsiklis, J. N. 1998. Simulation-based
optimization of Markov reward processes. IEEE Transac-
tions on Automatic Control 46(2):191–209.
Morimura, T.; Sugiyama, M.; Kashima, H.; Hachiya, H.; and
Tanaka, T. 2010. Nonparametric return distribution approx-
imation for reinforcement learning. In International Confer-
ence on Machine Learning, 799–806.
Peters, J., and Schaal, S. 2008. Reinforcement learning
of motor skills with policy gradients. Neural Networks
21(4):682–697.

Prashanth, L., and Ghavamzadeh, M. 2013. Actor-critic
algorithms for risk-sensitive mdps. In Advances in Neural
Information Processing Systems 26.
Prashanth, L. 2014. Policy gradients for CVaR-constrained
MDPs. In International Conference on Algorithmic Learn-
ing Theory.
Rockafellar, R. T., and Uryasev, S. 2000. Optimization of
conditional value-at-risk. Journal of risk 2:21–42.
Rubinstein, R. Y., and Kroese, D. P. 2011. Simulation and
the Monte Carlo method. John Wiley & Sons.
Scaillet, O. 2004. Nonparametric estimation and sensitivity
analysis of expected shortfall. Mathematical Finance.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing: An introduction. Cambridge Univ Press.
Sutton, R. S.; McAllester, D.; Singh, S.; and Mansour, Y.
2000. Policy gradient methods for reinforcement learning
with function approximation. In Advances in Neural Infor-
mation Processing Systems 13.
Tamar, A.; Di Castro, D.; and Mannor, S. 2012. Policy
gradients with variance related risk criteria. In International
Conference on Machine Learning.
Tamar, A.; Glassner, Y.; and Mannor, S. 2014. Optimizing
the CVaR via sampling. arXiv:1404.3862.
Thiery, C., and Scherrer, B. 2009. Improvements on learning
tetris with cross entropy. International Computer Games
Association Journal 32.
Tsitsiklis, J. N., and Van Roy, B. 1996. Feature-based meth-
ods for large scale dynamic programming. Machine Learn-
ing 22(1-3):59–94.

2999

