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Abstract

Group sparsity has drawn much attention in machine
learning. However, existing work can handle only
datasets with certain group structures, where each sam-
ple has a certain membership with one or more groups.
This paper investigates the learning of sparse repre-
sentations from datasets with uncertain group struc-
tures, where each sample has an uncertain member-
ship with all groups in terms of a probability distri-
bution. We call this problem uncertain group sparse
representation (UGSR in short), which is a generaliza-
tion of the standard group sparse representation (GSR).
We formulate the UGSR model and propose an effi-
cient algorithm to solve this problem. We apply UGSR
to text emotion classification and aging face recogni-
tion. Experiments show that UGSR outperforms stan-
dard sparse representation (SR) and standard GSR as
well as fuzzy kNN classification.

Introduction
In many regression problems and their applications to
machine leaning and signal processing, regularization by
sparsity-inducing norms has drawn a lot of research in-
terest. For example, in the ANOVA problem, important
main effects and interactions are often selected for accu-
rate prediction (Yuan and Lin 2006). Sparse representa-
tion (SR) (Olshausen and Field 1997) using `1-norm selects
a few relevant support signals and has some theoretical ad-
vantages (Hoyer 2003) in signal processing. For applications
that require some definite sparsity patterns (Jenatton, Audib-
ert, and Bach 2011), regularizers of structured sparsity were
introduced for a better adaption to various tasks. For exam-
ple, group sparse representation (GSR) (Yuan and Lin 2006)
imposes the sparsity among groups of signals, composite ab-
solute penalties (CAPs) (Zhao, Rocha, and Yu 2006) put a
hierarchical group structure among signals. More compli-
cate structures such as overlapping groups and graph struc-
tures were also proposed (Jacob, Obozinski, and Vert 2009).

Essentially, the above work as in (Zhao, Rocha, and Yu
2006) addresses two major concerns: how do the groups re-
late to each other? and how do the samples (or signals in
signal processing context) within each group relate to each
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other? The former characterizes the sparsity among groups,
which is measured by a sparse-inducing norm such as `1-
norm, while the latter characterizes the sample “concentra-
tion” of groups, which is measured by an `γ-norm (γ > 1).
However, in our point of view, there is a third concern that
does not receive enough attention and thus needs further in-
vestigation: how do the samples relate to the groups? Ex-
isting work assumes that samples have certain membership
with one or more groups. Concretely, early group sparsity
models specify that each sample belongs to only one cer-
tain group. (Jacob, Obozinski, and Vert 2009) handles over-
lapping group structures that allow one sample to belong to
several groups, by dividing the corresponding coefficient of
a sample into several parts so that each of the overlapping
groups has one part of the coefficient. Though overlapping
groups extend the sample-group relationship from many-to-
one to many-to-many, the sample-group relationship is still
assumed to be certain. Recently, (Chen et al. 2013) deals
with the problem of learning dictionaries from ambiguously
labeled data, where training samples have multiple given la-
bels, but only one is correct. Based on the dataset with noisy
yet certain sample-group relationships, the authors tried to
learn a dictionary with correct labeling by iterating between
updating a confidence matrix and learning a dictionary from
the clusters inferred by the confidence matrix. When this
process converges, sparse representation with certain group
structure can be performed on the learned dictionary. How-
ever, in reality, sample-group relationship can be uncertain.
For example, in text classification, each training text may be
probabilistically related to multiple classes; and in image un-
derstanding, a picture may be annotated to several categories
based on a probability scheme.

This paper addresses a more general problem that learns
group sparsity from datasets with uncertain group struc-
tures, where each sample is related to all groups in terms
of a probability distribution. We propose a novel structured
sparse representation called uncertain group sparse repre-
sentation (UGSR) to deal with uncertain group structures.
UGSR is a generalization of standard GSR.

SR and GSR have been successfully applied to many clas-
sification tasks such as images (Majumdar and Ward 2009;
Wright et al. 2009), texts (Sainath et al. 2010) and bio-
logical data (Li and Ngom 2012; Yuan et al. 2012). While
dealing with classification tasks, GSR usually outperforms
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SR (Majumdar and Ward 2009) because group sparsity
works better when the underlying samples are strongly
group-sparse (Huang and Zhang 2009). However, as we have
mentioned above, standard SR and GSR cannot handle prob-
abilistic labels in classification tasks. On the other hand, in
the literature of classification, fuzzy classification deals with
how to assign objects to different classes based on fuzzy
set theory. For example, the fuzzy k-NN (FkNN) method
employs fuzzy set theory to predict fuzzy class member-
ship (Keller, Gray, and Givens 1985). However, such meth-
ods are used mainly for classification or clustering, and
can handle only fuzzy class membership. On the contrary,
UGSR is a generalization of the standard GSR and is appli-
cable to all situations of sparse selection. Furthermore, our
experiments show that UGSR outperforms standard SR and
GSR as well as the fuzzy kNN method in text emotion clas-
sification and aging face recognition.

Contributions of this paper are as follows: 1) We propose
a novel group sparse representation model UGSR that can
handle uncertain group structures. 2) We show that UGSR
is a generalization of the standard GSR in a higher dimen-
sional affine space. 3) We define the classification rule for
UGSR and apply UGSR to classification tasks with prob-
abilistic or weighted labels. 4) We conduct experiments to
validate the UGSR model and algorithm. Experimental re-
sults show that UGSR outperforms standard GSR and SR as
well as the fuzzy kNN method.

Preliminaries
Here we briefly introduce standard SR and GSR in the con-
text of classification. Assume that we have M training sam-
ples in Rd that fall into G different classes, each training
sample i has a label in {1..G}. Given a test sample y, we
are to label it according to the labels of the training samples.

Sparse representation (SR) represents the test sample as
a linear combination of the training samples while requiring
the coefficients to be sparse. These training samples together
constitute a dictionary D ∈ Rd×M . SR is to solve the fol-
lowing optimization problem:

min
x∈RM

{
1

2
‖y −Dx‖22 + λR1(x)

}
with R1(x) =

M∑
i=1

|xi|,
(1)

where λ > 0 is a tradeoff parameter. The first term is the
regression error, and the second term R1 is an `1-norm that
imposes sparsity to the coefficient vector x.

Group sparse representation (GSR) uses label informa-
tion during representation by requiring the coefficients cor-
responding to different class labels to be sparse. Let Gg be
the group of indices of training samples with label g ∈
{1..G}, GSR can be formulated as:

min
x∈RM

{
1

2
‖y −Dx‖22 + λR2(x)

}
with R2(x) =

G∑
g=1

√∑
i∈Gg

x2
i =

G∑
g=1

∥∥xGg∥∥2, (2)

where λ > 0 is a tradeoff parameter. The first term is the re-
gression error as in SR, and the second term R2 can be seen
as an `1/2-norm: the `2-norm is for the elements of the coef-
ficient vector x inside each group and is used as an indicator
of the “concentration” of samples, different from the group
“sparsity” measured by the `1-norm.

After the coefficient vector x in Eq. (1) or (2) is com-
puted, we can decide which is the most suitable label for a
test sample y. The maximum `2 support rule (Sainath et al.
2010) works well with both SR and GSR. It classifies a test
sample y as follows:

label∗ = arg max
g∈{1..G}

∥∥xGg∥∥2. (3)

The UGSR Model
Uncertain group sparse representation (UGSR)
We define the uncertain group structure underlying a dataset
as follows: given a dictionary D=[D1 . . .DM ] ∈ Rd×M ,
which is a collection of M sample vectors in Rd, and Di

is the i-th sample. Those samples belong to G groups la-
beled by 1..G. The uncertain group structure implies the
probabilistic relationship between each sample and each
group. Assume that the i-th sample associates with the g-
th group by a given probability P i

g , where g ∈ {1..G} and
i ∈ {1..M}. Then, we denote P i as the probability dis-
tribution vector of sample i with regard to all groups, and
the g-th element of the distribution vector is probability P i

g .
Since P i is a distribution, we have

∑
g∈{1..G}P

i
g = 1 for

all i, and P i
g ≥ 0 for all i and g. The distribution vectors

of all samples in dictionary D form a distribution matrix
P=[P 1 . . .PM ]. Given dictionary D and the corresponding
distribution matrix P , for a new sample y ∈ Rd, uncertain
group sparse representation (UGSR) is to represent y as a
sparse linear combination of all vectors in D by using P .

To handle uncertain group structures, we have to take into
consideration the group distributions of samples. We define
the concept of group distribution sparsity as follows:
Definition 1. Given a group distribution P i of sample i, its
sparsity Sp(P i) is defined as:

Sp(P i) =
√
‖P i‖ 1

2
=

G∑
g=1

√
P i
g . (4)

We use the square root of ` 1
2

-norm to indicate the sparsity
of P i because `0-norm is too strict and `1-norm is a constant
by the equality

∑
g∈{1..G}P

i
g=1. So a sparser P i means its

component values concentrate on fewer groups. Such a dis-
tribution is more informative because its entropy is smaller
according to information theory. In contrast, a non-sparse
distribution is more uniform and thus may contribute less in
reducing the number of representing vectors. We formulate
the UGSR model as below:

min
x∈RM

{
1

2
‖y −Dx‖22 + λRp(x)

}

with Rp(x) =
G∑
g=1

√√√√ M∑
i=1

P i
gx

2
i ,

(5)
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where λ > 0 is a tradeoff parameter. The first term is the re-
gression error that is the same as in SR and GSR. The second
term Rp(x) is the uncertain group sparse regularizer that
ensures dual sparsity: the selected samples should be sparse
and their group distributions should also be sparse. Note that
Rp concerns about the relationship between samples and
groups, which is different from the regularizer in (Jenatton,
Audibert, and Bach 2011) that adds weights to balance the
overlapping groups, i.e., the latter concerns about the rela-
tionship among groups. We have the following theorems to
elaborate the properties of the UGSR model.

Theorem 1. ∀x ∈ RM , ∃C1, Cp ∈ R such that R1(x) ≤
C1Rp(x) and Rp(x) ≤ CpR1(x) hold.

Proof. This result is straightforward since it can be shown
that Rp is also a norm defined in RM , and RM is a finite
dimensional Hilbert space. Thus, they are equivalent norms,
and so the theorem is proved.

Theorem 2. ∀C ∈ R, ∀i, j ∈ {1..M}, if x minimizes
Rp(x) with respect to R1(x) = C, and if Sp(P i) <
Sp(P j), then |xi| > |xj |.

Proof. As we are to prove the relation between two absolute
component values of x, let ui=|xi| ≥ 0 for i=1..M , we have

R1(x) =

M∑
i=1

ui, Rp(x) =

G∑
g=1

√√√√ M∑
i=1

P i
gu

2
i . (6)

Considering the fact that u minimizes f(u) =∑G
g=1

√∑M
i=1 P

i
gu

2
i + α

(∑M
i=1 ui − C

)
, we have

∂f(u)

∂ui
=

G∑
g=1

P i
gui√∑M
l=1 P

l
gu

2
l

+ α = 0,∀i ∈ {1..M}. (7)

Thus,

−α =
G∑
g=1

P i
gui√∑M
l=1 P

l
gu

2
l

,∀i ∈ {1..M}. (8)

Considering the indexes of two elements in u: i and j, the
following equation holds:

G∑
g=1

P i
gui√∑M
l=1 P

l
gu

2
l

=
G∑
g=1

P j
guj√∑M
l=1 P

l
gu

2
l

. (9)

Let us focus on the variables associated with i and j, and
consider the rest variables fixed, this is the same as the
case when M=2. So without loss of generalization, let G=2,
M=2, i=1 and j=2, Eq. (9) becomes

P 1
1 u1√

P 1
1 u

2
1 + P 2

1 u
2
2

+
P 1

2 u1√
P 1

2 u
2
1 + P 2

2 u
2
2

=
P 2

1 u2√
P 1

1 u
2
1 + P 2

1 u
2
2

+
P 2

2 u2√
P 1

2 u
2
1 + P 2

2 u
2
2

.

(10)

The left part is monotonic with respect to u1, which in-
creases as u1 becomes larger, and so is the right part with
respect to u2. By the distribution property, we have

P 1
1 + P 1

2 = P 2
1 + P 2

2 = 1. (11)

By Sp(P 1) < Sp(P 2) we have
√
P 1

1 +
√
P 1

2 <√
P 2

1 +
√
P 2

2 . Square on both sides, we have P 1
1P

1
2 <

P 2
1P

2
2 . Combine this with Eq. (11), we get

∣∣P 1
1 − P 1

2

∣∣ >∣∣P 2
1 − P 2

2

∣∣. By a simple discussion on the signs inside the
absolute formulas, we can get the following inequality:

P 1
1 − P 2

1√
P 1

1 + P 2
1

<
P 2

2 − P 1
2√

P 1
2 + P 2

2

. (12)

Let u1=u2 in Eq. (10), we have

P 1
1 − P 2

1√
P 1

1 + P 2
1

=
P 2

2 − P 1
2√

P 1
2 + P 2

2

. (13)

Considering Ineq. (12) and Eq. (13), to satisfy Eq. (10), we
have to increase u1 and decrease u2. So we have u1>u2.

Theorem 1 indicates that minimizing R1 or Rp to a cer-
tain degree will cause the other one to decrease. Theorem 2
means that Rp prefers to assign larger values to samples
with sparser group distributions. Thus for coefficient vec-
tors achieve the same R1, the Rp regularizer prefers the one
whose elements correspond to samples with sparser group
distributions, and consequently the coefficient vectors gener-
ated by UGSR are more informative and useful. The follow-
ing theorem describes the relationship between the UGSR
regularizer and the standard GSR regularizer.
Theorem 3. Let Rp be an uncertain group sparse reg-
ularizer on RM with G uncertain groups, there exists a
group sparse regularizer R2 on RN (N = GM ) such that
Rp = R2 ◦ B, where B = [

√
B1; . . . ;

√
BG] ∈ RN×M

and ∀g ∈ {1..G}, Bg ∈ RM×M is a diagonal matrix with
diagonal elements Bg(i, i) = P i

g , i ∈ {1..M}.

Proof. By the definitions of uncertain regularizerRp and di-
agonal matrices Bg , g ∈ {1..G}, Rp can be rewritten as

Rp(x) =
G∑
g=1

√
x>Bgx =

G∑
g=1

‖x‖Bg
. (14)

If we write those ‖x‖Bg
in the form of column vectors, the

sum above can be seen as an `1-norm as below:

G∑
g=1

‖x‖Bg
=

∥∥∥∥∥∥∥

√
x>B1x

...√
x>BGx


∥∥∥∥∥∥∥
1

. (15)

Since each Bg is a diagonal matrix and its elements are all
non-negative, we rewrite it as the product of its square root
Bg =

√
Bg
>√

Bg . Thus,√
x>Bgx =

√
x>
√
Bg
>√

Bgx =
∥∥∥√Bgx

∥∥∥
2
. (16)
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So the Rp regularizer in Eq. (15) can be seen as a group
sparse regularizer formed by an `1/`2-norm:∥∥∥∥∥∥∥


∥∥√B1x

∥∥
2

...∥∥√BGx
∥∥
2


∥∥∥∥∥∥∥
1

=

∥∥∥∥∥∥∥

√
B1x
...√

BGx


∥∥∥∥∥∥∥
1,2

. (17)

If we define the group sparse regularizer R2 as the `1/`2-
norm on RN (N=GM ) and let B=[

√
B1; . . . ;

√
BG] ∈

RN×M , Rp is actually a composition of the higher dimen-
sional group sparse regularizerR2 and the affine transforma-
tion B, i.e., Rp(x) = R2(Bx). For R2, there are G groups,
each of which contains M samples.

It can be seen that the uncertain group sparse regularizer
Rp and the group sparse regularizer R2 are the same when
P is assigned with binary values (each P i has exactly one
“1”). That is, for certain group structures, UGSR degener-
ates into GSR. Therefore, Rp is a generalized group sparse
regularizer in a higher dimensional affine space.

Classification based on UGSR
We consider both hard classification and soft classifica-
tion. Here probabilistic group distribution is used to describe
group uncertainty of training samples. Given a test sample
y ∈ Rd, hard classification is to predict y’s most-likely
class label, while soft classification is to compute y’s prob-
ability distribution over all classes.

In classification using GSR, the classes of training sam-
ples are used as groups. In the uncertain group structure set-
ting, each training sample relates to all groups, which makes
the standard group sparse regularizer impose less sparsity.
When applying the UGSR model, we actually provide dual
sparsity to test samples: the sparsity of training samples as in
SR and the sparsity of their group distributions. The second
sparsity makes UGSR favorably select training samples that
are more informative and useful for classification.

Hard classification. In classification using SR and GSR,
the maximum `2 support rule is used to determine the class
label of y. However, in our uncertain setting, the `2 sup-
ports of different classes may be equal to each other as each
sample is related to all classes, this may degrade the per-
formance of the maximum `2 support classification rule. So
we propose a generalized maximum `2 support rule for hard
classification based on the UGSR model:

label∗ = arg max
g∈{1..G}

{∥∥∥√Bgx
∥∥∥
2

}
, (18)

where
∥∥√Bgx

∥∥
2

indicates sample “concentration” of
group g, which is consistent with the same concept in stan-
dard group sparsity and the maximum `2 support rule in a
higher dimensional affine space.

Soft classification. The goal is to compute the prob-
ability distribution of test sample y associating with all
classes (or groups). For UGSR, we use the normalized value
of
∥∥√Bgx

∥∥
2

to measure the probability P ∗g of y belonging
to class g. So for each class g ∈ {1..G}, we have

P ∗g =

∥∥√Bgx
∥∥
2∑G

h=1

{∥∥√Bhx
∥∥
2

} . (19)

Algorithm 1 Proximity Algorithm for SR and GSR
Input: dictionary D, test vector y
Initialize x = 0

repeat
u = x− 1

LD>(Dx− y)

x = Prox λ
L
R
(u)

until x converges

For comparison, we also let SR and GSR output a probabil-
ity distribution of test sample y associating with all classes.
The probability P ∗g of y belonging to class g is evaluated by

P ∗g =

∥∥xGg∥∥2∑G
h=1 ‖xGh‖2

. (20)

The UGSR Algorithm
Here we present an efficient algorithm to solve the UGSR
model via proximity operator.

Basic proximal method
Let f(x) = 1

2 ‖y −Dx‖22 and R be any sparse-inducing
regularizer we mentioned above. As f is a smooth differen-
tiable function, we can linearize it around the current point
xt at each iteration and reformulate it as in (Bach et al.
2011), the optimization within the iteration becomes

min
x∈RM

{
1

2

∥∥∥∥x− (xt − 1

L
∇f(xt))

∥∥∥∥2
2

+
λ

L
R(x)

}
, (21)

where L is the upper bound of
∥∥D>D∥∥

2
(Argyriou et al.

2011). Here, we recall the definition of proximity operator
introduced by Moreau (Moreau 1962) as follows:
Definition 2. ϕ is a real-valued convex function onRM , its
proximity operator Proxϕx(u) is defined as:

argmin
x

{
1

2
‖u− x‖22 + ϕ(x) : u ∈ RM

}
. (22)

Let u be the standard gradient descent of xt and ϕ be the
sparse-inducing regularizer R, so u = xt − 1

L∇f(x
t), the

update rule for Eq. (21) is

x = Prox λ
LR

(xt − 1

L
∇f(xt)). (23)

This optimization process is shown in Algorithm 1, which is
applied to solving the optimization problems of SR and GSR
since Prox λ

LR1
(u) and Prox λ

LR2
(u) can be computed di-

rectly (Bach et al. 2011).

Proximity operator computation of the uncertain
group sparse regularizer Rp

As we have shown, Rp can be reformulated as a composi-
tion of a group regularizer R2 onRN and an affine transfor-
mation B in Theorem 3. Combining Eq. (21), Eq. (22) and
Theorem 3, we get the following optimization problem:

min
x

{
1

2
‖u− x‖22 +

λ

L
R2(Bx) : u ∈ RM

}
. (24)
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Algorithm 2 Proximity Algorithm for UGSR
Input: dictionary D, distribution matrix P , test vector y
Initialize x = 0

B = [
√
diag(P1); . . . ;

√
diag(PG)]

repeat
u = x− 1

LD>(Dx− y)

Initialize v = 0

repeat
w = v − cBB>v + Bu

v = κv + (1− κ)
(
w − Prox λ

cL
R2

(w)

)
until v converges
x = u− cB>v

until x converges

R2 can be computed directly as in (Bach et al. 2011). Let
Gg={(g − 1)M+1,· · · ,gM} be a group of indices and w ∈
RN . Then,

[ProxµR2
(w)]Gg =

(
1− µ∥∥wGg∥∥2

)
+

wGg (25)

for g ∈ {1..G}, where µ > 0 and (·)+ = max (·, 0). Now
we adapt the theorem from (Micchelli, Shen, and Xu 2011)
that relates the computation of Prox λ

LRp
with the computa-

tion of ProxµR2
to our circumstance as follows:

Theorem 4. Let u ∈ RM , c > 0, and define the mapping
H : RN 7→ RN as

H(v) =
(
I − Prox λ

cLR2

) ((
I − cBB>

)
v +Bu

)
.

(26)
Then, the following equation holds if and only if v ∈ RN is
a fixed-point of H .

Prox λ
LRp

(u) = u− cB>v. (27)

By the theorem above, computing Prox λ
LRp

relies on
computing the fixed-point ofH . Note that there may be more
than one fixed-point of H , but each of them gives the same
proximity of λ

LRp at u. By simple adaptation, it can be seen
from (Micchelli, Shen, and Xu 2011) thatH is nonexpansive
and it maps RN into a closed and convex set C ⊂ RN that
contains 0, given that R2 is a Lipschitz continuous convex
function and c satisfies the inequality

∥∥I − cBB>
∥∥
2
≤ 1.

We recall that for an initial point v0 ∈ RN , the Picard
sequence of an operator ψ is defined as vn+1=ψ(vn). If we
choose an initial point in C for H , for example, we set v0 =
0, the Picard sequence of H will always stay in C. There-
fore, by Opial κ-averaged theorem (Opial 1967), the Picard
sequence of κ-averaged operator Hκ = κI+(1−κ)H con-
verges to a fixed-point of H , κ ∈ (0, 1).

We summarize the algorithm for solving the UGSR model
in Algorithm 2, where Pg is the g-th row vector of the
distribution matrix P for any g ∈ {1..G}, and diag(Pg)
indicates a diagonal matrix whose diagonal elements are
P i
g (i ∈ {1..M}).

Applications and Experimental Results
We apply UGSR to two classification tasks: text emotion
classification and aging face recognition. For any appli-

Table 1: Texts (”T”+ID from 619 to 624) annotated by six
emotions.

EMOTIONS T619 T620 T621 T622 T623 T624
ANGER 0 26 54 0 0 23
DISGUST 2 9 73 0 2 4
FEAR 12 11 08 3 8 46
JOY 8 2 4 23 13 8
SADNESS 0 31 39 2 4 44
SURPRISE 26 18 17 26 19 14

Table 2: Averaged performance of emotion classification.

STATISTICS UGSR GSR SR FkNN

HARD

ACCURACY 81.57% 80.11% 80.32% 75.07%
PRECISION 39.10% 33.84% 34.69% 27.33%
RECALL 36.63% 31.55% 31.76% 24.41%
F1 37.82 32.66 33.16 25.79

SOFT DISTANCE 0.8426 0.8797 0.8769 1.1299

cation, in addition to D, the distribution matrix P must
be given. Actually, the determination of P is domain-
dependent. In our two tasks, the setting of P is quite differ-
ent. For comparison, we also apply SR and GSR to the two
tasks, and use the fuzzy k-NN (FkNN) method as a baseline
classifier. For the three classifiers under the sparse represen-
tation framework, we set the parameter λ = 1 and optimize
them by the proximal method. For FkNN, we set k = 1.

We use Accuracy (Acc), Precision (Pre), Recall (Rec)
and F1-measure (F1) to evaluate hard classification per-
formance. F1 is a combined measure of Pre and Rec,
which is evaluated as F1= 2∗Pre∗Rec

Pre+Rec . We first calcu-
late these performance measures for each class, and then
evaluate their macro-average values across all classes as
Measuremacro= 1

G

∑G
g=1Measureg .

In soft classification, for each test sample we first es-
timate the probability distribution via Eq. (19) for UGSR
and Eq. (20) for GSR and SR. Then, we calculate the dis-
tance (`1-norm is used as the distance measure) between
each method’s output and the ground truth distribution, and
finally get the averaged result across all test samples.

Text emotion classification
We use the AffectiveText dataset (Strapparava and Mihalcea
2007) for text emotion classification: given some training
texts and a set of prespecified emotions, each of these train-
ing texts is semantically related to each emotion to a certain
degree. For a test text, the hard classification task is to pre-
dict the most-likely emotion of the test text, while the soft
classification task is to evaluate the probability distribution
of the test text semantically related to all emotions.

The dataset contains 1250 short texts, each of which is
annotated with the six Eckman emotions: anger, disgust,
fear, joy, sadness and surprise, which are marked as Emo-
tion 1, . . ., Emotion 6. Table 1 lists some text samples,
where each value means the aggregated frequency of an
emotion’s keywords appearing in a text. For a training text
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Table 3: Averaged performance of aging face recognition.

i, P i
g=

Emotionig∑6
g=1 Emotion

i
g

, where Emotionig is the aggregated

frequency of Emotion g’s keywords appearing in text i. For
classification using SR and GSR, each training text is as-
signed to the emotion with the highest probability, this label
setting is consistent with the hard classification task that la-
bels each test text with the most-likely emotion.

The dataset has 3082 words in total and we construct 1250
feature vectors of 3082 dimensions using term frequency for
all four classifiers. We perform 10-fold cross-validation and
compare their outputs with the ground truth.

For hard classification, we compute Accuracy and F1 for
10 times and average the results for each classifier. The av-
eraged results are shown in the first part of Table 2. For soft
classification, we compute the distance between each classi-
fier’s output and the ground truth distribution using `1-norm
for 10 times, the averaged distances are shown in the sec-
ond part of Table 2. From Table 2, we can see that UGSR
outperforms the other three classifiers, the major reason is
that UGSR properly exploits the uncertain group structure
information. We also note that SR performs sightly better
than GSR, this is because texts in the AffectiveText dataset
are not strongly group-sparse: emotions implied in texts are
heavily mixed.

Aging face recognition
Here we use the FG-NET dataset 1 for aging face recogni-
tion. The task is like this: there are some persons’ photos
taken at different ages, which are used as training samples.
We are now given some of their latest photos, the task is to
recognize the corresponding person of each of those photos.
This is a hard classification task because we need only to
assign one person to each test photo.

The FG-NET dataset contains 1002 different face photos
from 82 persons. There are at least 7 face photos for each
person at age from 1 to 69 years old. We use the photo of
each person taken at her/his oldest age as the test photo and
the rest 920 photos as training photos. If we do not consider
age information, this task is simply a traditional face recog-
nition task. However, it is a well-known fact that a person’s
face changes as s/he grows old, and for most people, photos
taken at older ages are more similar to the latest photos than
the photos taken at younger ages. Considering this, for the
g-th person in the training set, let MaxAgeg be the age cor-
responding to her/his latest photo, we define the probability

1FG-NET database: http://sting.cycollege.ac.cy/ alan-
itis/fgnetaging/.

of the person’s photo i taken at age Agei similar to her/his
latest photo as P i

g= Agei
MaxAgeg

, and P i
j=0 (j 6= g). As each

photo can belong to only one person correctly and P i
g it-

self does not constitute a distribution, we create an artificial
label ‘OTHER’, which indicates anyone but the correct per-
son. For any photo i of person g, we have P i

OTHER=1-P i
g ,

which means the probability of photo i not being person g.
However, when using the classification rules (3) and (18), we
omit the influence of the ‘OTHER’ label, because ‘OTHER’
predictions are not considered.

We first resize all photos to bitmaps of 500 pixels to 400
pixels with only gray scales. By extracting Gabor face fea-
ture vectors as in (Yang and Zhang 2010) from those resized
photos, we get a feature vector of 121520 dimensions for
each face photo. Then, we use principal component analysis
to reduce the dimensionality of all face vectors to 500.

We evaluate the classifiers by considering different num-
bers of classes (persons). Given c classes, we repeat the fol-
lowing steps 100 times: first, randomly select c classes from
the total 82 classes, then run the four classification methods
and record their macro-averaged Acc, Pre, Rec and F1 val-
ues. After the 100 times are over, we average the Acc, Pre,
Rec and F1 values. Here, c is set to 2, 6, 12, 20, 40 and
82, respectively. The results are presented in Table 3. From
the experimental results, we can see that 1) as the number
of classes increases, all classifiers show worsening perfor-
mance, which is reasonable. 2) In all settings, UGSR demon-
strates advantage over the other three classifiers because it
takes advantage of the probability information of all photos
taken at different ages. 3) GSR outperforms SR because the
training samples are strongly group-aware: training photos
of different persons demonstrate considerable discrepancy.

Conclusion
In this paper, we propose a new group sparsity model UGSR
to learn group sparse representations from datasets with un-
certain group structures, which is a generalization of the
standard group sparse representation. An efficient algorithm
based on proximity operator is developed to solve the UGSR
model. To demonstrate the effectiveness and advantage of
the new model, we apply UGSR to two classification tasks:
text emotion classification and aging face recognition, where
training samples are probabilistically related to different
class labels. Experimental results validate the advantage of
UGSR over standard GSR and SR as well as fuzzy kNN.

c UGSR GSR SR FkNN c UGSR GSR SR FkNN c UGSR GSR SR FkNN
ACC

2

67.50% 64.00% 61.00% 65.50%

12

87.68% 86.32% 86.19% 85.68%

40

95.70% 95.39% 95.37% 95.23%
PRE 55.75% 50.50% 46.50% 53.75% 18.13% 10.70% 9.86% 7.91% 95.70% 95.39% 95.37% 95.23%
REC 67.50% 64.00% 61.00% 65.50% 26.08% 17.92% 17.17% 14.08% 9.56% 4.37% 4.14% 2.04%
F1 61.06 56.45 52.77 59.05 21.39 13.40 12.53 10.13 11.37 5.60 5.33 2.82
ACC

6

78.61% 76.83% 76.39% 74.50%

20

92.11% 91.11% 91.11% 90.92%

82

97.80% 97.68% 97.68% 97.62%
PRE 26.14% 20.28% 19.05% 14.39% 14.13% 6.16% 6.04% 5.04% 7.72% 2.87% 3.68% 0.81%
REC 35.83% 30.50% 29.17% 23.50% 21.10% 11.15% 11.10% 9.25% 9.76% 4.88% 4.88% 2.44%
F1 30.23 24.36 23.05 17.85 16.92 7.94 7.83 6.52 8.62 3.61 4.19 1.22
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