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Abstract

Active learning is a subfield of machine learning that
has been successfully used in many applications in-
cluding text classification and bioinformatics. One of
the fundamental branches of active learning is query
synthesis, where the learning agent constructs artificial
queries from scratch in order to reveal sensitive infor-
mation about the true decision boundary. Nevertheless,
the existing literature on membership query synthesis
has focused on finite concept classes with a limited
extension to real-world applications. In this paper, we
present an efficient spectral algorithm for membership
query synthesis for halfspaces, whose sample complex-
ity is experimentally shown to be near-optimal. At each
iteration, the algorithm consists of two steps. First, a
convex optimization problem is solved that provides an
approximate characterization of the version space. Sec-
ond, a principal component is extracted, which yields a
synthetic query that shrinks the version space exponen-
tially fast. Unlike traditional methods in active learn-
ing, the proposed method can be readily extended into
the batch setting by solving for the top k eigenvectors
in the second step. Experimentally, it exhibits a signif-
icant improvement over traditional approaches such as
uncertainty sampling and representative sampling. For
example, to learn a halfspace in the Euclidean plane
with 25 dimensions and an estimation error of 1E-4, the
proposed algorithm uses less than 3% of the number of
queries required by uncertainty sampling.

Introduction
Active learning is a subfield of machine learning that has re-
ceived a growing interest over the past 20 years. It has been
successfully used in many applications including charac-
ter recognition, text classification, computational chemistry,
spam filtering, and bioinformatics (Liu 2004; Sculley 2007;
Settles 2010). In addition, many software companies are
increasingly reliant on active learning techniques, such as
Google, IBM, and CiteSeer (Settles 2010; 2011).

The central goal of active learning (also called “query
learning”) is to be able to learn well using only a few queries
or training examples. There are various scenarios in which
active learning arises quite naturally. For instance, in speech
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recognition and text classification, there is often an abun-
dance of unlabeled examples that can be used to improve
classification accuracy. However, the labeling cost is not
negligible, and the goal is to nominate a small subset of such
unlabeled examples for manual human annotation. Simi-
larly, active learning can be used in dataset compression, in
which the entire training set is reduced in size in order to
improve the training time.

More precisely, suppose throughout this paper that our in-
stance space is Rd, and suppose we would like to estimate a
halfspace c? = {x ∈ Rd | 〈w?, x〉 ≥ 0} for some unknown
normal vector w? ∈ Rd. The goal of active learning is to be
able to estimate c?, or equivalently w?, using as few queries
as possible. Here, a query comprises of an instance xi ∈ Rd
and a membership response:

yi = c?(xi) = I{xi ∈ c?} = sign(〈xi, w?〉) ∈ {+1, −1}
We assume we operate in the realizable setting. That is,

we have for all queries {(x1, y1), (x2, y2), . . .}:
∃w ∈ Rd : ∀i, yi = sign(〈xi, w〉)

In addition, we assume that the true halfspace c? (a.k.a. the
target concept) is deterministic and noise-free. These as-
sumptions are widely used in the literature (see for instance
(Settles 2010; Balcan and Long 2013; Tong and Koller 2002;
Brinker 2003; Balcan, Broder, and Zhang 2007; Dasgupta
2005b; Freund et al. 1997; Dasgupta, Kalai, and Monteleoni
2009)). They are satisfied for many important classification
problems such as text classification (Xu et al. 2003). In addi-
tion, the assumed setting is equivalent to the task of reverse-
enigneering linear classifiers.

The traditional Probably Approximately Correct (PAC)
model (Valiant 1984; Haussler and Warmuth 1993) can be
used to provide sample complexity bounds for learning half-
spaces. Specifically, suppose that D is a probability distri-
bution of instances x ∼ D and let ĉ be the concept esti-
mated according to the training set {(x1, y1), (x2, y2), . . .},
whose instances xi are drawn i.i.d. according to D while
yi = c?(xi) ∈ {+1, −1}. Define estimation error to be ε =
Px∼D[ĉ(x) 6= c?(x)]. Then, a classical result using the PAC
model states that Õ(dε ) training examples are needed in or-
der to achieve an estimation error of ε (Cohn, Atlas, and Lad-
ner 1994; Dasgupta 2005a; Balcan, Broder, and Zhang 2007;
Balcan and Long 2013). The hope of active learning is to
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Figure 1: Using the bisection search, query learning of
thresholds in R can yield exponential improvement in sam-
ple complexity over random sampling.

be able to reduce this sample complexity exponentially fast
into Õ(d log 1

ε ). A sample complexity of Ω(d log 1
ε ) can be

shown to be optimal using a sphere counting argument (Das-
gupta, Kalai, and Monteleoni 2009).

It is easy to observe how active learning helps achieve
such dramatic reduction in sample complexity when d = 1
(Dasgupta 2005b). Consider the example depicted in Fig-
ure 1, where our target concept is c? = {x ∈ R |x ≥ θ}
for some unknown θ ∈ [0, 1], and our instances xi are
uniformly distributed in the unit interval [0, 1]. Using the
bisection method, one can estimate θ very quickly. If we
start with the two examples (x1 = a, y1 = −1) and
(x2 = b, y2 = +1), then the next synthetic queries would
be (x3 = c, y3 = −1) and (x4 = d, y4 = +1) in tandem.
Clearly, each query cuts the region of uncertainty by one half
regardless of its label. Hence, we can achieve an error rate
of ε using only Õ(log 1

ε ) queries (Dasgupta 2005b).
Extending the bisection method into Rd for all d ≥ 1 is

possible, at least in principle, using what is commonly re-
ferred to as the “halving algorithm” (Tong and Koller 2002;
Brinker 2003). Unfortunately, the halving algorithm is an
idealized method that is often prohibitively complex to im-
plement in practice (Cohn, Atlas, and Ladner 1994; Tong
and Koller 2002; Settles 2010). It operates by first com-
puting the set of all hypotheses that are consistent with all
past queries. This set of possible hypotheses is referred to
as the version space, a term that was first introduced by
Tom Mitchell (Mitchell 1982). After that, a query is syn-
thesized that cuts the “volume” of the version space by
one half. Then, the new version space is computed and
the entire process is repeated multiple times. The halv-
ing algorithm can be justified rigorously (Angluin 2001;
Tong and Koller 2002; Dasgupta 2005a; 2005b).

Because the ideal halving algorithm is often difficult
to implement in practice, pool-based approximations are
used instead such as uncertainty sampling and the query-
by-committee (QBC) algorithm (Freund et al. 1997; Tong
and Koller 2002; Brinker 2003). Unfortunately, such ap-
proximation methods are only guaranteed to work well if
the number of unlabeled examples (i.e. pool size) grows
exponentially fast with each iteration. This is due to the
fact that the required pool size is always proportional to
Õ( 1

ε ) (Freund et al. 1997; Balcan, Broder, and Zhang 2007;
Dasgupta, Kalai, and Monteleoni 2009). Otherwise, such
heuristics become crude approximations and they can per-
form quite poorly (Tong and Koller 2002; Schein and Un-
gar 2007). Because the required pool size grows exponen-
tially fast before we can guarantee an exponential reduction

in sample complexity, query synthesis offers an attractive al-
ternative approach. In query synthesis, new queries are con-
structed de novo, and hence the pool size limitation is com-
pletely eliminated.

In this paper, we provide an efficient membership query
synthesis algorithm for halfspaces. The new algorithm can
also be interpreted as an approximation to the ideal halving
algorithm. Nonetheless, we retain its key advantage; namely
that its estimation error enjoys an exponential improvement
over random sampling. At each iteration, the new algorithm
consists of two steps. First, a convex optimization problem
is solved that provides an approximate characterization of
the version space. In the second step, a principal component
is extracted, which yields the optimal synthetic query that
shrinks the version space exponentially fast. Both steps can
be implemented quite efficiently.

In addition to the classical active learning setting in which
a single query is synthesized at each iteration, the proposed
algorithm can also be readily extended into the batch setting,
where k ≥ 1 queries are synthesized per iteration. Batch-
mode active learning has been recently described as one of
the top challenges in active learning (Settles 2011). It is im-
portant in distributed parallel labeling environments, such as
in biology (Settles 2010). Ideally, batch-mode active learn-
ing should produce queries that are both informative and di-
verse (Brinker 2003). In our case, the new proposed algo-
rithm operates in the batch setting by solving for the top k
eigenvectors in the second step of each iteration, thus achiev-
ing both objectives (details are provided in the sequel).

The rest of the paper is structured as follows. First, we
present a statement of the problem and discuss related work.
After that, we derive the new query synthesis algorithm,
and show how it can serve as an approximation to the ideal
halving algorithm. Next, we demonstrate that the proposed
method indeed achieves an exponential reduction in sample
complexity compared to random sampling, and that its per-
formance is significantly superior to popular active learning
techniques.

Problem Statement
Halfspaces are generally considered to be one of the most
important concept classes in practice today (Fan et al. 2008;
Yuan, Ho, and Lin 2012; Balcan and Long 2013). The class
of linear separators is broad and includes support vector ma-
chines (SVM), the perceptron, as well as logistic regression,
and they can achieve comparable accuracy to non-linear
classifiers in many applications (Yuan, Ho, and Lin 2012).
In fact, due to their wide popularity, many solvers currently
exist for linear classification including SVMperf, OCAS, Pe-
gasos, SGD, and LIBLINEAR (Yuan, Ho, and Lin 2012). In
this paper, we present a new efficient algorithm for active
learning of halfspaces via query synthesis.

There is an emerging class of new applications for which
active learning via query synthesis is a useful tool. These
include automated science, such as the “robot scientist” ex-
periment described in (King and others 2009), and adver-
sarial reverse engineering (Nelson et al. 2012). For appli-
cations in which we desire to learn a halfspace with arbi-
trary accuracy, pool-based query learning strategies such as
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uncertainty sampling and QBC are inefficient because the
required pool size grows exponentially fast with each iter-
ation. Query synthesis, by contrast, builds new queries de
novo and, hence, offers an attractive alternative approach.

In the literature, query synthesis strategies have focused
on either finite concept classes or on toy problems such
as geometrical shapes in two dimensions (Angluin 2001;
Settles 2010). In this paper, we aim at deriving a new query
synthesis algorithm for learning halfspaces in Rd for all
d ≥ 1. We require that complexity of the query synthesis al-
gorithm to grow only polynomially with each iteration, while
still offering an exponential reduction in estimation error.

Related Work
There are two fundamental branches of active learning pro-
posed in the literature: (1) query synthesis, and (2) pool-
based sampling (Settles 2010). In the query synthesis ap-
proach, the learning agent constructs new queries de novo
in order to reveal sensitive information about the true de-
cision boundary. For instance, an autonomous robot scien-
tist might infer hypotheses based on observations, and de-
sign new queries in order to refine those hypotheses (King
and others 2009). Query synthesis has traditionally focused
on regression tasks, under the name of optimal experiemen-
tal design, because the optimal query can often be de-
termined analytically in such cases (Freund et al. 1997;
Settles 2010). However, it has seldom been extended into
the classification setting except for finite concept classes or
for artificial toy problems (Angluin 2001; Settles 2010).

Pool-based sampling (Lewis and Gale 1994), by contrast,
has been successfully applied for a wide range of problems
including classification and regression (Schein and Ungar
2007; Settles 2010). In this setting, it is assumed that a large
pool of unlabeled examples is available, hence the name, and
the goal is to select a small subset of those examples to serve
as new queries. Perhaps, the two most dominant approaches
in pool-based sampling are uncertainty sampling and the
query-by-committee (QBC) algorithm (Schein and Ungar
2007; Settles 2011). Both can be interpreted as approxi-
mations to the ideal halving algorithm that was discussed
earlier (Tong and Koller 2002; Freund et al. 1997). For the
concept class of homogenous (i.e. through the origin) half-
spaces, Balcan, Broder, and Zhang showed that uncertainty
sampling could achieve an exponential reduction in sample
complexity (Balcan, Broder, and Zhang 2007), while Das-
gupta, Kalai, and Monteleoni proved similar performance
guarantees for a perceptron-like uncertainty sampling algo-
rithm (Dasgupta, Kalai, and Monteleoni 2009). Similarly,
Freund et al. showed that the QBC algorithm could achieve
similar performance for the same concept class of homoge-
nous halfspaces (Freund et al. 1997). However, all the pool-
based sampling methods above require a pool size that grows
exponentially fast.

Moreover, numerous other algorithms have been pro-
posed for pool-based sampling. These include algorithms
that are based on the expected error reduction (Roy and Mc-
Callum 2001), bagging and boosting (Abe and Mamitsuka
1998), and expectation-maximization (EM) (McCallum and
Nigam 1998). Nevertheless, uncertainty sampling and the

QBC algorithm remain dominant and they perform quite
competitively (Schein and Ungar 2007; Settles 2011).

In batch-mode active learning, on the other hand, very few
algorithms have been previously proposed (Settles 2011). In
principle, the goal is to introduce diversity among queries
as a whole, while also ensuring that each query is informa-
tive by itself. In order to achieve both objectives, two gen-
eral approaches have been proposed. The first approach is
called representative sampling, which works by first cluster-
ing informative instances xi into k groups, and picking the k
representative samples for those groups as queries (Xu et al.
2003). The second approach is optimization-based, which
treats diversity and uncertainty as two separate terms in a
single objective function. For the concept class of homoge-
nous halfspaces, diversity is measured by the pairwise an-
gles between queries (Brinker 2003). That is, diversity is de-
fined by orthogonality.

Notation
The notation used in this paper is fairly standard. Vec-
tors will be denoted using small letters z while matrices
will be denoted using capital letters Z. We will always
denote instances by x ∈ Rd and membership labels by
y ∈ {+1, −1}. Here, y = c?(x) indicates whether or not
x belongs to the target concept c?. We will use xT to de-
note the transpose of x, and use ||x||A to denote the induced
norm of x by the positive semidefinite matrix A. That is,
||x||A =

√
xT Ax. We will write A � 0 to mean that the

matrix A is positive semidefinite. The cone of d × d sym-
metric positive semidefinite matrices will be denoted Sd+. Fi-
nally, we write a ◦ b to denote the Hadamard (element-wise)
product between the two vectors a and b.

Query Synthesis for Halfspaces
Version Space Approximation
Before we derive a query synthesis algorithm for half-
spaces, let us first recapitulate how the ideal halving algo-
rithm works. The ideal halving algorithm works in the fol-
lowing manner:
- STEP I: Compute the version space V , which is the set

of all hypotheses that are consistent with all past queries
{(xi, yi)}i. Because we only need to recover the normal
vector w up to a constant factor in halfspace learning, the
version space can be characterized in terms of w by the
intersection of the surface of the unit sphere with a poly-
hedral set:
V = {w ∈ Rd | ||w||2 = 1 ∧ ∀i, yi 〈xi, w〉 ≥ 0} (1)

- STEP II: Measure the “volume” of V . One natural mea-
sure of volume is the surface area of the unit sphere that
lies inside the polyhedral region as defined in Eq. (1). Stop
if the volume of V is below some predefined tolerance.

- STEP III: Synthesize a new query that cuts the volume
of V by one half. That is, find an instance xt+1 such
that the volume of the new version space after observing
query (xt+1, yt+1) is reduced by one half regardless of
the value of yt+1 ∈ {+1, −1}. Then, increment t and go
back to STEP I.

2485



The key difficulty in query synthesis that makes the above
halving algorithm prohibitively complex lies in the nature
of the version space. Because we can always assume that
||w||2 = 1, an ideal definition of the version space is given
by Eq. (1) whose natural measure of volume is the surface
area. This definition, however, is difficult to deal with ana-
lytically.

In order to circumvent such limitation, we propose to
approximate the version space V by the largest ellipsoid
ε? = (µ?, Σ?), with mean µ? and covariance Σ?, which
is consistent with all past queries and whose mean µ? lies at
the surface of the unit sphere, i.e. ||µ?||2 = 1. This approx-
imation can be interpreted as a smoothening of the original
ideal definition of V so that query synthesis can be carried
out quite efficiently.

In order to determine ε?, we need to determine its mean
µ? and covariance matrix Σ?. By definition of ε?, we have:

w ∈ ε? ⇔
∣∣∣∣w − µ?∣∣∣∣

Σ?−1 ≤ 1 (2)

To guarantee that the entire ellipsoid ε? is consistent with a
query (xi, yi), it can be shown (e.g. using Lagrange dual-
ity) that Eq. (2) implies that the following condition is both
necessary and sufficient:

yi 〈xi, µ?〉 ≥ ||xi||Σ? (3)

The volume of an ellipsoid ε = (µ, Σ) with mean µ and
covariance matrix Σ is proportional to det Σ. Because the
logarithmic function is monotone and increasing, maximiz-
ing det Σ is equivalent to maximizing the concave function
log det Σ. Consequently, in order to solve for ε?, we need to
solve the following optimization problem:

maximize
µ, Σ∈Sd+

log det Σ

subject to yi · (µT xi) ≥
√
xTi Σxi, for all i = 1, . . .

||µ||2 = 1 (4)

The optimization problem, however, is not convex. To cast
it as a convex optimization problem, so that it can be solved
quite efficiently, we introduce the new variable S = Σ

1
2 .

Furthermore, we replace the equality constraint with an in-
equality constraint as follows:

maximize
µ, S∈Sd+

log detS

subject to yi · (µT xi) ≥ ||S xi||2, for all i = 1, 2, . . .

||µ||2 ≤ 1 (5)

It is clear that the constraint ||µ||2 ≤ 1 holds with equality
at optimality. Otherwise, we can multiply both µ and S by
||µ||−1

2 , which increases the objective function without vio-
lating the constraints. Therefore, the optimal solution to the
optimization problem (5) is precisely the desired ε?.

The optimization problem in (5) is convex. Upon making
the substitution Σ = S2, we recover the optimal solution
to the original optimization problem (4). Thus, ε? can be
determined efficiently, which provides us with a smoothed
approximation to the version space.

In applications where d � 1, estimating the entire d × d
covariance matrix in (5) is computationally expensive. One
method to remedy such a problem is to assume that S is
diagonal, which reduces the number of variables from Θ(d2)
down to Θ(d). This has the additional advantage of replacing
the log-determinant function with a geometric-mean that can
be handled more readily by second-order cone programming
(SOCP) solvers (Lobo et al. 1998). The new optimization
problem becomes:

maximize
µ, s≥0

(
d∏
j=1

sj)
1
d

subject to yi · (µT xi) ≥ ||s ◦ xi||2, for all i = 1, 2, . . .

||µ||2 ≤ 1 (6)

Efficient Implementation
The optimization problem in (5) falls under the general class
of maximum-determinant (max-det) optimization problems.
This is a class of optimization problems that have been stud-
ied extensively in the literature. They can be solved quite
efficiently, both in the worst-case complexity theory and in
practice (Vandenberghe, Boyd, and Wu 1998).

On the other hand, the optimization problem in (6) can
be cast as a SOCP problem by introducing new variables
(Lobo et al. 1998). SOCP solvers are generally very effi-
cient. Using CVX (CVX Research 2012), for instance, the
optimization problem in (6) takes 2s, 4s, and 14s to solve
when d = 100 and the number of queries is 1000, 2000, and
5000 respectively. Similarly, it takes 4s, 9s, and 35s to solve
when d = 200 and with 1000, 2000, and 5000 queries re-
spectively. The time complexity is almost linear with respect
to the problem dimension d and to the number of queries.

Query Synthesis
Having obtained a smoothed approximation to the version
space V , the next step is to use our knowledge of ε? to syn-
thesize new queries. If our goal is to cut the volume of ε? by
one half, then any query that resides in the orthogonal com-
plement of µ? will achieve such objective as proved next.
Lemma 1 (Uncertainty Sampling). Suppose ε? at iteration
t has mean µ? and covariance matrix Σ?. Let xt+1 be any
instance such that 〈xt+1, µ

?〉 = 0. Then, regardless of the
label yt+1 ∈ {+1, −1}, exactly half of the points in ε? are
inconsistent with (xt+1, yt+1).

Proof. In order to show that exactly half of the points in
ε? are inconsistent with (xt+1, yt+1), we need to show that
a one-to-one mapping exists between the set of consistent
points ε+ = {w ∈ ε? | yt+1〈xt+1, w〉 > 0} and the set of
inconsistent points ε− = {w ∈ ε? | yt+1〈xt+1, w〉 < 0}.
We ignore the case 〈xt+1, w〉 = 0 because the volume of
such a set is zero.

First, for any w ∈ Rd, write w̄ = µ? − (w − µ?). Note
that ¯̄w = w. Our first claim is that the condition w ∈ ε? is
equivalent to the condition w̄ ∈ ε?. This can be easily seen
by using Eq. (2). If w ∈ ε?, then we have by definition:

(w − µ?) Σ?−1(w − µ?) ≤ 1,
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Figure 2: By blindly eliminating “half” of the hypotheses in
ε?, we may push ε? into a lower-dimensional subspace as
depicted at the top, where arrows indicate the chosen direc-
tion of the cut. Here, the fact that volume(ε?)→ 0 does not
imply that ε? → 0. Instead, it is imperative to shrink both
volume and axis length as depicted at the bottom.

which is also satisfied for w̄. The converse also holds.
Hence, the statements w ∈ ε? and w̄ ∈ ε? are equivalent.

Next, we show that for any query (xt+1, yt+1) that sat-
isfies the orthogonality condition 〈xt+1, µ

?〉 = 0 and the
condition 〈xt+1, w〉 6= 0, exactly one of w or w̄ will be con-
sistent with (xt+1, yt+1) for any w ∈ ε?. This can be seen
by writing:

yt+1 〈xt+1, w〉 = yt+1 〈xt+1, µ
? + (w − µ?)〉

= yt+1 〈xt+1, w − µ?〉
In the second line, we used the orthogonality condition
〈xt+1, µ

?〉 = 0. However, for w̄ ∈ ε?, we also have by
definition of w̄:

yt+1 〈xt+1, w̄〉 = −yt+1 〈xt+1, w − µ?〉
Therefore, if w ∈ ε+, then w̄ ∈ ε− and vice versa. Since
w, w̄ ∈ ε?, we deduce the statement of the lemma.

Lemma 1 reveals that uncertainty sampling, i.e. picking
a random query that exactly lies in the orthogonal comple-
ment of µ?, will always eliminate half of the points in ε?. Of
course, this does not imply that the volume of ε? at the next
iteration will reduce by one half since an entirely different
ellipsoid in an entirely different region might be picked next.
However, by synthesizing a query that cuts the largest ellip-
soid by one half, we are effectively approximating the ideal
halving algorithm in a greedy fashion.

Unfortunately, uncertainty sampling alone is not very ef-
fective. This can be observed by noting that even if the vol-
ume of ε? converges to zero, the ellipsoid itself may not con-
verge to zero. For example, ε? might be pushed towards a
lower dimensional subspace. What we desire, instead, is to
guarantee that all axes of the ellipsoid are shrank exponen-
tially fast. As depicted in Figure 2, one method to accom-
plish this is to cut ε? along its largest axes, where the weight
of each axis is determined by its length.

Formally speaking, we would like to maximize the projec-
tion 〈xt+1, vj〉, where vj are the eigenvectors of Σ?. How-
ever, we do not care about the sign of 〈xt+1, vj〉, i.e. we do
not care if the light and dark regions in Figure 2 are swapped.
In addition, each vj is weighted by its length λj , where λj
is the corresponding eigenvalue. These requirements lead to
the following optimization problem:

maximize
x: ||x||2=1

d∑
j=1

λj 〈x, vj〉2

subject to 〈µ?, x〉 = 0 (7)

Because the norm of xt+1 does not matter in our queries,
we fix ||x ||2 = 1 in (7). If we letN be the orthonormal basis
of the orthogonal complement of µ? and write x = Nα, then
the optimization problem (7) can be rewritten as:

maximize
α : ||α||2=1

αT (SN)T (SN)α (8)

Recall here that S = Σ?
1
2 , which is the optimal solution to

(5) or (6), depending on which formulation is used. Because
N is orthonormal, the condition ||x||2 = 1 is equivalent to
the condition ||α||2 = 1.

It is an elementary result in linear algebra that the solution
to the optimization problem (8), denoted as α?, is the top
eigenvector of the positive semidefinite matrixNTSTSN =
NTΣ?N , which can be computed efficiently. Therefore, we
choose as our next query the unique instance:

xt+1 = N α? (9)

Batch-mode Query Synthesis
Extending the proposed query synthesis algorithm into the
batch setting is straightforward. As suggested in the litera-
ture, we would like our k queries to be both informative and
diverse. In our case, this amounts to the requirements that all
k queries belong to the orthogonal complement of µ?, and
are optimal in the sense given by (7). In addition, diversity is
enforced by requiring that the queries themselves be orthog-
onal to each other (Brinker 2003). Similar to the previous
approach, the optimal solution is to pick the top k eigenvec-
tors of the matrix NTΣ?N , where N is the orthonormal ba-
sis to the orthogonal complement of µ?. After that, we map
those k eigenvectors into k synthetic queries using Eq. (9).
The entire algorithm is summarized in Algorithm 1.

Evaluation
In our evaluations, we used the SOCP formulation in (6) be-
cause it is more computationally efficient. The optimization
problem was solved using CVX (CVX Research 2012). For
the alternative methods, training was done using linear SVM
(Fan et al. 2008). Because the proposed algorithm targets the
realizable noise-free setting, the experiments were carried
out for various choices of problem dimension d and random
choices of coefficient vectors w ∈ Rd.

Single-Query Synthesis
In order to validate the proposed method in the single-query
setting, we compare it against the following methods:

1. Random Sampling: Here, queries are chosen uniformly at
random from the unit sphere.

2. Uncertainty Sampling: Here, queries are picked uni-
formly at random in the orthogonal complement of w,
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Figure 3: In this figure, the estimation error is plotted in a
log-scale against the number of queries for various query
synthesis algorithms. The left and right columns correspond
to k = 1 (single-query) and k = 5 (batch-mode) respec-
tively. The rows correspond to d = 25, 50, 75 from top
to bottom respectively. The ‘+’ curves are for random sam-
pling. The ‘♦’ curves are for uncertainty sampling (k = 1,
left) and orthogonal sampling (k = 5, right). The ‘◦’ curves
are for the query-by-bagging method (k = 1, left) and the
representative sampling method (k = 5, right). Finally, the
‘�’ curves are for the new proposed method.

where w is the coefficient vector learned using linear
SVM. Because instances have zero margin, this method
can be interpreted as the query synthesis analog to the
pool-based uncertainty sampling method.

3. Query-by-Bagging: This method takes a bagging ap-
proach to implement the QBC algorithm (Abe and Mamit-
suka 1998). Following (Abe and Mamitsuka 1998), we
used a bag size of 20. At each iteration, a pool of 1,000
instances is randomly generated, and the query with the
largest disagreement among the 20 hypotheses is picked.

Batch-Mode Query Synthesis
In the batch setting, where k queries are synthesized at each
iteration, we compare the proposed algorithm against the
following three methods:

1. Random Sampling: Here, the k queries are chosen uni-
formly at random from the unit sphere.

2. Orthogonal Sampling: In this method, k orthogonal
queries are chosen uniformly at random from the orthog-
onal complement of w, where w is the coefficient vector
learned using linear SVM. This can be interpreted as the
query synthesis analog to the optimization-based method
proposed in (Brinker 2003).

3. Representative Sampling: This is a clustering-based
method proposed in (Xu et al. 2003). In our implemen-
tation, we used a pool size of 1,000 instances.
The exact experiment ran as follows. For a fixed choice

of k and d, we began with a random choice of a unit-norm

Data: Observations {(xi, yi)}i=1,2,..., t

Result: k synthetic queries {xt+1, xt+2, . . . , xt+k}
Begin:

1. Solve the optimization problem in (5) or (6). Let µ? and
Σ? be the optimal solutions.

2. Compute N , which is the orthonormal basis to the
orthogonal complement of µ? (the null-space of µ?T ).

3. Compute α1, α2, . . . , αk, which are the top k
eigenvectors of the matrix NT Σ?N .

4. Return xt+1 = Nα1, . . . , xt+k = Nαk.

Algorithm 1: Query synthesis algorithm for halfspaces.

w? ∈ Rd, a single positive example, and a single negative
example. After that, we ran the different query synthesis al-
gorithms in parallel up to a total of 1, 000 queries.

At each iteration, we used past queries to estimate the true
coefficient vector w? using support vector machines (SVM)
(Cortes and Vapnik 1995), which was implemented using the
LIBLINEAR package (Fan et al. 2008). If we let ŵ be the
estimated coefficient vector, then estimation error is defined
by ||w?− ŵ||2. Note that ||w?||2 = ||ŵ||2 = 1 always holds,
which implies that the estimation error is a proper measure
of disagreement between the two halfspaces. In the batch
setting, we used k = 5. Also, all experiments were repeated
for d ∈ {25, 50, 75}. Figure 3 shows the evaluation results1.

As shown in the figure, the proposed spectral algorithm
significantly outperforms all other methods in both the
single-query setting and the batch-mode setting. In fact, un-
like the other methods whose estimation error is subject
to diminishing returns, the new proposed method always
maintains an exponential reduction in estimation error as
indicated by the linear curve in this log-scale plot. In fact,
the estimation error is approximately given by exp{−m

2d}.
This implies that in order to achieve an estimation error of
||w?− ŵ||2 = ε, we only need O(d log 1

ε ) synthetic queries.
As mentioned earlier, a sample complexity of Ω(d log 1

ε ) can
be shown to be optimal using a sphere counting argument
(Dasgupta, Kalai, and Monteleoni 2009). Hence, the sample
complexity of Algorithm 1 is near-optimal in practice (up to
a leading constant).

Conclusions
In this paper, we propose a new query synthesis algorithm
for learning halfspaces. Unlike pool-based sampling meth-
ods whose complexity grows exponentially fast with each
iteration, complexity of the proposed algorithm grows only
polynomially while still offering an exponential reduction in
estimation error. Experimentally, the new algorithm signifi-
cantly outperforms popular active learning strategies such as
uncertainty sampling and representative sampling. It enjoys
a sample complexity ofO(d log 1

ε ) in practice, which can be
shown to be near-optimal using a sphere counting argument.

1MATLAB implementation codes will be made available at
http://mine.kaust.edu.sa/Pages/Software.aspx
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