
A Mathematical Programming-Based Approach to Determining Objective
Functions from Qualitative and Subjective Comparisons

Takayuki Yoshizumi
IBM Research - Tokyo

yszm@jp.ibm.com

Abstract

The solutions or states of optimization problems or sim-
ulations are evaluated by using objective functions. The
weights for these objective functions usually have to be
estimated from experts’ evaluations, which are likely to
be qualitative and somewhat subjective. Although such
estimation tasks are normally regarded as quite suit-
able for machine learning, we propose a mathemati-
cal programming-based method for better estimation.
The key idea of our method is to use an ordinal scale
for measuring paired differences of the objective val-
ues as well as the paired objective values. By using an
ordinal scale, experts’ qualitative and subjective evalu-
ations can be appropriately expressed with simultane-
ous linear inequalities, and which can be handled by a
mathematical programming solver. This allows us to ex-
tract more information from experts’ evaluations com-
pared to machine-learning-based algorithms, which in-
creases the accuracy of our estimation. We show that
our method outperforms machine-learning-based algo-
rithms in a test of finding appropriate weights for an
objective function.

Introduction
In such fields as optimization, simulation, and computer
gaming, the solutions or states must often be evaluated by
domain experts. One of the ways to model implicit knowl-
edge and the intuitions of domain experts is to design an ob-
jective function (or an evaluation function). In typical cases,
this objective function is represented as a weighted sum of
several metrics. Objective functions should appropriately re-
flect the experts’ knowledge and intuitions, which is usually
done by adjusting the weights for each objective term. Once
an appropriate objective function has been obtained, various
kinds of optimization systems or simulation systems can be
run without further involvement of the experts. The problem
dealt with in this paper is to find good weights for an objec-
tive function from the experts’ evaluations.

For experts, it is intuitive and natural to compare pairs
of solutions and qualitatively evaluate them with such de-
scriptions as “Solution i is similar to solution j”, “Solu-
tion i is better than solution j”, or “Solution i is far better

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

than solution j”. Even when experts evaluate a single solu-
tion, they must have a reference solution in mind, and com-
pare the single solution with that benchmark in their mind,
perhaps thinking “This solution is better than the bench-
mark.” Therefore, from the viewpoint of level of measure-
ment (Stevens 1946), it is reasonable that experts’ evalua-
tions should be measured with an ordinal scale rather than
an interval scale or ratio scale. Using an ordinal scale, an ex-
pert can compare a pair of solutions and qualitatively evalu-
ate which is better, but cannot quantitatively evaluate the ab-
solute degree of the differences between the two solutions.
Even with a pair of evaluations such as “Solution i is better
than solution j” and “Solution s is far better than solution
t”, we cannot conclude that the relative degree of solution s
against solution t is, for example, two times larger than that
of solution i against solution j. At the same time, another
expert might feel that “Solution i is far better than solution
j”, even though the first expert only said “Solution i is better
than solution j”. This implies that experts’ evaluations can
be subjective.

Some kinds of machine learning such as learning-to-rank
(Liu 2009) may be suitable for this problem. However,
sometimes evaluations made by an expert may implicitly
include more information than standard machine-learning-
based algorithms can extract. For example, we cannot con-
clude that the degree of “far better than” is two times larger
than that of “better than”, but we can say that the degree
of “far better than” is at least larger than that of “better
than”. This kind of information cannot be used by existing
machine-learning-based algorithms. Since it is usually time
consuming for experts to evaluate solutions, it is desirable
to extract as much information as possible from their eval-
uations. Also, existing machine-learning-based algorithms
cannot appropriately deal with subjective evaluations.

In this paper, we propose a novel method for extracting
more information from experts’ evaluations in comparison
to typical machine-learning-based algorithms. The key idea
of our method is to use an ordinal scale for measuring paired
differences of the objective values as well as the paired ob-
jective values. By using an ordinal scale, experts’ qualitative
and subjective evaluations can be appropriately expressed
with simultaneous linear inequalities. As a result, the prob-
lem of finding appropriate weights of an objective function
can be formulated as a linear programming (or mixed in-

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

3136

teger programming) problem, which can be easily solved
by a mathematical programming solver. Our method is not
based on machine learning techniques, but based on math-
ematical programming. Therefore, we may say that our ap-
proach is a mathematical-programming-based approach to
machine learning tasks. We show that our method outper-
forms machine-learning-based algorithms in a test of finding
appropriate weights for an objective function.

Problem Setting
Our goal is to determine an objective function from experts’
evaluations. We assume that a solution has K metrics, and
is represented as K-dimensional vector x = (x1, . . . , xK).
An objective function fw(x) is defined using the weighted
sum of the objective terms as

fw(x) ≡
∑

1≤k≤K

wkxk, (1)

where wk(≥ 0) is the objective weight for xk. Determining
the objective function is the same as determining its weight
vector w = (w1, . . . , wK).

We assume that the scale of measurement for the experts’
evaluations is an ordinal scale with several degrees. This
scale of measurement can be seen as a kind of rating scale
or Likert scale (Likert 1932). For example, an expert com-
pares two solutions i and j, and gives a qualitative evalua-
tion, which may be one of the three options:
• solution i is similar to solution j,
• solution i is better than solution j, or
• solution i is far better than solution j.
(When solution j is better than solution i, we can swap their
indices.) While typical ordinal scales do not deal with de-
grees, it is natural for experts to include degrees with their
evaluations.

It is often the case that one expert may feel that “Solu-
tion i is far better than solution j”, while another expert
might only feel that “Solution i is better than solution j”.
This means that the boundaries, such as between “far bet-
ter than” and “better than”, are somewhat subjective. There-
fore, to determine an objective function (or weights w) that
matches experts’ subjective intuitions, we need to accurately
estimate the boundaries, even though they may vary from
expert to expert.

Let U be the set of the experts. For expert u ∈ U , letR(u)
≈ ,

R
(u)
> and R(u)

� be the evaluation results of expert u ∈ U ,
which are defined as:
• R(u)

≈ ≡ {(i, j)| expert u ∈ U evaluates that solution i is
similar to solution j }.

• R(u)
> ≡ {(i, j)| expert u ∈ U evaluates that solution i is

better than solution j }.

• R(u)
� ≡ {(i, j)| expert u ∈ U evaluates that solution i is

far better than solution j }.
The problem dealt with in this paper is to estimate the
weights w from experts’ evaluations ofR(u)

≈ , R
(u)
> , andR(u)

�
(u ∈ U) defined on a solution set {x(i)}Ni=1.

While this problem seems to be a machine learning prob-
lem, we will formulate it as a mathematical programming
problem. To prepare for this formulation, we will explain
how to formulate machine learning problems as mathemati-
cal programming problems in the next section.

Formulation of Machine Learning Problems
as Mathematical Programming Problems

In some cases, machine learning problems will be finally
mapped into mathematical programming problems (Bennett
and Parrado-Hernández 2006). LP (Linear Programming) is
one of the most fundamental classes of mathematical pro-
gramming, where the decision variables are real numbers,
and the objective function and constraints are written in lin-
ear form. The class of LP with integer variables is called
MIP (Mixed Integer Programming). If a problem can be for-
mulated as an LP or MIP problem, we can efficiently solve it
with an LP/MIP solver such as CPLEX. In LP and MIP, the
objective function and all constraints have to be written in
linear form, which appears to be a strong limitation. In this
section, using concrete examples, we will show that even LP
and MIP still have strong capabilities to describe problems.

We consider a machine learning task that acquires the
input-output relation y = fw(x) from a training set of
{(x(i), y(i))}Ni=1, where each x(i) is a K-dimensional vec-
tor represented as x(i) = (x

(i)
1 , . . . , x

(i)
K). The relation fw

is represented as:

fw(x) ≡
∑

1≤k≤K

wkxk, (2)

where w = (w1, . . . , wK) is a weight vector. This means
that obtaining fw is the same as determining w. Using this
task as an example, we will formulate it both from the ma-
chine learning perspective and from the mathematical pro-
gramming perspective.

Machine-learning-based approach
First, we will deal with this problem as a machine learning
problem. If the loss function is to minimize the square er-
ror, then we can regard this problem as a standard machine
learning problem, and a natural formulation is:

min
w

∑
1≤i≤N

‖fw(x(i))− y(i)‖2. (3)

An optimal w can be calculated by

w = (XtX)−1XtY, (4)

where X and Y are defined as

X ≡

 x
(1)
1 · · · x

(1)
K

...
. . .

...
x
(n)
1 · · · x

(n)
K

 , Y ≡

 y(1)

...
y(n)

 . (5)

Mathematical Programming-based approach
Next we formulate the same problem as a mathematical
programming problem. Here, a mathematical programming

3137

problem is referring to a problem where an objective func-
tion is minimized (or maximized) under some constraints
defined as equalities or inequalities. If the loss function is
not to minimize the square error, but to minimize the abso-
lute error, this problem can be written as an LP problem in
the form

(MP1)
obj:

min
w

∑
1≤i≤N

zi (6)

sub. to:
−zi ≤ fw(x(i))− y(i) ≤ zi, i = 1, . . . , N. (7)

In LP, minimizing the square error is not in principle possi-
ble, because the objective function and all constraints have
to be written in linear form. However, we can approximately
deal with the square error by using standard techniques for
LP formulations (Dantzig 1998). For example, we can ap-
proximately incorporate the square error by approximating
a quadratic function with a piecewise linear function as

(MP2)
obj:

min
w

∑
1≤i≤N

z′i (8)

sub. to:
−zi ≤ fw(x(i))− y(i) ≤ zi, i = 1, . . . , N, (9)
max

j
{ajzi + cj} ≤ z′i, i = 1, . . . , N. (10)

Eq. (10) represents the piecewise linear function that ap-
proximates a quadratic function. Its coefficients of aj and cj
should be appropriately set according to the corresponding
quadratic function. Since the “max” function can be inter-
preted as a set of linear functions, this function can be used
in an LP formulation. As shown by this example, LP can
deal with a square error problem that appears to be impos-
sible to represent in an LP formulation. In addition, various
other kinds of functions, such as the ε-insensitive error or a
Huber function, can be used in LP formulations.

Improving the generalization ability in
mathematical programming
Improving the generalization ability (or avoiding overfitting)
is an ever-present problem in the machine learning field. By
adding a regularization term to the loss function, we can im-
plement a variable selection capability, and the generaliza-
tion ability can be improved, or overfitting can be avoided.
The example of Eq. (11) uses a regularization term of the L2
norm.

min
w

∑
i

‖fw(x(i))− y(i)‖2 + λ‖w‖2. (11)

An optimal w for this problem can be calculated by using

w = (λI +XtX)−1XtY, (12)

where I is the unit matrix, and λ is a hyperparameter that
controls the balance between the error term and the regular-
ization term.

In contrast, in the mathematical programming field, the
regularization can be implemented by using standard tech-
niques for MIP formulations (Johnson, Nemhauser, and
Savelsbergh 2000). Some mathematical programming prob-
lems that have integer variables as well as real number vari-
ables are called MIP problems. While MIP problems are
more difficult to solve compared to LP problems, they can
still be accurately solved by a state-of-the-art MIP solver
such as CPLEX. By introducing binary integer variables
vk(1 ≤ k ≤ K), we can add a regularization ability to the
formulation of (MP1) as

(MP3)
obj:

min
w

∑
1≤i≤N

zi + λ
∑

1≤k≤K

vk (13)

sub. to:
−zi ≤ fw(x(i))− y(i) ≤ zi, i = 1, . . . , N, (14)
0 ≤ wk ≤ Cvk, k = 1, . . . ,K, (15)
vk ∈ {0, 1}, k = 1, . . . ,K, (16)∑
1≤k≤K

vk ≤ B, (17)

where C is a sufficiently large positive constant. When wk

is non-zero, vk is constrained to be 1 due to Eq. (15). This
means that the number of vk values that are set to 1 rep-
resents the number of used (or non-zero) wk, which corre-
sponds to the second term of the objective function (which
is being minimized). In addition, we can explicitly specify
the maximum number of wk to be used with a hyperparam-
eter B, which represents the maximum number of w to be
used. This is one of the advantages of using mathematical
programming.

The Proposed Method
We propose a novel method that determines an objective
function from the experts’ evaluations by using a mathemat-
ical programming approach. The key idea of our method is
to use an ordinal scale for measuring not only the paired ob-
jective values, but also the paired differences of the objective
values. Suppose that an expert’s evaluations are “Solution i
is better than solution j”, and “Solution s is far better than
solution t”. In this situation, the following inequalities obvi-
ously hold.

fw(x(i)) > fw(x(j)), (18)

fw(x(s)) > fw(x(t)). (19)
Even if the above evaluations are given by the expert, we
cannot conclude that the degree of “far better than” is, for
example, two times larger than that of “better than”. How-
ever, we can say that the degree of “far better than” is at
least larger than that of “better than”. Thus, we also have
following inequality:

fw(x(s))− fw(x(t)) > fw(x(i))− fw(x(j)). (20)

3138

This implies that we can use the ordinal scale for measur-
ing the paired differences of objective values as well as the
paired objective values. Therefore, compared to using the
ordinal scale only for measuring the paired objective values,
we can extract more information from the experts’ evalua-
tions.

From this we can formulate the overall problem as a math-
ematical programming problem. Since Eqs. (18), (19), and
(20) are linear inequalities in terms of the decision variables
w, we can easily incorporate it into the linear programming
formulation. We introduce other decision variables that rep-
resent the boundaries of the comparative degrees such as the
one between “similar to” and “better than”, and the one be-
tween “better than” and “far better than”. For expert u ∈ U ,
let bu,0 be the boundary between “similar to” and “better
than”, and bu,1 be the boundary between “better than” and
“far better than”. With these notations, we can describe the
relationships among experts’ evaluations that are expressed
in Eqs. (18), (19), and (20) with these simultaneous linear
inequalities:

−bu,0 < fw(x(i))− fw(x(j)) + σ
(u)
ij < bu,0,

∀(i, j) ∈ R(u)
≈ ,∀u ∈ U,

bu,0 < fw(x(i))− fw(x(j)) + σ
(u)
ij < bu,1,

∀(i, j) ∈ R(u)
> ,∀u ∈ U,

bu,1 < fw(x(i))− fw(x(j)) + σ
(u)
ij ,

∀(i, j) ∈ R(u)
� ,∀u ∈ U,

(21)

where σ(u)
ij is error term. Note that bu,0 and bu,1 are inde-

pendently defined for each expert, which means that we can
appropriately formulate subjective boundaries. To normalize
w, the following constraint is added to our formulation.∑

1≤k≤K

wk = 1. (22)

Under these inequalities (or constraints), we can obtain op-
timal w by minimizing this function:

min
w

∑
u∈U

∑
(i,j)∈R(u)

|σ(u)
ij |, (23)

where R(u) represents the union of R(u)
≈ , R

(u)
> and R

(u)
� .

Minimizing the absolute value can be represented in LP
problems such as (MP1). This is an LP problem, because the
objective function and all of the constraints are written in lin-
ear forms. This means we can easily obtain the optimized w
(and boundaries such as bu,0 etc.) with an LP solver. (Note
that the number of degrees does not matter in our formula-
tion. Introducing additional degrees, such asR(u)

�> andR(u)
��,

is straightforward.)

Handling basis function selection
In most cases, an objective function consists of several
terms, each of which corresponds to a certain metric for the
application. In general, however, an appropriate basis func-
tion should be used for each objective term. For example,
instead of using xk as it stands for the objective term k, x2k

may be more suitable if the relative contribution of the term
should increase as the value increases. Alternatively,

√
xk

may be better if the relative contribution of the term should
decrease as the value increases.

We can incorporate the basis function selection capabil-
ity into our mathematical programming formulation. We as-
sume that the candidate basis functions for each objective
term are given as input. Let Mk be the number of candidate
basis functions for the objective term k. Let φkl be the l-th
basis function candidate for the objective term k. To handle
basis function selection, we need to expand the definition of
w = (w1, . . . , wK) to w = (w11, w12, . . . , wKMK

), where
wkl is the weight for the l-th basis function of the objective
term k. Using these notations, the revised definition of fw
can be written as:

fw(x) ≡
∑

1≤k≤K

∑
1≤l≤Mk

wklφkl(xk) (24)

As described in the previous section, in mathematical pro-
gramming we can deal with overfitting by introducing in-
teger variables. More generally, in mathematical program-
ming, integer variables can allow for variable selection,
which implies that we can take advantage of the integer vari-
ables to implement basis function selection.

Let ykl be the binary integer variable that represents
whether or not the l-th candidate basis function for the ob-
jective term k is being used. The MIP formulation for deter-
mining the optimal basis functions and weights becomes:

(MP4)
obj:

min
w

∑
u∈U

∑
(i,j)∈R(u)

|σ(u)
ij |+ λ

∑
1≤k≤K

∑
1≤l≤Mk

vkl

sub.to.

−bu,0 < fw(x(i))− fw(x(j)) + σ
(u)
ij < bu,0,

∀(i, j) ∈ R(u)
≈ ,∀u ∈ U

bu,0 < fw(x(i))− fw(x(j)) + σ
(u)
ij < bu,1,

∀(i, j) ∈ R(u)
> ,∀u ∈ U

bu,1 < fw(x(i))− fw(x(j)) + σ
(u)
ij ,

∀(i, j) ∈ R(u)
� ,∀u ∈ U

∑
1≤k≤K

∑
1≤l≤Mk

wkl = 1,

0 ≤ wkl ≤ vkl, k = 1, . . . ,K, l = 1, . . . ,Mk,

vkl ∈ {0, 1}, k = 1, . . . ,K, l = 1, . . . ,Mk,∑
1≤l≤Mk

vkl ≤ Bk, k = 1, . . . ,K,

where Bk represents the maximum number of basis func-
tions for the objective term k. If we want to explicitly specify
the maximum number of used basis function for the objec-
tive term k, it can be done just by setting Bk to that maxi-
mum number.

3139

Related Work
Our method can be seen as a mathematical programming-
based approach to a machine learning task. At the same time,
the problem we are dealing with relates to how to handle
humans’ subjective evaluations, allowing us to extract ob-
jective knowledge. From this point of view, we discuss the
relationship with previous work.

Analytic hierarchy process (AHP)
AHP is one of the methodologies for decision making, and
has a long research history and various kinds of applications
(Forman and Gass 2001). When using AHP, pairwise com-
parisons are used to make decisions. In such comparisons, a
rating scale method such as a Likert scale (Likert 1932) is
often used, and a human decision maker will choose among
several options (such as “Strongly agree”, “Agree”, “Nei-
ther agree nor disagree” etc.). Our method also uses pairwise
comparisons and multiple degrees or options. The long his-
tory of AHP shows that it is reasonable for human experts to
use such several degrees.

Learning to rank
Learning-to-rank algorithms (Joachims 2002; Liu 2009) are
for ranking items based on a partially ordered list, and one
of the most typical applications of those algorithms is for
adjusting a ranking result for Web search engines. Depend-
ing on the input representation, there are several approaches,
and one of them is a pairwise approach. However even the
pairwise approach of the learning-to-rank algorithms cannot
deal with multiple degrees of differences, which is an es-
sential difference between our method and learning-to-rank
algorithms.

SVM-based algorithms
If it is reasonable to map “better than” to, for example, 2–
4, “far better than” to 4–6 and so on, some kinds of SVM-
based algorithms, such as an SVM that uses the ε-insensitive
error, can be applied to the problem (Cao et al. 2006;
Steinwart and Christmann 2009). However, it is difficult to
determine in advance a quantitative value range for each de-
gree. In addition, a degree of “better than” could be differ-
ent from expert to expert. This means it is difficult to ap-
ply SVM-based algorithms to this problem. In comparison,
our method can determine a degree for each expert inde-
pendently, which is an essential advantage over SVM-based
algorithms.

Experiments
We conducted experiments to demonstrate that our method
can precisely estimate the weights of an objective function
from the evaluation results of multiple experts who have dif-
ferent boundaries between their degrees.

We assumed that there are three experts (Expert1,
Expert2, and Expert3), and the number of degrees is
five. The correct boundaries of the degrees are set as
(b∗1,0, . . . , b

∗
1,3) = (2, 4, 6, 8), (b∗2,0, . . . , b

∗
2,3) = (1, 2, 4, 8),

and (b∗3,0, . . . , b
∗
3,3) = (4, 6, 7, 8). For the objective function

to be estimated, we used 10 as the number of objective terms,

and used the same correct weight of 0.1 for all the terms. To
generate sample solutions, each term of a sample solution
(x = (x1, . . . , xK)) was generated according to the normal
distribution ofN (10, 82). To generate an experts’ evaluation
result (such as an element ofR(u)

≈ ,R(u)
> etc.), we picked two

sample solutions (as a sample solution pair), and added some
amount of random noise from N (0, 0.12) to the calculated
difference of the objective function values, and categorized
the result in one of R(u)

≈ , R
(u)
> , R

(u)
� , R

(u)
�>, or R(u)

�� accord-
ing to the boundaries of the corresponding expert.

To compare the proposed method with other algorithms,
we designed two baseline algorithms:
Baseline 1. For the Baseline 1 algorithm, we derived a new

algorithm from the proposed method by limiting the num-
ber of degrees to only two. In other words, we only use
two types of degrees: R≈ and R>. The other degrees,
R�, R�>, and R��,are merged into R>. And the de-
rived algorithm does not distinguish among the experts.
This derived algorithm can be seen as a kind of learning-
to-rank algorithm with a pairwise approach.

Baseline 2. In general, we cannot know the boundaries be-
tween the degrees in advance. In the Baseline 2 algorithm,
we assume that the sizes of the degrees are all the same,
and there is no distinction among the experts. This algo-
rithm is virtually identical to SVM with ε-insensitive er-
ror.

First, we investigated whether our method can estimate the
correct boundaries (b∗1,0 etc.) that may vary according to
each expert. We generated 500 sample solution pairs by the
above-mentioned method, and assign 50%, 30% and 20% of
the pairs to Expert1, Expert2 and Expert3 respectively. This
allowed us to investigate our method in a heterogeneous set-
ting. Figures 1, 2 and 3 show the differences between the
objective values of a sample solution pair, and to which de-
gree (such as R≈, R>, etc.) each sample solution pair be-
longs, using the proposed method, Baseline 1 and Baseline
2 respectively. The horizontal axis represents the difference
between the objective values of a sample solution pair with
respect to the estimated fw . For the vertical axis, the vertical
coordinate is set at random within each expert. These fig-
ures also show the correct and estimated boundaries. Note
that the boundaries estimated by Baselines 1 and 2 span
all the experts because these algorithms do not distinguish
among the experts. For Baseline 1, there is only one esti-
mated boundary because this algorithm can deal with only
two degrees, which corresponds to one boundary between
them. These figures show that our method can precisely es-
timate the boundaries, even though each expert would set
them differently. For Baselines 1 and 2, many sample points
are located outside of the correct boundaries because the es-
timation of w is not sufficiently accurate.

Next we evaluated these algorithms by using the relative
error of w defined as:

RelativeError(w) ≡ 1

K

∑
1≤k≤K

|w∗k − wk|
w∗k

, (25)

where w∗k is the correct weight for the objective term k. Fig-
ure 4 shows the relative errors of each algorithm with sev-

3140

Figure 1: The estimated boundaries by Proposed method

Figure 2: The estimated boundary by Baseline 1

Figure 3: The estimated boundaries by Baseline 2

Figure 4: Relative errors of the algorithms

eral amounts of training data (as measured by the number
of solution pairs used for estimating the weights). For each
amount of training data, we ran 100 trials with different ran-
dom seeds, and averaged them to plot the graph. While the
vertical axis represents the relative error, the horizontal axis
represents the amount of training data.

Figure 4 shows that the proposed algorithm can produce
more accurate estimates for every amount of training data
compared to Baseline 1. The essential difference between
the proposed method and Baseline 1 is that the proposed al-
gorithm can appropriately deal with all of the boundaries to
estimate the weights w, while Baseline 1 cannot. In other
words, the proposed algorithm can extract much more infor-
mation from the experts’ evaluations.

The proposed algorithm is also superior to Baseline 2 ex-
cept for the data set with 50 ratings. When the amount of
data is 500 ratings, the relative error of the proposed method
(1.76%) is about one-third of that of Baseline 2 (5.20%).
When there are 50 ratings, Baseline 2 is better than the pro-
posed algorithm. This is because the proposed method has
to divide the training data into three groups, which is the
number of experts, and estimates the boundaries for each
expert independently. As a result, the actual amount of train-
ing data becomes too small to accurately estimate the bound-
aries. The amount of training data (50 ratings) is too small to
estimate the 12 boundaries (4 boundaries × 3 experts). This
should be regarded as a data issue rather than an algorithmic
flaw of the proposed method.

Conclusions and Future Work

We are studying a method to reformulate a machine learning
problem as a mathematical programming problem. Thanks
to the strong modeling capabilities of mathematical pro-
gramming, we showed that even a quadratic function and
regularization functionality can be described in an LP. Uti-
lizing these powerful capabilities, we proposed a novel
method to determine the objective function from the experts’
evaluations. Our method can properly handle qualitative and
subjective data, which is quite common for human expert
evaluations. The experimental results showed that the pro-
posed method is superior to two simpler algorithms.

We also showed that basis function selection can be im-
plemented in our formulation. To assess this capability, how-
ever, we need to enumerate appropriate candidate basis func-
tions for each objective term, which should depend on the
applications. This is another research issue, but we leave this
as future work with real application data.

While the machine learning and mathematical program-
ming fields are quite different, our research implies that
the techniques developed in the mathematical programming
community could be strong tools for solving some ma-
chine learning problems. Various problems that have been
regarded as quite difficult in the machine learning commu-
nity might be more easily solved using techniques from
the mathematical programming community. Our work rep-
resents a new research direction for both of machine learning
and mathematical programming research.

3141

References
Bennett, K. P., and Parrado-Hernández, E. 2006. The in-
terplay of optimization and machine learning research. The
Journal of Machine Learning Research 7:1265–1281.
Cao, Y.; Xu, J.; Liu, T.-Y.; Li, H.; Huang, Y.; and Hon, H.-
W. 2006. Adapting ranking svm to document retrieval. In
Proceedings of the 29th annual international ACM SIGIR
conference on Research and development in information re-
trieval, 186–193. ACM.
Dantzig, G. B. 1998. Linear programming and extensions.
Princeton university press.
Forman, E. H., and Gass, S. I. 2001. The analytic hierarchy
process: An exposition. Operations Research 49(4):469–
486.
Joachims, T. 2002. Optimizing search engines using click-
through data. In Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data
mining, 133–142. ACM.
Johnson, E. L.; Nemhauser, G. L.; and Savelsbergh, M. W.
2000. Progress in linear programming-based algorithms for
integer programming: An exposition. INFORMS Journal on
Computing 12(1):2–23.
Likert, R. 1932. A technique for the measurement of atti-
tudes. Archives of psychology.
Liu, T.-Y. 2009. Learning to rank for information retrieval.
Foundations and Trends in Information Retrieval 3(3):225–
331.
Steinwart, I., and Christmann, A. 2009. Sparsity of svms
that use the epsilon-insensitive loss. In Advances in Neural
Information Processing Systems, 1569–1576.
Stevens, S. S. 1946. On the theory of scales of measurement.
Science 103(2684):667–680.

3142

