Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

Improving Approximate Value Iteration with Complex Returns by Bounding

Robert Wright,? Xingye Qiao, Lei Yu*

Binghamton University*
Binghamton, NY
{rwright3, xqiao, lyu} @binghamton.edu

Abstract

Approximate value iteration (AVI) is a widely used technique
in reinforcement learning. Most AVI methods do not take
full advantage of the sequential relationship between sam-
ples within a trajectory in deriving value estimates, due to
the challenges in dealing with the inherent bias and variance
in the n-step returns. We propose a bounding method which
uses a negatively biased but relatively low variance estimator
generated from a complex return to provide a lower bound
on the observed value of a traditional one-step return estima-
tor. In addition, we develop a new Bounded FQI algorithm,
which efficiently incorporates the bounding method into an
AVI framework. Experiments show that our method produces
more accurate value estimates than existing approaches, re-
sulting in improved policies.

Introduction

Approximate Value Iteration (AVI) is a popular frame-
work for solving Reinforcement Learning (RL) problems
that combines classical value iteration with function ap-
proximation (Gordon 1995; Munos 2005; Riedmiller 2005;
Antos, Szepesvari, and Munos 2007). As an off-policy ap-
proach it can make effective use of all available samples. At
the heart of AVI is its 1-step backup update function which
makes use of the Bellman optimality equation (Sutton and
Barto 1998). AVI uses this update to iteratively refine the
estimated values for each of the individual samples it is pro-
vided. The accuracy of these sample value estimates deter-
mines the final quality of the value function approximation
and the overall success of the approach.

Samples in RL domains are most commonly collected in
episodic sequences known as trajectories. Given trajecto-
ries, the idea behind the 1-step return has been extended by
Temporal Difference (TD) (Sutton and Barto 1998) to pro-
duce the n-step return estimates which may be subject to
different variance and bias than the 1-step return depend-
ing on the learning contexts. In on-policy learning settings
where the behavior policy (the policy that generated the tra-
jectory) and target policy (the policy being learned) are the
same, the idea of n-step returns has been exploited to great

*Yu is the last author who directs Wright’s PhD research.
Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

3087

Steven Loscalzo
Information Directorate, Air Force Research Lab?
Rome, NY
steven.loscalzo @us.af . mil

effect by the TD(\) family of algorithms which utilize com-
plex returns (weighted average of all n-step returns) in order
to reduce variance and produce a more accurate value es-
timate than the 1-step return (Sutton and Barto 1998). In
some off-policy learning settings where the behavior policy
is different from the target policy, importance sampling has
been employed to correct the off-policy bias in the n-step re-
turns (Precup, Sutton, and Dasgupta 2001), and shown some
successes in policy iteration methods (Geist and Scherrer
2014; Hachiya et al. 2009). This method takes advantage
of prior knowledge of both the target policy and behavior
policy (both of which are assumed to have non-zero action
selection probabilities) to weight each return of a complex
backup and reduce the bias of the individual R("™) returns.

Notwithstanding these advances, there has been little
progress in exploiting the n-step returns for value iteration.
The main reason for this lies in the fact that in the value iter-
ation framework the target policy is always the optimal pol-
icy and is unknown, and it is a challenging issue to deal with
the off-policy bias of the n-step returns. The importance
sampling method suitable for the policy evaluation phase
in policy iteration does not apply here, since the required
prior knowledge about the target and behavior policies is not
available in the value iteration framework. This work takes
the first attempt in addressing this challenge.

For this purpose we propose a novel bounding method
which uses a negatively biased, but relatively low variance
complex return estimator to provide a lower bound on the
value of the sample label obtained from the traditional one-
step return. The method is motivated by a statistical obser-
vation that a biased estimator with relatively small variance
can sometimes provide an effective bound on the value of
another estimator to produce a better estimator than either
one alone. The novelty of our approach is that we exploit
the off-policy bias down the trajectories, instead of trying to
correct it as the importance sampling approach would do. In
addition, we develop a new Bounded FQI algorithm, which
efficiently incorporates the bounding method into an AVI
framework. Finally, we provide an empirical analysis of our
method on a set of RL benchmarks demonstrating that the
bounding method produces more accurate value estimates
than existing approaches, resulting in improved policies.

Background

RL problems can be elegantly described within the context
of Markov Decision Processes (MDP) (Puterman 2009). An
MDP, M, is defined as a 5-tuple, M = (S, A, P,R,~),
where S is a fully observable finite set of states, A is a finite
set of possible actions, P is the state transition model such
that P(s’|s,a) € [0, 1] describes the probability of transi-
tioning to state s’ after taking action « in state s, R§ & 1s the
expected value of the immediate reward r after taking a in s,
resulting in s, and y € (0, 1) is the discount factor on future
rewards.

A proposed solution to a MDP comes in the form of a
policy, m(s). Policies, 7 : S +— A, are functions that pre-
scribe which action to take given a particular state, 7w(s) = a.
Given a policy, the value of any individual state-action pair
in M can be inferred. The value of a state-action pair while
following , is given by its Q-value, (s, a), which is de-
fined as:

oo
Z Y'Trig

1=0

Qr(s,a) =E, So=8,a9=a

where ;1 is the immediate reward given at time ¢ + 1.

The overall objective is to derive an optimal policy, 7%,
that maximizes the expected long-term discounted value for
any state-action pair in M. In order to derive 7*, value based
RL approaches attempt to learn an approximation of the op-
timal Q-function, QQ*, which is defined as the solution to the
optimal Bellman equation,

Q*(s,a) = Z P(s'|s,a) [’R(S‘,S/ +7max Q*(s',a")| (1)
s'esS

From this equation 7* can be extracted as n*(s) =
argmax,c 4, Q*(s, a).

In the RL setting P and R are unknown and must be
learned from samples. Samples are atomic observations of
transitions taken from the domain. They are represented by
tuples, (S, at, St4+1,T+1), consisting of a state s;, an action
ay, the state sy transitioned to by taking a; in s¢, and 7441,
the immediate reward for that transition. Samples are often
collected as episodic sequences known as trajectories. Each
trajectory, T, is a sequentially ordered collection of observa-

tions where, T’ = [(s0, ao, 51,71), (51, @1, 82, 72), - - . |.

Approximate Value Iteration

AVI derives Q, an approximation of Q*, from a fixed finite
set of samples. Provided an initial estimate of Q* called
Qo, in iteration m AVI arrives at Q,, by employing the 1-
step backup operator (which we call R™") return') over the
provided samples and the previous estimate Qm_l:

Qm(st; ag) Ril) =Ti41 + ’Y%leajfém—l(st-i-h a). (2)

REU combines the 1-step observed immediate reward
with a greedy choice among all bootstrapped estimates of

"For conciseness of notation, the subscript ¢ is omitted where
there is no confusion.

3088

future returns as approximated by Qum—1. Note that Eq. (2)
differs from the 1-step return definition used by TD meth-
ods (Sutton and Barto 1998) by application of the max oper-
ator to guide action selection.

Function approximation must be used to provide general-
ization over limited training samples in any non-trivial do-
main where state-action spaces cannot be explicitly repre-
sented. Approximation necessarily introduces errors into the
AVI process since the state-action function is now attempt-
ing to represent the value of possibly infinitely many points
with a model described by a constant number of parameters.
By varying the model’s parameters or the sample set used in
the approximation, we can view each sample’s R(!) return
as a random variable with both bias and variance. The next
section describes how the properties of the bias and variance
can be exploited to yield novel AVI methods.

Approach
Statistical Motivation

A Toy Example Let us first consider a simple example by
assuming that g is a degenerated estimator with variance 0
(that is, it is a constant) and is always less than the true value
0. In this simplified situation, it is always of benefit to use
max(R™) in place of R to estimate the value. The
reason is obvious: when R(!) is less than , then it must
be farther away from 6 than 6, in which case the greater
observation 6 should be used. In the worst case scenario,
that is, R(Y) > @ with high probability, it is no harm to use
max (R, §) since it would coincide with R().

This simple example shows that sometimes taking the
maximum of two estimators can improve over both. We
shall attempt to relax the stringent assumptions herein. We
may now assume that 0 has a positive variance, and is neg-
atively biased (its expectation is less than the value 0), so

that with high probability, 6 < 6. This is not difficult to
achieve, since it is true either when the variance is not too
large or when its expectation is small enough (compared to

0.) Again, in this case max(R(), §) will be superior to R,

Clearly, there is another side of the story. The magnitude
of improvement max(R™), §) makes over R(*) may not be
substantial. If RV < @ rarely occurs then 0 is useless as a
bound. This could happen when the bias of 6 is too negative.
Moreover, max(R(1), §) may even be a substantially worse
estimator than R if the variance of @ is too large. In this
case, the condition that f < 6 is no longer likely.

The Domain of Improvements We now investigate when
maX(R(l), é) improves R(1). The discussion above suggests
that improvements are possible when Var(é) is small and/or
when () — 6 is small enough to ensure that § < 6, but
not so small that § < R always. Precisely when the im-
provements occur depends on the underlying distribution of
R® and 6. Here we assume both estimators follow normal
distributions. Hence the distributions are fully characterized
by their expectations and variances respectively. Although

in reality, the true estimators are only approximately normal
at best, the analysis conducted here is sufficient to convey
the main message.

To show a concrete example, we assume that
bias(RY) = E(RW) — 6 = 0 and Var(RY) = 1.
The bias for 6 and the standard deviation of @ are chosen
from the range [—1.5,1] x (0, 2]. For each pair of the bias
and std, we estimate the mean squared error of the estima-
tors R and max(R(")) by Monte Carlo integration.
We want to identify the set of bias(é) and std(é), where
max(R™M,) improves RV, 1In Figure 1, the red solid
curve is the boundary where the two estimators are equally
good. The domain to the southwest of the red curve is
precisely the domain of improvement.

STD(9)

Figure 1: Contour plot showing the improvement of
max(R(M),0) over R, Red curves: boundaries between

improvement and no improvement for cases of bias(R(!)) =
0 (solid), 0.5 (dashed), and -0.5 (dotted).

Also shown in the figure are contours of the log ra-
tio of MSE, log(MSE(RMW)/MSE(max(R™, §))). The
greater this measure is, the more improvement max(R(1), 9)
has. Clearly, the greatest improvement occurs at the unreal-
istic case where 6 is unbiased and has variance 0. Over-
all, a combination of small bias and small variance guaran-
tees an improvement. More precisely, when the bias of 6 is
negative, the variance of 6 can be greater than that of RV
(= 1 in this case) for the maximum to provide an improve-
ment. The more negative the bias is, the greater variance is
allowed. When the bias is overly negative or the variance
is too large, then the improvement becomes negligible. On
the other hand, even if the bias of 0 is positive, there is still
a chance for the maximum to be a better estimator. How-
ever, this comes with a more stringent assumption that the
variance of § must be much smaller.

We also show the boundaries under the cases where R(!)
is biased. The dashed curve and the dotted curve correspond
to bias 0.5 and —0.5 respectively. Compared to the solid
curve, we have the impression that it is more likely for a

3089

maximum estimator such as max(R(), §) to improve R(%),
when R() is itself negatively biased; and vice versa. This
is consistent with the motivation that we want to bound the
estimator from below so that it does not negatively deviate
from the parameter (recall the simple toy example.) How-
ever, there is a potential risk of the bounding estimator 6
falls into the domain of loss (i.e., the northeast of the red
curve). Such risk increases as bias(R(1)) becomes more pos-
itive. Fortunately, |bias(R("))] is generally under control in
the AVI context. Ideally one would choose a model that fits
well and thus does not have much bias without overfitting.

We are now at a position to identify some characteristics
about @ that make max(R("),) better than R() and hence
make the bounding strategy work.

1. As a bottom line, the expectation of 0 needs to
be smaller than a positive value 7 that satisfies
MSE(max(RV, 1)) = MSE(RW), or equivalently,
72®(7)+ [t2¢(t)dt = 1 in the current example, where
®(t) and ¢(t) are the distribution function and density
function of standard normal distribution (direct calcula-
tion leads to 7 ~ 0.8399).

The variance of 6 is small in general, but can be greater
than that of R(") when the expectation of § is less than 6.

The first criterion makes sure that taking the maximum
(bounding from below) is meaningful. Otherwise an alterna-
tive strategy, namely bounding from above, is needed. The
second criterion prevents 6 from ruining the mean square
error of max (R, é) through large variance.

Moreover, we have a third criterion to make sure that the
improvement, when it exists, is substantial: 6 is not overly
negatively biased. This allows a fair chance for R(Y) < 0.

It is worth noting that for off-policy n-step returns in AVI
context, the expectation generally decreases as n increases.
Hence, bias(R(™) < bias(R"~Y) < .- < bias(RM) (see
detailed discussions on the next subsection). This means
if one was to use an n-step return, or a weighted aver-
age of many n-step returns, as the bounding estimator, it
is more likely to fall into the improvement domain, because

the smaller bias(6) is, the greater variance is allowed, as can
be seen in the figure. This motivates our bounding method
in the following subsection.

Complex Returns as Bounds

Before we delve into our proposed choice of the bounding
estimator, let us consider the n-step returns in the AVI con-
text and discuss their variance and bias properties. Just as

the 1-step return Ril) (See Eq. (2)) can be used as an es-
timator for Q*(s¢, a¢) in value iteration, we can define the
n-step returns as follow:

n—1

RE”) = ; Y e " Tnax Qm—l(st-i-n? a). (3

All of the n-step returns are approximations of Q*(s;, a;).
Again, the greedy choice by the max operation makes Equa-
tion (3) different from the classic n-step return definition
used in the TD family of algorithms.

A salient feature of the n-step returns is that their vari-
ances increase with n due to the stochastic nature of the
MDP. The function approximation variance, which can be a
substantial component of the overall variance, is often con-
sidered to be roughly the same across different samples. The
bias of n-step returns is a more complex issue. Among var-
ious types of biases (e.g., off-policy bias, function approx-
imation bias, sampling bias, etc.), the behavior of the off-
policy bias is unique. When the target policy is an opti-
mal policy, like in the AVI context, the off-policy bias in-
troduced by a sub-optimal trajectory is strictly negative, and
its magnitude increases as more sub-optimal actions are fol-
lowed down the trajectory. The same observation can be
made when treating any state in a trajectory as the starting
point for the rest of the trajectory. In contrast, other types
of biases, if they exist, can be positive or negative, and often
share roughly the same magnitude across different samples.
Therefore, when combining the effects of various biases, the
expectation of n-step returns generally decreases as n in-
creases, as mentioned at the end of the previous subsection.

Given the above analysis, any of the n-step estimators can
potentially fall into the domain of improvement. However, it
is difficult to determine whether Conditions 1 and 2 identi-
fied earlier are met for each of the individual n-step estima-
tors and which one is the best. Therefore, a logical choice
is to consider a weighted average of a number of n-step re-
turns, the so called complex return.

The TD(\) (Sutton and Barto 1998) family of algorithms
are the classic ways for deriving complex returns. The
TD(\) method yields the A-return which is a weighted av-
erage of the n-step returns. Under certain assumptions, the
A-return can reduce the variance, enabling more accurate es-
timates of values in the on-policy settings. The general as-
sumption behind existing complex return methods is that the
variance of the n-step returns increases as n increases. Be-
cause of this assumption these methods always weight the n-
returns with smaller n more heavily in calculating the com-
posite return. Recently, a new approach called TD., was
introduced (Konidaris, Niekum, and Thomas 2011). The
authors revisited the assumptions on the variances made by
TD(\) methods and provided an alternative complex backup
weighting based upon the discount factor ~:

kal n
TD. (Zz:
R, 7= !

T
) DI § D

The authors reported favorable empirical performance of
TD., when compared to TD()) on several RL benchmark
domains in on-policy learning settings. Since the TD, re-
turn includes all n-step returns, its expected value is very
likely to be negative given the previous analysis, making it a
suitable choice as the bounding estimator.

However, the bias in the TD,, return becomes more neg-
ative as n increases. Too much bias will make the improve-
ment negligible. The remedy is to only consider enough of
the returns in order to achieve reduced variance and negative
bias, but not too small of a bias. TD., can accomplish this
by limiting the length of the trajectory it considers through

72(1'—1))—1
A2(i=1))-1

R™ 4

3090

a tuning parameter as was shown in (Konidaris, Niekum,
and Thomas 2011). Our focus in this paper is to introduce
the novel bounding method and demonstrate its effective-
ness based on an existing formula of complex returns. How
to design an optimal weighting scheme is an interesting re-
search direction.

Bounded Fitted Q-Iteration

In the preceding section we described how a complex return
can effectively be utilized as a lower bound for the R(!) es-
timator. We now propose a new algorithm called Bounded
Fitted Q-Iteration (BFQI) that makes use of this approach
in an AVI framework to provide improved value estimates.
The details for BFQI are provided by Algorithm 1. We leave
exact selection of the bounding complex return as an open
choice in this general algorithm framework. In this paper we
consider the TD,, return.

Algorithm 1 BFQI(T,~, M, R?)
Input: 7 set of trajectories, y: discount factor,
M : number of iterations, R”: Bounding Return

1: Qo+ 0
2: form =1to M do
3: Let X and Y be empty sets.
for k= 1to|7]|do
for all (St, Aty St41, Tt+1) S Tk do
X« Append(X, (si, ar))
Y « Append(Y;max(R", RB))
end for
9: end for
10: Q. + Regression(X,Y)
11: end for
12: Return Q)

e

BFQI is similar to the popular FQI algorithm (Ernst et al.
2005) except it uses our bounded return method in updating
the sample value estimates (line 7) as opposed to just using

R, Like FQL BFQI is off-policy and sample efficient. Ad-
ditionally, given an efficient implementation it has the same
computational complexity as the FQI algorithm. Just as in
(Wright et al. 2013), the samples in the provided trajecto-
ries can be processed in reverse order. This allows return
calculations for samples later in a trajectory to be reused by
samples earlier in the trajectory.

Alternative Methods

Trajectory Fitted Q-Iteration (TFQI) (Wright et al. 2013) is
a recently introduced AVI based algorithm that also makes
use of the n-step returns. Instead of using a complex return,
TFQI uses the n-step return that has the highest observed
value as the sample ()-value estimate.

RMow — max(RW, R® ... RITD) (5)

Although there was no explicit mentioning of the bounding
idea, it essentially uses the RM® return as the bound for
the R(Y) return. The authors of this method reported signif-
icantly improved performance compared to that of FQI on

two RL benchmark problems. Despite the good reported re-
sults, our analysis in the previous subsections suggests that
if any of the R(™ returns exhibits positive bias and/or high
variance, the RM? return will be easily overestimating the
sample labels. Besides the difference in the proposed meth-
ods, the TFQI work did not provide any statistical explana-
tion of why and when the RMaZ retyrn succeeds or fails, and
the experimental evaluation was conducted solely in deter-
ministic environments.

Experimental Results

We provide an empirical comparison of our bounding
method using the TD, return as a bound, RB~ (as used in
BFQI), with the standard R") method (as used in FQI), and
the newer R method (as used in TFQI). All methods are
embedded within the same FQI framework and tested with
the same initial assignment)y (note: varying the values of
QO does not change the behaviors of these methods).

In all our experiments we use linear regression mod-
els with Fourier Basis functions (Konidaris, Osentoski, and
Thomas 2011) trained using ridge regression. We examined
a comprehensive set of parameters varying the complexity
of the model, regularization, number of iterations, and tra-
jectory counts. The results we report are representative of
the general trends we observed.

Value Function Approximation Accuracy

Our first set of experiments evaluates the accuracy of each
method in deriving Q*. We use a non-deterministic 51-state
Markov chain similar to the one presented in (Lagoudakis
and Parr 2003) as our testing environment. The goal in this
domain is to traverse the chain, stating from some random
state, to one of the terminal states in as few steps as pos-
sible. States 0, 25, and 50 are terminal. From any non-
terminal state the agent can take an action to move to one
of the two neighboring states with a cost of -1. We set the
discount factor, 7, to 0.9 and there is a 20% probability that
an action taken will result in no transition. The function ap-
proximation model uses a 10th order Fourier basis with no
regularization in training the model.

In order to evaluate the methods under varying levels of
off-policy bias we generated multiple repositories of 10,000
trajectories based on behavior policies that follow the opti-
mal policy with probability 0.9 to 0.5 (equivalent to a ran-
dom policy) at each step. Given a repository and a method,
for each run, 100 trajectories are randomly selected from the
repository to form a training set. The results are the average
of 200 runs. We evaluate each method based on the average
M SE of the (functions after 50 iterations of learning.

For completeness, we also consider the LSTD-Q algo-
rithm (Lagoudakis and Parr 2003) an alternative batch-mode
algorithm. In our testing LSTD-Q performed nearly identi-
cally to R(Y, so we do not include that result. This finding
is expected given that both LSTD-Q and FQI use R") and
optimize the same objective function. We also tested using
the full R” return, and found it performs poorly due to the
off-policy bias, as expected. So, we exclude it from our re-

3091

sult too. However, using the full R” return as a bound in our
method performs very well as shown in Figure 2.

Figure 2 shows that our bounding method RP~ is able to
learn Q* as well as or more accurately than R(Y). The gain
is increasingly significant as the off-policy bias increases.
This demonstrates our method providing an effective bound
that reduces overall error across a large spectrum of trajec-
tory quality. The R*** method, in comparison, provides the
greatest overall improvement over R(Y) when the off-policy
bias is highest. However, it is unstable and performs signifi-
cantly worse than our method and the baseline R(Y) method
when there is less off-policy bias, demonstrating how this
method is prone to overestimating.

1.25

1])(1) D
) RMar | W
RE 1

4|_.

|

XRE
X

STTIRTL,
detetetotetetotess

0.25

RN
SEOBEL

X
X

5
5

5%
XX

I
[

fod

0

X

80% 70% 60% 50%

Figure 2: Average M SE of the learned Q functions. The
behavior policy is varied from 90% to 50% of the optimal
policy. Error bars show standard deviation.

While analyzing the results we performed further investi-
gation in this domain, and observed that the distributions of
the n-step returns, after convergence, closely resemble nor-
mal distributions and exhibit the general trend of increas-
ingly negative bias we predicted. Due to space limitations,
we omit graphs showing this trend.

Policy Performance

Here we compare methods based on policy performance
using two additional RL benchmarks: the Acrobot (Acro)
swing-up and the Cart Pole Balancing (CPB) (Sutton and
Barto 1998). These two problems represent two different
classes of domain: goal oriented and failure avoidance re-
spectively. In the Acro domain the objective is to derive a
policy that enables an under-actuated robot to swing-up in as
few steps as possible, limited to 1,000. A cost of —1 is given
for every non-terminal transition. Whereas, in the CPB do-
main the goal is to avoid the failure conditions, for up to
10,000 steps, of dropping the pole or exceeding the bounds
of the track. Here a positive reward of +1 is given for every
non-terminal transition. We set the discount factor for both
domains v = 0.9999. Like the Markov chain these domains
were made non-deterministic by incorporating a 20% prob-
ability that an action results in no action taken. Fourier basis
of orders 2, for Acro, and 3, for CPB, both trained with the
same small regularization penalty, are used to represent ().

Policy performance is measured by the mean aggregate
reward obtained by running a given policy over 50 trials.
We used NEAT (Stanley and Miikkulainen 2002) to generate
diverse trajectory sets, comprised of over 5,000 trajectories,
for both domains as was done in the TFQI work (Wright et
al. 2013). This form of data violates LSTD-Q’s assumptions
on sampling distribution, so we do not include it in these
experiments. The reported results are an average of 200 runs
for each setting.

-100 - R(l) —o— RMar % RBy @

=l
?e -150 +
3 /
Q
o200 -
Q
+~
cb% 250 | ./././.’I—._._.’I—.
()
bt
<)
o0 -300 ‘\‘\t\,__,/‘s,—*——o\‘
<
-350 \ \ \)
0 50 100 150 200
Iteration

Figure 3: Mean policy performance at every 20 iterations
(from 20-200) in the Acrobot domain using 100 trajectories.

As shown in Figure 3, in the Acro domain both RB~
and RM* methods outperform R with RM** perform-
ing the best. Error bars are not shown, but a paired t-test
(p < 0.005) was performed on the results at the last itera-
tion to confirm the differences are statistically significant. In
this domain the function approximation model appears to be
a significant source of negative bias. This factor combined
with off-policy bias prevents R*%* from overestimating, re-
sulting in a much improved policy.

R(l) o— RMar _y RE —m
10000

T so00

g I

B 7000 b

Q

e 6000 -

Q5000

& 000 |

2 3000

&0

80 2000 |

< 1000 |- W

0 . . .)

0 50 100 150 200

Iteration
Figure 4: Mean policy performance at every 20 iterations
(from 20-200) in the Cart Pole Balancing domain using 100
trajectories.

In contrast the results from the CPB domain, Figure 4
tells a much different story. The RM%* method performs
the worst of all methods, demonstrating how RMaz can be
too aggressive and unstable. R+, however, provides an
effective bound that significantly improves policy perfor-

3092

mance over both competing methods. Together, these re-
sults clearly show how our bounding method can effectively
and safely improve value estimation resulting in substantial
policy performance gains.

10000 ¢ RY —e— RP —m—
9000 + u

8000 -
7000
6000
5000
4000 +
3000
2000
1000

0)
0 10 20 30 40 50 60 70 80 90 100

Trajectories

Aggregate Reward

Figure 5: Final policy performance in the Cart Pole Balanc-
ing domain using trajectory sets of increasing size.

In addition, we also consider the performance of our
method when provided with fewer trajectories. Sample ef-
ficiency is of critical importance, and demonstrating an im-
provement under low sample counts is valuable. Figure 5
shows the policy performance of our bounding method com-
pared with R(") in the CPB domain. R** is not included
because it failed to demonstrate improved performance un-
der any condition. The provided number of trajectories var-
ied from 5 to 100. Across various trajectory set sizes we see
very significant improvements in policy performance. Fur-
thermore, with about 25 trajectories, our bounding method
can achieve similar performance as the baseline method with
100 trajectories, which indicates superior sample efficiency
of the bounding method.

Conclusion and Future Work

We have introduced a novel bounding approach that opens
the door to exploiting complex returns for improving AVI.
Our statistical analysis explained why and how this bound-
ing approach works. We provided a new algorithm, BFQI,
and empirically demonstrated how our method significantly
improves value estimation for AVI, leading to improved pol-
icy performance and sample efficiency.

In future work we plan to perform a more formal analysis
of the bounding method to discover better means of produc-
ing the bounding estimator. Since FQI is known to converge
under certain assumptions, we plan to examine the theoreti-
cal convergence properties of BFQL. It is also interesting to
study how other AVI methods can benefit from the idea of
using complex returns by bounding.

Acknowledgements

This work is supported in part by grants from NSF (#
0855204) and the AFRL Information Directorate’s Visiting
Faculty Research Program. Qiao’s contribution was par-
tially supported by a Collaboration Grant from the Simons
Foundation (# 246649).

References

Antos, A.; Szepesviari, C.; and Munos, R. 2007. Fitted
g-iteration in continuous action-space mdps. In Platt, J.;
Koller, D.; Singer, Y.; and Roweis, S., eds., Advances in
Neural Information Processing Systems 20. 9-16.

Ernst, D.; Geurts, P.; Wehenkel, L.; and Littman, L. 2005.
Tree-based batch mode reinforcement learning. Journal of
Machine Learning Research 6:503-556.

Geist, M., and Scherrer, B. 2014. Off-policy learning with
eligibility traces: A survey. J. Mach. Learn. Res. 15(1):289—
333.

Gordon, G. J. 1995. Stable function approximation in dy-
namic programming. Technical report, DTIC Document.
Hachiya, H.; Akiyama, T.; Sugiayma, M.; and Peters, J.
2009. Adaptive importance sampling for value function ap-
proximation in off-policy reinforcement learning. Neural
Networks 22(10):1399-1410.

Konidaris, G.; Niekum, S.; and Thomas, P. S. 2011.
Td.,: Re-evaluating complex backups in temporal difference
learning. In Advances in Neural Information Processing
Systems, 2402-2410.

Konidaris, G.; Osentoski, S.; and Thomas, P. 2011. Value
function approximation in reinforcement learning using the
Fourier basis. In Proceedings of the Twenty-Fifth Confer-
ence on Artificial Intelligence, 380-385.

Lagoudakis, M. G., and Parr, R. 2003. Least-squares policy
iteration. Journal of Machine Learning Research 4:2003.

Munos, R. 2005. Error bounds for approximate value itera-
tion. In Proceedings of the 20th national conference on Arti-
ficial intelligence - Volume 2, AAAT05, 1006-1011. AAAI
Press.

Precup, D.; Sutton, R. S.; and Dasgupta, S. 2001. Off-policy
temporal-difference learning with function approximation.
In ICML, 417-424.

Puterman, M. L. 2009. Markov decision processes: dis-
crete stochastic dynamic programming, volume 414. Wiley-
Interscience.

Riedmiller, M. 2005. Neural fitted Q iteration—first expe-
riences with a data efficient neural reinforcement learning
method. In Machine Learning: ECML 2005. Springer. 317—
328.

Stanley, K. O., and Miikkulainen, R. 2002. Evolving neu-
ral networks through augmenting topologies. Evolutionary
Computation 10(2):99-127.

Sutton, R. S., and Barto, A. G. 1998. Introduction to rein-
forcement learning. MIT Press.

Wright, R.; Loscalzo, S.; Dexter, P.; and Yu, L. 2013. Ex-
ploiting multi-step sample trajectories for approximate value
iteration. In Machine Learning and Knowledge Discovery in
Databases, volume 8188. Springer Berlin Heidelberg. 113—
128.

3093

