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Abstract

Support Vector Machine (SVM) is a fundamental tech-
nique in machine learning. A long time challenge fac-
ing SVM is how to deal with outliers (caused by misla-
beling), as they could make the classes in SVM non-
separable. Existing techniques, such as soft margin
SVM, ν-SVM, and Core-SVM, can alleviate the prob-
lem to certain extent, but cannot completely resolve the
issue. Recently, there are also techniques available for
explicit outlier removal. But they suffer from high time
complexity and cannot guarantee quality of solution. In
this paper, we present a new combinatorial approach,
called Random Gradient Descent Tree (or RGD-tree),
to explicitly deal with outliers; this results in a new al-
gorithm called RGD-SVM. Our technique yields prov-
ably good solution and can be efficiently implemented
for practical purpose. The time and space complexities
of our approach only linearly depend on the input size
and the dimensionality of the space, which are signifi-
cantly better than existing ones. Experiments on bench-
mark datasets suggest that our technique considerably
outperforms several popular techniques in most of the
cases.

1 Introduction
Support Vector Machine (SVM) is a fundamental tool for
classification (Chang and Lin 2011). For a given set of points
in Euclidean space labeled with +1 or −1 each, SVM is
to find a separating hyperplane so that points with different
labels are located on different sides of the hyperplane and
the margin of separation is maximized. In an ideal scenario
where all labeled points are separable, SVM can be mod-
eled as a convex quadratic program, and solved optimally
by using Lagrange multiplier. However, in real world appli-
cations, data often contain noises or outliers and may not al-
ways be separable (by either linear or non-linear classifier
(Aizerman, Braverman, and Rozonoer 1964)). To resolve
this challenging issue, a great deal of efforts have been de-
voted to this problem and a number of techniques have been
developed in the past, such as soft margin SVM (Cortes and
Vapnik 1995; Platt 1999), ν-SVM (Scholkopf et al. 2000;
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Crisp and Burges 1999), Core-SVM (Tsang, Kwok, and
Cheung 2005), and many other techniques (Har-Peled, Roth,
and Zimak 2007; Krause and Singer 2004).

(a) (b)

Figure 1: SVM with (b) and without (a) outliers; the green margin
in (b) is the output from soft margin SVM; the black margin is the
output after removing outliers, which is the same as in (a).

Each of the above techniques alleviates the problem from
a different perspective, and achieves good performance for
certain types of data. However, since such techniques do not
explicitly remove the outliers, their performance could be
considerably deteriorated by outliers, especially when there
exists a significant fraction of outliers in the dataset (see
Fig. 1). In recent years, there are also techniques (Xu, Cram-
mer, and Schuurmans 2006; Suzumura et al. 2014) available
for explicit outliers removal. But most of them are numer-
ical approaches (e.g., by adding penalties to the objective
function), and cannot guarantee the quality of solutions (i.e.,
often trapped by local optimum).

1.1 Our Results
In this paper, we present a novel combinatorial technique
called Random Gradient Descent (RGD) Tree to identify
and remove outliers in SVM; this results in a new algo-
rithm called RGD-SVM. Comparing to the existing numer-
ical approaches, our technique yields provably good solu-
tions (with respect to the optimal solution) and can be effi-
ciently implemented for practical purpose. Experimental re-
sults on several benchmark data sets (from (Chang and Lin
2011)) suggest that our technique outperforms existing pop-
ular approaches.

Furthermore, our technique has significantly better time
and space complexities than existing approaches. It runs in
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linear time in the input size n, while the algorithm in (Suzu-
mura et al. 2014) needs to solve a sequence of quadratic
programs and the algorithm in (Xu, Crammer, and Schu-
urmans 2006) relies on a semi-definite programming for-
mulation; thus both have a much higher time complex-
ity than ours. Note that although linear or even sub-linear
time SVM algorithms (Tsang, Kwok, and Cheung 2005;
Har-Peled, Roth, and Zimak 2007; Gärtner and Jaggi 2009;
Clarkson 2010; Clarkson, Hazan, and Woodruff 2012) ex-
ist, they mainly focus on hard or soft margin SVM and do
not explicitly remove outliers. Thus it is not very mean-
ingful to compare those with ours on running time. As
for the space complexity, our approach takes only linear
space (in n), which is significantly better than the nu-
merical approaches (Xu, Crammer, and Schuurmans 2006;
Suzumura et al. 2014).

2 Random Gradient Descent Tree
In this section, we present our main result, Random Gradi-
ent Descent Tree ((RGD)-tree), and show its application in
SVM with outliers. Since our idea is inspired by Gilbert al-
gorithm, we first give an overview of it in Section 2.1. Then,
we present RGD-tree in Section 2.2 and its correctness in
Section 2.3 for computing one-class SVM with outliers. Fi-
nally, we extend RGD-tree to handle two-class SVM with
outliers in Section 2.4, and analyze its time and space com-
plexities in Section 2.5.

2.1 Gilbert Algorithm and One-class SVM
Let o be a point and P be a set of n points in Rd space. The
shortest distance between o and conv(P ) (i.e., the convex
hull of P ) is called the polytope distance between o and P .
Computing polytope distance is a key problem in SVM and
has been extensively studied in the past (Gärtner and Jaggi
2009; Clarkson, Hazan, and Woodruff 2012; Clarkson 2010;
Keerthi et al. 2000; Mavroforakis, Sdralis, and Theodoridis
2007).

Without loss of generality (WLOG), we assume that o
is the origin of the coordinate system. Note that polytope
distance is naturally a convex quadratic optimization prob-
lem, and can be solved optimally in polynomial time. To
obtain more efficient solution, a gradient descent algorithm,
called Gilbert Algorithm, has been developed to achieve ap-
proximate solution (Frank and Wolfe 1956; Gilbert 1966;
Mitchell, Dem’yanov, and Malozemov 1974). Algorithm 1
outlines its main steps. In each step, the algorithm finds a
direction, and greedily improves the current solution along
this direction until the solution becomes stable.

A theoretical analysis on the convergence of Algorithm 1
has recently been obtained. Before discussing this result, we
first introduce several notations. Let ρ be the optimal solu-
tion of Algorithm 1 (i.e., the polytope distance between o
and P ), and D = maxp,q∈P ||p − q|| be the diameter of P .
Define E = D2

ρ2 , and denote by p |xi the orthogonal projec-
tion of a point p on the supporting line of segment oxi.

Definition 1 (ε-Approximation of Polytope Distance). Let
P be a point-set in Rd and xi ∈ conv(P ). xi is an ε-

Algorithm 1 Gilbert Algorithm (Gilbert 1966)
Input: A point-set P in Rd.
Output: xi as an approximate solution of the polytope
distance between the origin and P .

1. Initialize i = 1 and x1 to be the closest point in P to
the origin o.

2. Iteratively perform the following steps until the solu-
tion becomes stable.

(a) Find the point pi ∈ P whose orthogonal projection
on the supporting line of segment oxi has the closest
distance to o (called the projection distance of pi),
i.e., pi = arg minp∈P { 〈p,xi〉||xi|| }, where 〈p, xi〉 is the
inner product of p and xi (see Fig. 2(a))..

(b) Let xi+1 be the point on segment xipi closest to the
origin o; update i = i+ 1.

o

xixi+1

pi

pi |xi
outlier

(a) (b)

Figure 2: (a) An illustration of step 2 in Gilbert Algorithm; (b)
Convex hull of the original point-set (black boundary) and the re-
duced convex hull after adding an outlier (red boundary).

approximation of the polytope distance of P if ||xi|| ≤
||p |xi ||+ ε||xi|| for any p ∈ P .

Theorem 1 ((Gärtner and Jaggi 2009; Clarkson 2010)).
For any constant ε ∈ (0, 1), Algorithm 1 takes at most
2d2E/εe steps to yield an ε-approximation.

Theorem 1 indicates that the converging speed of Algo-
rithm 1 depends only on E and ε, and is independent of the
input size |P | and the dimensionality d.

Now we consider one-class SVM. Let x 6= o be a point in
Rd, and H⊥x and H>x be the hyperplanes passing through o
and x, respectively, and orthogonal to segment ox. We define
the margin Mx of x as the slap bounded by H⊥x and H>x .
Obviously, the width ofMx is ||x||. The following lemmas
relate polytope distance to one-class SVM.

Lemma 1 ((Gärtner and Jaggi 2009; Clarkson 2010)). If
x ∈ conv(P ) is the optimal solution of the polytope distance
from o to a point-set P , then Mx is the maximum margin
separating the origin and P .

Lemma 2. Let x ∈ conv(P ) be an ε-approximation of the
polytope distance yielded by Algorithm 1 on a point-set P
for some small constant ε ∈ (0, 1). ThenM(1−ε)x separates
the origin and P , and its width is at least (1− ε) times that
of the maximum margin.
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Proof. By Definition 1, we know that for any p ∈ P ,

||(1− ε)x|| = (1− ε)||x|| ≤ ||p |x ||. (1)

Since p |x= p |(1−ε)x, this implies thatM(1−ε)x separates
the origin and P .

Furthermore, since x is inside conv(P ) (by Algorithm 1),
we know that ||x|| ≥ ρ (i.e., the polytope distance). Thus,
the width ofM(1−ε)x is at least (1 − ε)ρ, which is (1 − ε)
times that of the maximum margin (by Lemma 1). Thus the
lemma is true.

Lemma 2 suggests that we can find an approximate max-
imum margin (between the origin and P ) using Gilbert Al-
gorithm.

2.2 RGD-tree for One-class SVM with Outliers
Now we consider one-class SVM with outliers.

Definition 2 (One-class SVM with Outliers). Let P be a
set of n points in Rd and γ ∈ (0, 1) be the fraction of outliers
in P . The one-class SVM with outliers problem is to find
a subset P ′ ⊂ P of size (1 − γ)n such that the margin
separating the origin and P ′ is maximized.

Despite its fast convergence, Gilbert Algorithm has been
limited in applications. One of the main reasons is that it is
rather sensitive to outliers. In an extreme case, Gilbert Al-
gorithm may select an outlier (as pi) in each step, and gen-
erates a solution far from optimal. To reduce the influence
of outliers, the concept of soft convex hull or reduced con-
vex hull (RCH) has been introduced (Crisp and Burges 1999;
Mavroforakis, Sdralis, and Theodoridis 2007), which could
alleviate the problem to certain extent but still cannot com-
pletely avoid it. See Fig. 2(b) for an example, where RCH
is still significant different from the one without outliers. To
have a better solution to this problem, we develop a new
technique called Random Gradient Descent Tree (or RGD-
tree) to explicitly remove outliers.
Main idea. Our main idea comes from the following key
observation on Gilbert Algorithm: It is not necessary to se-
lect the point having the smallest projection distance along
the direction of oxi in each step. It is actually sufficient for
maintaining the converging speed to select any point in P
as long as its projection distance is one of the k smallest
for some parameter k to be determined later. Based on this
observation, we identify a subset of P (which may contain
outliers) in each step, randomly select a sample set from this
subset, instead of only a single point pi, and try to improve
the current solution using each point in the sample. Thus, if
we view each current solution as a “node”, and the multiple
improved solutions determined by the sample points as its
children, the whole procedure will form a tree, called RGD-
tree due to its random and gradient descent nature.

To show the effectiveness of RGD-tree, we first prove that
with certain probability, the sample set contains some points
which are not outliers. This ensures the converging speed
of the approach. We are also able to show that with cer-
tain probability, there exists one node in RGD-tree which
is an approximate solution to the one-class SVM with out-
liers problem. Details of the RGD-tree algorithm are given

Algorithm 2 RGD-Tree Algorithm
Input: A point-set P in Rd with a fraction γ ∈ (0, 1) of
it being outliers, and three parameters 0 < µ, δ < 1, h ∈
Z+.
Output: A RGD-tree with each node associated with a
candidate for an approximate solution of the one-class
SVM with outliers problem.

1. Randomly select a point from P as x. Initialize the
RGD-tree as a single node tree (i.e., the root) and as-
sociate the node with x.

2. Starting from the root, recursively grow each node of
RGD-tree as follows:

(a) Let ν be the current node associating with a point xν .
(b) If the height of ν is h, it becomes a leaf node and

stops growing. Otherwise, do the following.
i. Find the subset Pν of P whose projection dis-

tances (see Algorithm 1) along the direction of
oxν are the k smallest for k = (1 + δ)γ|P |.

ii. Take a random sample Sν from Pν of size (1 +
1
δ ) ln h

µ . For each point s ∈ Sν , create a child of
ν and associate it with a point xsν , where xsν is
determined as follows (see Fig. 3(a) & (b)).

A. If the angle ∠osxν ≤ π
2 , xsν is the orthogonal

projection of the origin o on segment sxν .
B. Otherwise, xsν = s.

in Algorithm 2 , where the values of parameters δ, µ and h
will be determined later.

o

s xs
⌫

x⌫
x̃⌫

f⌫
P⌫

P \ P⌫

↵

o

s (xs
⌫) x⌫

x̃⌫

f⌫
P⌫

P \ P⌫

(a) (b)

Figure 3: An illustration of Step 2b in RGD-Tree Algorithm.

2.3 Correctness
Let Popt be the unknown subset of P which yields the opti-
mal solution in Definition 2, and ρ be the width of the corre-
sponding maximum margin. Also denote by D the diameter
of Popt (i.e., D := maxp,q∈Popt ||p− q||).

Before showing the correctness of Algorithm 2, we need
to understand how to measure the quality of any solution to
the problem of one-class SVM with outliers. Clearly, it in-
volves two factors, the width of the margin and the number
of outliers (i.e., the number of misclassified points). The fol-
lowing definition and theorem tell us how to consider both
factors using bi-criteria approximation.
Definition 3. Let P and γ be the same as in Definition 2,
and 0 < ε, δ < 1 be two constants. A margin M is an
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(ε, δ)-approximation, if the width of M is no smaller than
(1 − ε)ρ and the number of misclassified points is no more
than (1 + δ)γ|P |.
Theorem 2. If the parameters h, µ, δ in Algorithm 2 are
chosen to be h = 3( 1

ε (Dρ +1))2 ln(Dρ +1) and 0 < µ, δ < 1,
then with probability (1 − µ)(1 − γ), there exists at least
one node in the resulting RGD-tree which yields an (ε, δ)-
approximation for the one-class SVM with outliers problem.

To prove Theorem 2, we need the following lemmas.
Lemmas 3, 4, and 5 enable us to analyze the success proba-
bility, and Lemma 6 estimates the improvement in each step
of Algorithm 2.

Lemma 3 ((Ding and Xu 2014)). Let Q be a set of ele-
ments, and Q′ be a subset of Q with size |Q′| = β|Q| for
some β ∈ (0, 1). If one randomly samples 1

β ln 1
η elements

from Q, then with probability at least 1− η, the sample con-
tains at least one element in Q′ for any 0 < η < 1.

Lemma 4. In Step 2b(ii) of Algorithm 2, the sample Sν con-
tains at least one point from Popt with probability 1− µ

h .

Proof. Since |Pν | = (1 + δ)γ|P |, and |P \ Popt| = γ|P |,
we have

|Pν ∩ Popt|
|Pν |

= 1− |Pν \ Popt||Pν |

≥ 1− |P \ Popt||Pν |
=

δ

1 + δ
. (2)

By Lemma 3 and the fact that |Sν | = (1+ 1
δ ) ln h

µ , we know
that Sν contains at least one point from Popt with probability
1− µ

h .

Lemma 5. With probability (1 − γ)(1 − µ), there exists a
pathP from the root to a leaf node in the RGD-tree such that
the point x associated with the root belongs to Popt, and for
each non-leaf node ν on the path, its next node on the path
is generated by a sample point s ∈ Popt.

Proof. In the beginning of Algorithm 2, it is easy to see that
the point x associated with the root of the RGD-tree is in
Popt with probability 1 − γ. By Lemma 4 we know that
at each time when Step 2b(ii) is executed, Sν contains one
point from Popt with probability 1− µ

h . This means that with
probability

(1− γ)(1− µ

h
)h > (1− γ)(1− µ), (3)

the path P exists.

In the following analysis, we assume that there is such a
path P (as in Lemma 5).

Lemma 6. In Step 2b(ii) of Algorithm 2, for each node ν ∈
P , either the point xν associated with node ν is an (ε, δ)-
approximation, or the point xsν associating with its next node
in P satisfies the following inequality

||xsν ||2 ≤ (1− (
ερ

D + ρ
)2)||xν ||2. (4)

Proof. Let fν be the maximum projection distance among
all points in Pν along the direction of oxν , i.e.,

fν = max
p∈Pν
{p |xν}. (5)

Let x̃ν = fν
||xν ||xν (see Fig. 3). If fν ≥ (1 − ε)ρ, we know

that the margin determined by x̃ν , i.e., Mx̃ν , has width at
least (1− ε)ρ, and separates |P \ Pν | points from the origin
o. By Definition 3, we know that this margin is an (ε, δ)-
approximation.

Thus we only need to consider the other case, and can
assume that

fν < (1− ε)ρ. (6)

By Lemma 1, we know that ρ is the polytope distance be-
tween the origin o and Popt. This implies that ||xν || is no
smaller than ρ. Combining this with (6), we have

||xν − x̃ν || ≥ ερ. (7)

Furthermore, since we only consider the nodes in the path
P , we know that the sample point s ∈ Popt. This implies
that

||s− xν || ≤ D. (8)

If ∠osxν ≤ π
2 , then

||xsν || = ||xν || sinα, (9)

where α is ∠oxνs (see Fig. 3(a)). Combining (7) and (8),
we have the following

cosα ≥ ερ

D
=⇒ sinα ≤

√
1− (

ερ

D
)2. (10)

From (9) and (10), we immediately have (4) in the case of
∠osxν ≤ π

2 .
If ∠osxν > π

2 (see Fig. 3(b)), we have

||xsν ||2 + ||xsν − xν ||2 ≤ ||xν ||2. (11)

By (7), it is easy to see that ||xsν − xν || ≥ ||xν − x̃ν || ≥ ερ.
Thus, we have

||xsν ||2 ≤ ||xν ||2 − (ερ)2

= (1− (ερ)2

||xν ||2
)||xν ||2

≤ (1− (ερ)2

(D + ρ)2
)||xν ||2, (12)

where the last inequality follows from the fact that ||xν || ≤
D + ρ (by triangle inequality). Thus, (4) also holds in the
case of ∠osxν > π

2 .
This completes the proof of the lemma.

Below, we prove Theorem 2.

Proof. (of Theorem 2) We prove the theorem following
the flow of Algorithm 2. We kown that path P exists with
probability (1 − γ)(1 − µ) (by Lemma 5), and claim that
there exists one node ν on the path whose xν is an (ε, δ)-
approximation. We prove this claim by contradiction. Sup-
pose that no such a node ν exists. Let xL be the point asso-
ciated with the leaf of the path. Then by Lemma 6, we have

||xL||2 ≤ ((1− (
ερ

D + ρ
)2)h||x||2. (13)
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By Lemma 1 we know that ρ is the polytope distance be-
tween the origin and Popt. Thus, ||xL|| is no smaller than
ρ. Also by triangle inequality, we know that ||x|| ≤ D + ρ.
Hence, (13) implies that

ρ2 ≤ ((1− (
ερ

D + ρ
)2)h(D + ρ)2. (14)

Let λ denote D+ρ
ρ . Then (14) implies that

h ≤ log1/(1−(ε/λ)2) λ
2

=
2 lnλ

ln(1 + (ε/λ)2

1−(ε/λ)2
)

<
2 lnλ

ln(1 + (ε/λ)2)

< 3(
λ

ε
)2 lnλ = 3(

1

ε
(
D

ρ
+ 1))2 ln(

D

ρ
+ 1), (15)

where the final inequality follows from the fact that
(ε/λ)2 < 1. Since h = 3( 1

ε (Dρ +1))2 ln(Dρ +1) in the theo-
rem, we have a contradiction. This completes the proof.

Remark 1. The above theorem ensures the correctness. Sev-
eral other issues, such as the time and space complexities,
will be addressed in Section 2.5.

2.4 Two-class SVM with Outliers
Now, we consider two-class SVM with outliers.
Definition 4 (Two-class SVM with Outliers). Let P1 and
P2 be two sets of points in Rd, and γ ∈ (0, 1) (or γ1, γ2 ∈
(0, 1)) be the fraction of outliers in P1∪P2 (or in P1 and P2,
respectively). The problem of two-class SVM with outliers
is to find two subsets P ′1 ⊂ P1 and P ′2 ⊂ P2, such that
|P ′1 ∪ P ′2| ≥ (1 − γ)|P1 ∪ P2| (or |P ′1| ≥ (1 − γ1)|P1| and
|P ′2| ≥ (1− γ2)|P2|), and the margin separating P ′1 and P ′2
is maximized.

Corresponding to the two slightly different definitions, we
have two ways to define the bi-criteria approximation.
Definition 5. Let P1, P2, γ, γ1 and γ2 be the same as in Def-
inition 4, and ρ be the width of the maximum margin in the
problem of two-class SVM with outliers. Then a marginM is
an (ε, δ)-approximation, if the width ofM is no smaller than
(1 − ε)ρ and the number of misclassified points is no more
than (1+δ)γ|P1∪P2| (or (1+δ)γ1|P1| and (1+δ)γ2|P2|),
where 0 < ε, δ < 1 are two constants.

In the above definitions, the case of one-outlier-parameter
(γ) can actually be reduced to the case of two-outlier-
parameters (γ1 and γ2). The main idea is to use discretiza-
tion and “guess” the fractions of outliers in P1 and P2, re-
spectively. Due to space limit, we leave the details in the full
version of our paper. Thereafter, we always assume that two
outlier parameters γ1 and γ2 are given. The following defi-
nition and theorem reveal the connection between polytope
distance and two-class SVM.
Definition 6 ((Gärtner and Jaggi 2009)). Let P1 and
P2 be two point-sets in Rd. The Minkowski difference
MD(P1, P2) of polytopes conv(P1) and conv(P2) is the
set (which is also a polytope (Ziegler 1995)) of all difference
vectors, i.e., MD(P1, P2) = {u − v | u ∈ conv(P1), v ∈
conv(P2)}.

Theorem 3. [(Gärtner and Jaggi 2009)] Finding the short-
est distance between two polytopes conv(P1) and conv(P2)
is equivalent to finding the polytope distance from the origin
to MD(P1, P2).

Theorem 3 tells us that to find the maximum margin sep-
arating two point-sets P1 and P2, we only need to find the
maximum margin separating the origin and MD(P1, P2).
This indicates the possibility of using RGD-tree to solve the
problem of two-class SVM with outliers. A careful analysis
shows that we actually do not need to explicitly compute
MD(P1, P2) (which would take quadratic time); a slight
modification to Algorithm 2 will be sufficient.

Revisited Algorithm 2. The revisited algorithm will have
the following main differences from the original one. (1) The
input has two point-sets P1 and P2, and two outlier parame-
ters γ1 and γ2. (2) In Step 2b(i), take two subsets P 1

ν ⊂ P1

and P 2
ν ⊂ P2, which respectively consist of points having

the (1 + δ)γ1|P1| smallest projection distances among all
points in P1 and the (1 + δ)γ2|P2| largest projection dis-
tances among all points in P2. (3) In Step 2b(ii), take a set
of vectors Sv of the same size as in the original algorithm,
where each vector s ∈ Sν is the difference of two random
sampled points from P 1

ν and P 2
ν , respectively.

Using a similar argument given in the proof of Theorem 2,
we have the following result.

Theorem 4. If the parameters in the revisited Algorithm 2
are chosen as follows, h = 3( 1

ε (Dρ + 1))2 ln(Dρ + 1) and
0 < µ, δ < 1, then with probability (1−µ)(1−γ), there ex-
ists at least one node in the resulting RGD-tree which yields
an (ε, δ)-approximation for the two-class SVM with outliers
problem.

2.5 Time and Space Complexity
In this section, we analyze the time and space complexities
of the RGD-tree algorithm.

Time complexity. Let n be the size of P (or P1 ∪ P2

in the two-class case), and d be the dimensionality of
the space. For each node of the RGD-tree, we create
|Sν | = (1 + 1

δ ) ln h
µ children. Since the height h of the

tree is 3( 1
ε
D+ρ
ρ )2 ln D+ρ

ρ , the total size of the tree is thus
O(|Sν |h) = O((ln D+ρ

ερ )h) (after omitting the constant fac-
tor depending on δ and µ). This means that the size of the
tree depends only on the ratio of D

ρ and ε, and is inde-
pendent of n and d. Now, we consider the computation on
each node ν. Firstly, we need to compute the projections
of P (or P1 and P2 for the two-class case) on oxν , which
takes O(nd) time in total. Secondly, we need to find sub-
set Pν (or P 1

ν and P 2
ν in the two-class case). This can be

done in O(nd) time by using the linear-time selection algo-
rithm1. Thirdly, creating all the |Sν | children costsO(|Sν |d)
time in Step 2b(ii). Thus the total time for each node ν is

1Given a set of n numbers Y and an integer k ≤ n, we can
first find the k-th smallest number y by the selection algorithm in
linear time (Blum et al. 1973), and use y as the pivot to select the
k smallest numbers in linear time.
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O((n + |Sν |)d). Consequently, the time complexity of the
algorithm is O((ln D+ρ

ερ )h+1nd), which is linear in n and d.
We note that the above time complexity is only for the

worst case analysis. In practice, many nodes are actually not
needed for generating the final solution, and thus do not need
to be kept in the tree. Thus in implementation, we can set
an upper bound L on the number of nodes in each level of
the RGD-tree. In this way, we can bring to the total time
down toO(Lhnd), which linearly, rather than exponentially,
depends on h. To achieve this, we prune a number nodes
which produce bad results (i.e., too narrow margin) in each
level while generating the RGD-tree. Note that this will not
increase the time complexity, since we just need to check the
already computed projections of P (or P1 and P2) to obtain
the width of the margin.
Space complexity. The space complexity is obviously
bounded by the total size of the input and the RGD-tree,
which is O(((ln D+ρ

ερ )h + n)d) in the worst case and linear
in n and d. With a careful analysis, we can actually signif-
icantly reduce it as we do not need to store the whole tree.
Instead, we only need to store two levels of the tree, the cur-
rent level and its next level. Additionally, we need to save the
best solutions from the root to the current level, which takes
only a constant number of extra space. Thus, if we perform
the above pruning strategy, the space complexity becomes
O((L+ n)d), which is independent of the height h.

3 Boosting
To further improve the performance of our RGD-tree algo-
rithm, we propose the following boosting procedure. The
key idea is to build a sequence of RGD-trees, instead of a
single one.

1. Initially, build the RGD-tree for the input.

2. Iteratively perform the following steps until the result be-
comes stable:

(a) Select the node corresponding to the best solution in
the newly built RGD-tree.

(b) Use the selected node as the root, build a new RGD-
tree.

In Section 4, we will show that this boosting procedure
can not only improve the result, but also reduce the running
time significantly.

4 Experiments
We test our RGD-SVM on both synthetic and benchmark
data sets. All results are obtained by using a MacBook Pro
(2.4 GHz CPU and 4 GB memory).
Synthetic data. We design three experiments on synthetic
data for the two-class SVM with outlier problem. In each
experiment, the sizes of the two classes vary randomly in the
ranges of [103, 3 × 103] for training and [104, 3 × 104] for
testing, and the dimensionality is set to be 100. Each class
is generated following a multivariate Gaussian distribution;
in order to make the distribution as arbitrary as possible, the
covariance matrix Σ is also generated randomly and the ratio

between the maximum and the minimum diagonal elements
is set to be 10. Each of the three experiments has repeatedly
run 10 times, and the average results are reported. Exper-
iment (1) tests how our algorithm performs under different
level of outliers. We vary the fraction of outliers between 5%
to 20%. Experimental results in Fig. 4(a) show that the er-
ror is a slowly growing function and is always around 0.5%,
which is quite stable. Experiment (2) tests the performance
of our algorithm under different values of ratio D/ρ. We fix
the fraction of outliers to be 10%, and vary the ratio D/ρ
from 5 to 30. The height of RGD-tree is restricted to be no
more than 10 so that the running time is always within 5
minutes. Results in Fig. 4(b) suggest that error grows (in the
range of (0.5%, 2.5%)) roughly linearly with the ratio. Ex-
periment (3) tests the improvement of boosting procedure
(in Section 3). In this experiment, we fix the fraction of out-
liers to be 10% and D/ρ to be 30, and perform the boosting
procedure 1 − 4 rounds; in each round, the height of the
RGD-tree is no more than 5 (instead of 10 as in experiment
(2)). Results in Fig. 4(c) show that the solution improves
rapidly in the first couple of rounds and becomes stable after
3 rounds. The error becomes comparable to that in Fig. 4(b)
after 3 rounds, but the running time is reduced by at least
half. This is because the RGD-tree becomes much smaller
and thus the total running time improves significantly.

Benchmark data. We select 10 benchmark data sets
from (Chang and Lin 2011), and compare our algorithm with
three popular methods, soft margin SVM (Cortes and Vapnik
1995; Platt 1999), robust SVM based on CCCP (Yuille and
Rangarajan 2001; Krause and Singer 2004), and homotopy
algorithm (Suzumura et al. 2014). For each data set, we use
the best result from the three methods as the baseline. We set
the data the same way as that in (Suzumura et al. 2014). That
is, randomly divide each data set into training (40%), valida-
tion (30%), and testing (30%) sets, and flip 15% of the labels
in the training and validation sets as outliers. From Fig. 4(d),
we can see that our RGD-SVM outperforms the baseline on
8 data sets, and particularly has more than 20% improvement
on #1 and #2, and more than 5% improvement on #3, #5,
#8, and #9.

Table 1: Results on 10 benchmark data sets

# Name n d Test error

1 BreastCancer 596 30 2.2%
2 AustralianCredit 690 14 10.2%
3 GermanNumber 1000 24 24.0%
4 SVMGuide1 3089 4 4.0%
5 Spambase 4601 57 7.6%
6 Musk 6598 166 7.0%
7 Gisette 6000 5000 18.2%
8 w5a 9888 300 1.9%
9 a6a 11220 122 15.2%
10 a7a 16100 122 16.4%
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Figure 4: (a) and (b) Classification errors under different values of γ and ratio D/ρ; (c) Improvement on classification error by using
boosting; (d) Comparison between our algorithm and the baseline on benchmark data sets.

5 Conclusions
In this paper, we present a new combinatorial approach for
dealing with outliers in SVM. Most existing techniques for
this problem are numerical approaches, and cannot guaran-
tee the quality of solution despite a high time complexity.
On the contrary, our combinatorial approach yields prov-
ably good solution, and has time and space complexities lin-
early depending on the input size and the dimensionality.
Furthermore, experimental results suggest that our approach
has better performance (in terms of accuracy) than several
popular existing methods.
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