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Abstract

In this paper, we propose an interpretation of active
learning from a pure algebraic view and combine it with
semi-supervised manifold learning. The proposed ac-
tive manifold learning algorithm aims to learn the low-
dimensional parameter space of the manifold with high
accuracy from smartly labeled samples. We demon-
strate that this problem is equivalent to a condition num-
ber minimization problem of the alignment matrix. Fo-
cusing on this problem, we first give a theoretical upper
bound for the solution. Then we develop a heuristic but
effective sample selection algorithm with the help of the
Gershgorin circle theorem. We investigate the rational-
ity, the feasibility, the universality and the complexity of
the proposed method and demonstrate that our method
yields encouraging active learning results.

Introduction
Many learning tasks need to model high-dimensional data
via a low-dimensional parametric model. Manifold learn-
ing provides us with an approach for finding the low-
dimensional structure of data from high-dimensional obser-
vations, which has yielded encouraging results in a num-
ber of unsupervised learning tasks (Roweis and Saul 2000;
Belkin and Niyogi 2003; Zhang and Zha 2005; Zhang,
Wang, and Zha 2012) and semi-supervised learning tasks
(De Silva and Tenenbaum 2004; Ham, Ahn, and Lee 2006;
Yang et al. 2006; Zhang, Zha, and Zhang 2008).

However, one important issue has remained (at least not
explicitly addressed): the success of semi-supervised mani-
fold learning relies on the distribution of labeled samples in
the sample space. Facing a large number of unlabeled sam-
ples, we can only label a small subset of them because of the
limitations in money, time and other resources. Specifying
which samples to label to obtain the best learning results, as
the essential problem of active learning, is still a challenging
problem from the view point of manifold learning.

In this paper, we propose an active manifold learning
algorithm, combining active learning with semi-supervised
manifold learning in a novel manner. Specifically, we unify
various manifold learning algorithms into the same frame-
work, which corresponds to an eigenvalue problem related
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to the alignment matrix. In this framework, we formulate the
active learning problem as follows: given the alignment ma-
trix (which contains all the geometrical information of the
manifold), delete L rows/columns (corresponding to label L
samples) so that the remaining principal submatrix has the
smallest condition number (the learning error is bounded
well). We analyze the problem theoretically and propose an
effective algorithm, which relaxed the original problem ra-
tionally and solve it based on a heuristic process.

Our algorithm is based on two key points. First, the loga-
rithmic condition number of a normal symmetric matrix is
equal to the difference between the maximum eigenvalue
and the minimum one of the logarithmic function of the
matrix. Based on this fact, the original condition number
minimization problem is rewritten as an eigenvalue dynamic
range minimization problem. Second, the Gershgorin circle
theorem provides us with an upper bound for the dynamic
range of eigenvalues. Deleting the rows/columns of matrix
is then equal to deleting the corresponding Gershgorin cir-
cles. Applying a sequential strategy, we delete circles and
the corresponding rows/columns one at a time, which ap-
proximately minimizes the corresponding condition number.

The contributions of our method include the following
three points. 1) We come up with an algebraic interpretation
of active learning, formulating active learning as a condition
number minimization problem in semi-supervised manifold
learning. 2) We give an upper bound for the solution based
on results from matrix theory. 3) Focusing on the active
manifold learning problem, we propose an effective sample
selection method guided by the Gershgorin circle theorem.
Comparing with existing methods, we show the superiority
of the proposed method.

Related Work
Manifold Learning. Many manifold learning approaches
have been proposed to find the intrinsic structure of data.
Among them, the methods based on local analysis, e.g., the
locally linear embedding (LLE) (Roweis and Saul 2000),
the Laplacian Eigenmap (LE) (Belkin and Niyogi 2003) and
the local tangent space alignment (LTSA) (Zhang and Zha
2005) are widely used. Based on the fact that each data
point and its neighbors lie on a locally linear patch of the
manifold, LLE finds the linear coefficients that reconstruct
each data point from its neighbors and align them glob-
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ally. LE describe the manifold by a Laplacian graph ma-
trix, which ensures that similar samples have similar latent
variables. Similarly, LTSA constructs an approximation for
the tangent space at each data point, and aligns these tan-
gent spaces to give the global coordinates of the data points.
In the field of semi-supervised learning, semi-supervised
manifold learning is proposed in (Yang et al. 2006; Zhang,
Zha, and Zhang 2008). Moreover, manifold assumption
has been widely used to regularize other models in semi-
supervised learning (Belkin, Niyogi, and Sindhwani 2006),
e.g., manifold regularized sparse coding (Zheng et al. 2011;
Long et al. 2013) for image classification. However, the sam-
ple selection problem for semi-supervised manifold learning
has not been addressed in these works.

Active Learning. The sample selection problem has been
studied in the field of active learning for several years (Set-
tles 2010). In (Beygelzimer, Dasgupta, and Langford 2009),
the importance of data is measured, and a weighted active
learning algorithm is proposed. In (Vijayanarasimhan, Jain,
and Grauman 2010), a batch active learning algorithm for
image and video recognition is proposed. In (Hu et al. 2013),
active learning is achieved by neighborhood reconstruction.
An active transfer learning method is proposed in (Zhao et
al. 2013) for cross-system recommendation. These works
only focus on classification, and they do not combine active
learning with manifold learning. Additionally, none of the
works above study active learning from the algebraic view.
Two manifold-related active learning methods are the har-
monic function method in (Zhu, Lafferty, and Ghahramani
2003) and the landmark method in (De Silva and Tenen-
baum 2004). The harmonic function method is suitable for
classification tasks while its extension for regression tasks is
not proposed. The landmark method labels samples one at
a time. Each new labeled sample maximizes the minimum
geodesic distance to any of the existing labeled samples. In
both of these two methods, the first labeled sample is chosen
arbitrarily, so the stability is not guaranteed.

Note that our work is different from domain adaptation
(Gong et al. 2012; Gong, Grauman, and Sha 2013). In do-
main adaptation, labeled source samples are given to guide
the labeling of target samples. In our work, source samples
are unavailable, we decide which target samples to be la-
beled according to their own information.

Background
Let X = [x1, ...,xN ] ∈ RD×N be a set of samples from a
manifold X given as xi = f(yi) + ni, i = 1, .., N . Here
yi ∈ Rd represents the unknown low-dimensional param-
eter (d � D) corresponding to xi, and ni represents sam-
pling noise. Assuming that the manifold is well-sampled, we
can achieve manifold learning by various algorithms, e.g.,
ISOMAP, LLE, LE, LTSA, etc. As shown in (Yang et al.
2006; 2010), these algorithms can be formulated in a unified
manner: construct a K-NN graph and then solve the follow-
ing problem.
min
Y

tr(Y ΦY T ), s.t. Y Y T = I, Y = [y1, ...,yN ], (1)

where tr(·) is the trace operator. Φ is the Laplacian graph
matrix in LE or the alignment matrix in ISOMAP, LLE or

LTSA, which is computed based on the K-NN graph. For
convenience, we call it the alignment matrix in this paper.

Semi-supervised manifold learning extends basic man-
ifold learning — parameter estimation depends on both
geometric information (the alignment matrix) and seman-
tic information (labels). Given X = [Xl,Xu], where
Xl = [x

(l)
1 , ..,x

(l)
L ] are labeled with parameters Zl =

[z
(l)
1 , ..,z

(l)
L ], we want to determine Zu = [z

(u)
1 , ..,z

(u)
N−L]

for unlabeled samples Xu = [x
(u)
1 , ..,x

(u)
N−L]. A direct way

is the Least Squares (LS) method, minimizing the follow-
ing objective function (Yang et al. 2006),

tr(ZΦZT ) = tr
(
[Zl,Zu]

[
Φ11 Φ12

ΦT
12 Φ22

] [
ZT

l

ZT
u

])
, (2)

where Zl is known. It is equivalent to find the least squares
solution for a linear system of equations, which will be dis-
cussed further in the next section.

Besides the direct way above, we can also achieve
semi-supervised manifold learning by the spectral method
(Zhang, Zha, and Zhang 2008). Instead of finding the map-
ping fz→x directly, the spectral method considers two man-
ifolds: X = h(Y) and Z = g(Y), which share the same
latent space Y , yi ∈ Y . We assume that the mapping g:
Y → Z is an affine transformation. Then, we learn the map-
ping h: Y → X by manifold learning algorithm, which is
regularized by the label information. Specifically, the error
between Yl = [y

(l)
1 , ..,y

(l)
L ] and the affine transformation of

ZL should be minimized. According to this constraint, we
add a regularization term of Yl to Eq. (1) and estimate Y by
minimizing following objective function:

tr(Y ΦY T ) + λtr(YlGY
T
l ), (3)

=tr
(
[Yl,Yu]

[
Φ11 + λG Φ12

ΦT
12 Φ22

] [
Y T
l

Y T
u

])
,

where G is the orthogonal projection whose null space is
spanned by [1,ZT

l ]. After getting Y , we learn the affine
transformation between Yl and Zl.

Besides manifold learning, manifold based regulariza-
tion is widely used in classification problems, describing the
structure of (labeled and unlabeled) samples (Zheng et al.
2011; Long et al. 2013). Take the graph regularized sparse
coding model (GraphSC) in (Zheng et al. 2011) as an exam-
ple, the objective function is

‖X −DY ‖2F + λ1‖Y ‖1︸ ︷︷ ︸+λ2tr(Y ΦY T )︸ ︷︷ ︸ . (4)

sparse representation manifold regularization
After getting Y , various classifiers, e.g., SVM, Logistic re-
gression, can be trained according to {Yl,Zl}.

The Algebraic Interpretation of Active
Manifold Learning

Proposed Model
Without loss of generality, we can rewrite the objective func-
tion in Eq. (2) as follows,

min
Zu

2ZlΦ12Z
T
u +ZuΦ22Z

T
u . (5)
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Similarly, Eq. (3) can be rewritten as follows,

min
Y
Yl(Φ11 +G)Y T

l + 2YlΦ12Y
T
u + YuΦ22Y

T
u . (6)

If the mapping g: Y → Z is an affine transformation, we
can merely preserve the terms involving Yu so that Eq. (6)
is equivalent to Eq. (5). Here, the active learning problem
arises: given limited resources, we need to select L samples
from X and label them accordingly with Zl, such that the
estimation error of Yu (or Zu) is minimized.

Setting the gradient of the objective function Eq. (6) (or
Eq. 5) with respect to Yu (or Zu) to zero, we get

Φ22Y
T
u = Φ12Y

T
l . (7)

The error in Eq. (7) only exists in Φ12 and Φ22, so we con-
sider the parameterized system:

(Φ22 + εE2)Ŷ
T
u = (Φ12 + εE1)Y

T
l . (8)

Here E1, E2 are two noise matrices, ε bounds their energy.
Ŷu is the estimation of the ground truth Yu. According to a
result in (Golub and Van Loan 2012), the relative estimation
error satisfies

Ŷu − Yu

‖Yu‖
≤ κ(Φ22)|ε|

(
‖E1‖
‖Φ12‖

+
‖E2‖
‖Φ22‖

)
. (9)

Here κ(Φ22) is the condition number of Φ22. The defini-
tion of condition number is κ(Φ22) = ‖λmax/λmin‖, where
λmax and λmin are the largest and the smallest eigenvalues
of Φ22. We can find that the relative error is bounded by
κ(Φ22) times the relative errors in Φ12 and Φ22. It means
that κ(Φ22) decides the sensitivity of the estimation directly.

From this view, we formulate the active learning prob-
lem in a purely algebraic setting: given the alignment ma-
trix Φ, delete L rows/columns so that the remaining prin-
cipal submatrix Φ22 has the smallest condition number. Let
v ∈ {0, 1}N be the index vector for the rows/columns of Φ
corresponding to Φ22, the active learning problem in mani-
fold learning is solving following problem.

min
v
κ(Φ(v,v)), s.t. ‖v‖0 = N − L. (10)

Here Φ(v,v) is the principal submatrix corresponding to
the rows/columns indexed by v. ‖v‖0 counts the number of
nonzero elements in v (the number of unlabeled samples).

Theoretical Bound for The Solution
There are many algorithms for condition number minimiza-
tion (Greif and Varah 2006; Chen, Womersley, and Ye 2011).
Unfortunately, all of these algorithms require the feasible
domain to be continuous. In Eq. (10), however, the feasible
domain is discrete, which contains (LN ) possible solutions.

Eq. (10) can be solved approximately by the Rank-
revealing QR-factorizations (RRQR) in (Hong and Pan
1992). Mathematically, given an N ×N matrixB with sin-
gular values σ1(B) ≥ σ2(B) ≥ · · · ≥ σN (B) ≥ 0, if
there is a reasonable gap between σn(B) and σn+1(B), and
σn+1(B) is small enough, it is reasonable to assume that B

has a numerical rank n. In this case, any RRQR attempts to
find a permutation matrix Π such that the QR factorization

BΠ = QR, R =

[
R11 R12

0 R22

]
, R11 is n× n (11)

satisfiesR11’s smallest singular value σmin(R11) ≈ σn(B)
and R22’s largest singular value σmax(R22) ≈ σn+1(B),
whereQ is orthogonal andR is upper triangular. In essence,
R11 captures the well-conditioned part of B. Readers can
refer to (Hong and Pan 1992) for the details of RRQR.

An important property of RRQR is that there exists an
RRQR such that

σmin(R11) ≥
σn(B)√

n(N − n) + 1
. (12)

Making use of this property, we obtain an upper bound for
the condition number of a principal submatrix of Φ.
Theorem 1 Let the eigenvalues of Φ be λ1(Φ) ≥ λ2(Φ) ≥
· · · ≥ λN (Φ) ≥ 0. There exists an (N − L) × (N − L)
principal submatrix Φ22 of Φ such that

κ(Φ22) ≤ [L(N − L) + 1]
λ1(Φ)

λN−L(Φ)
. (13)

Proof Since Φ is positive semidefinite, there is anN×N B
such that Φ = BTB. Let B have an RRQR (11) satisfying
(12) with n = N − L. Now notice

ΠTΦΠ =(BΠ)T (BΠ) = RTR

=

[
RT

11R11 RT
12R12

RT
12R12 RT

12R12 +R
T
22R22

]
to see that Φ has an (N −L)× (N −L) principle submatrix
Φ22 = RT

11R11 whose smallest eigenvalue is

[σmin(R11)]
2 ≥

[
σN−L(B)√
L(N − L) + 1

]2

=
λN−L(Φ)

L(N − L) + 1
,

because λN−L(Φ) = [σN−L(B)]2. The result follows by
noting that λmax(Φ22) ≤ λ1(Φ). �

Proposed Active Manifold Learning
Reformulation Based on Logarithmic Transform
Although RRQR provides us with an upper bound for the
solution of Eq. (10), the bound is too loose for practical ap-
plication. We need to find a more practical method to solve
this problem. The direct way to solve Eq. (10) is enumerat-
ing all the possible submatrices, which involves (LN ) solving
eigen-problems. Obviously, this method is impractical for
the large-scale case. Here we come up with an alternative
way, reformulating this problem from minimizing condition
number to minimizing the dynamic range of the eigenvalues:
the logarithmic version of the objective function in Eq. (10)
is

min
v
| lnλmax(Φ(v,v))− lnλmin(Φ(v,v))|. (14)

Here, lnλmax and lnλmin are the largest and the smallest
eigenvalues of ln (Φ(v,v)).
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Inspired by Eq. (14), we transfer the optimization prob-
lem about Φ to the one about lnΦ: Given Λ = lnΦ, delete
L rows/columns so that the remaining principal submatrix
Λ(v,v) has the narrowest dynamic range of eigenvalues.
Formally, we solve the following optimization problem1,

min
v
|λmax(Λ(v,v))− λmin(Λ(v,v))|, (15)

s.t. ‖v‖0 = N − L.

Sample Selection Guided by Gershgorin Circle
Replacing Eq. (10) with Eq. (15) does not simplify the prob-
lem directly — we still need to solve (LN ) eigen-problems to
attain the optimal v. However, it allows us to further relax
the problem and solve it very effectively with the help of the
Gershgorin circle theorem (Geršgorin 1931).
Theorem 2 For an N ×N matrixM , each eigenvalue sat-
isfies: |λ −mii| ≤

∑
j 6=i |mij | for i = 1, .., N . Here mij’s

are the elements of M . Let ri =
∑

j 6=i |mij |, then the set
Ci = {x ∈ C | |x −mii| ≤ ri} is called the ith Gershgorin
circle ofM .
According to the Gershgorin circle theorem, every eigen-
value ofM must fall into the union of its Gershgorin circles⋃N

i=1 Ci. As a result, the dynamic range of the eigenvalues
is bounded by the boundary of the set

⋃N
i=1 Ci — denoting

λl = min{mii− ri}Ni=1, λu = max{mii + ri}Ni=1, we have

|λmax − λmin| ≤ |λu − λl|. (16)

Here we further relax the problem: rather than minimizing
the dynamic range of the eigenvalues, we minimize its upper
bound. So, the final problem we want to solve is

min
v
|λu(Λ(v,v))− λl(Λ(v,v))|, (17)

s.t. ‖v‖0 = N − L.
Eq. (17) is easy to solve because the influence of deleting

matrix’s rows/columns on the upper bound is reflected by
Gershgorin circles directly and quantitatively. For example,
if we delete the ith row/column ofM , in the complex plane
of eigenvalues the ith Gershgorin circle will be deleted,
the radius of the jth circle will be reduced to rj − |mji|,
and the upper bound |λu − λl| will become tight accord-
ingly. For minimizing the upper bound, we need to delete
the rows/columns whose corresponding circles are far from
the center of

⋃N
i=1 Ci and have large radius. Consider the

special case deleting 1 row/column (L = 1), the algorithm
for circle deletion is shown below.

The principle of the algorithm above is simple. We first
find the Gershgorin circles containing λl and λu. Then, we
delete the circle (the row/column of matrix accordingly)
having larger radius because after deleting it the rest of cir-
cles shrink more. For convenience, we denote CDA(·) as an
operator, whose input is an matrix and output is the index of
the deleted row/column.

1It should be noted that Eq. (15) is different from Eq. (10) be-
cause generally ln (Φ)(v,v) 6= ln (Φ(v,v)). However, experi-
mental results show that such a relaxation indeed improves the final
learning results.

Circle Deletion Algorithm (CDA)
1. For N ×N matrixM , compute its Gershgorin circles
{Ci}Ni=1.

2. The upper bounds and the lower bounds for all circles,
denoted as α = [m11 + |r1|, ...,mNN + |rN |]T and
β = [m11 − |r1|, ...,mNN − |rN |]T , respectively.

3. Find the minimum in α and the maximum in β,
record the corresponding indices as a and b.

4. If ra ≤ rb, delete Cb and the bth row/column fromM ,
else, delete Ca and the ath row/column fromM .

The Scheme of Algorithm
With the help of the Gershgorin circle theorem, we pro-
pose an effective active manifold learning algorithm, which
smartly selects samples to label. In summary, given the
alignment matrix, we select one sample at a time. In each
iteration, the logarithmic function of the remaining subma-
trix is calculated, and one row/column is deleted by our cir-
cle deletion algorithm. Repeating the process above L times,
the indices of the deleted rows/columns are the indices of the
samples requiring labels.

Active Manifold Learning
Input: Sample setX ∈ RD×N ;

The number of labeled samples we can select, L;
Algorithm:
1. Given the K-NN graph ofX ∈ RD×N , compute the

alignment matrix Φ by a certain method.
2. Initialize the index set v = {1, .., N} for unlabeled

samples, the index set w = ∅ for labeled samples.
3. For i = 1 : L

Λ = ln (Φ(v,v)).
li = CDA(Λ), v = v \ {li}, w = w ∪ {li}.

4. SelectXl =X(:,w) as the samples requiring labels.
Label them with Zl.

Semi-supervised manifold learning:
apply manifold learning method to get Z = [Zl,Zu].

Manifold regularized learning task:
learn feature Y and train model by {Yl,Zl}.

Like the landmark method in (De Silva and Tenenbaum
2004) and the harmonic function based method in (Zhu,
Lafferty, and Ghahramani 2003), our method is heuristic as
well. However, our method is more deterministic because
the first labeled sample is chosen definitely based on the
numerical property of alignment matrix. Our algorithm in-
volves computing a matrix logarithm iteratively, so in the
worst case the computational complexity of our algorithm is
O(LN3), where L is the number of labeled samples and N
is the total number of samples. Fortunately, when the align-
ment matrix is sparse2, the computational complexity can
be substantially reduced using Krylov-subspace based iter-
ative methods (Al-Mohy and Higham 2012). On the other

2Using K-NN graph to model the geometrical information of
samples, the alignment matrix can be sparse. In fact, the sparse sit-
uation is common when we use manifold assumption to regularize
the training process of classifier.
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hand, the landmark algorithm computes geodesic distance
between samples, whose complexity is O(LN3). The har-
monic function based method compute inverse of matrix it-
eratively, whose complexity isO(LN3) as well. As a result,
our method has comparable complexity to the competitors
and the performance of our algorithm is more stable.

Another advantage of our algorithm is its universality —
as long as the learning model involves an alignment ma-
trix, we can apply our sample selection method to improve
the learning result. Because most of manifold learning algo-
rithms and learning tasks regularized by manifold involves
computing an alignment matrix, it is natural to introduce our
algorithm into existing learning model.

Experiments
We test our active manifold learning algorithm on both re-
gression and classification tasks. The active learning meth-
ods include: randomly labeling; (Random), two manifold
related methods: the landmark method in (De Silva and
Tenenbaum 2004) (Landmark) and the harmonic func-
tion method3 in (Zhu, Lafferty, and Ghahramani 2003)
(Harmonic); and our Gershgorin circle guided method
(GC). The semi-supervised manifold learning algorithms
for regression include the least squares method in (Yang et
al. 2006) (LS) and the spectral method in (Zhang, Zha, and
Zhang 2008) (Spectral). Like (Yang et al. 2006; Zhang, Zha,
and Zhang 2008; Zhang, Wang, and Zha 2012), we compute
the alignment matrix by LTSA. For classification, graph reg-
ularized sparse coding model (GraphSC, Eq. (4)) is applied.
After learning sparse codes of samples, we label some sam-
ples by various active learning methods and train SVM clas-
sifier by labeled sparse codes.

Regression Case
The first data set we use is the face data from (Tenen-
baum, De Silva, and Langford 2000). The data set contains
N = 698 faces with size 64 × 64 (D = 4096) synthe-
sized under various lighting conditions and poses (d = 3,
1 for lighting and 2 for pose), as shown in Fig. 1(c). Specifi-
cally, in each trial, we randomly select 600 samples and con-
struct a K-NN graph, K = 8. The parameter of the spectral
method is set to λ = N

L . We apply various algorithms to
label L = 10, 20, .., 100 samples respectively, and then esti-
mate the labels (parameters) for the rest of samples by semi-
supervised manifold learning algorithms. Repeating the test
100 times in both noise-free and noisy cases (Gaussian noise
with zero mean and variance σ2 = 0.01), we obtain means
of errors E’s and variances of errors Var(E)’s for various
methods. Given the ground truth for the parameters of un-
labeled samples Zu, the relative error E of the estimation
result Ẑu is measured as E = ‖Zu − Ẑu‖F /‖Zu‖F .

Curves of log10(E)’s and log10(Var(E))’s are shown
in Fig. 1(a, b). Applying the sample selection algorithm
reduces the mean and the variance of error greatly, and
our method exhibits better performance than “Landmark”
(De Silva and Tenenbaum 2004). In both the noise-free

3It is only applied for classification.

Figure 1: (a,b) Curves of log10(E)’s and log10(Var(E))’s
for various methods in clear and noisy cases. (c) Examples
of data. (d) Curves of log10(κ(Φ22))’s.

and noisy cases, the mean error obtained by our proposed
method is better than that of “Landmark”, which holds for
various L’s. Moreover, the variance obtained by our pro-
posed method reduced rapidly in both noise-free and noisy
cases. Although the variance obtained by “Landmark” is
slightly better than ours when L is large and the samples
are noise-free, in the noisy case “Landmark” is not stable
— the variance does not always decay. The reason is that
the randomness of the initial point leads to the instability
of “Landmark”, especially when L is small and the sam-
ples have noise. Table 1 further gives numerical results in
the noise-free case.

Fig. 1(d) provides the curves of log10(κ(Φ22))’s with the
increase ofL. The condition number obtained by our method
is not only much smaller than the theoretical bound but also
smaller than that of “Landmark”. According to Eq. (9), a
small condition number leads to tight bound of error. This
result also demonstrates the superiority of our method.

Another data set we used is from (Rahimi, Darrell, and
Recht 2005), which shows a subject moving his arms. We
choose 1200 frames from the video sequence, and manu-
ally determine the locations of the subject’s wrists and el-
bows as the parameter vectors that label the frames. We con-
struct a K-NN graph (K = 50) and pick the dimension d
to be 8. Because the dimension of the image is very high,
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Table 1: Estimation Errors for Various Methods
Method\#labels 10 40 70 100
Random-LS 0.199 0.085 0.056 0.050
Random-Spectral 0.268 0.068 0.056 0.049
Landmark-LS 0.157 0.097 0.071 0.071
Landmark-Spectral 0.128 0.083 0.069 0.066
GC-LS 0.116 0.064 0.050 0.043
GC-Spectral (Proposed) 0.085 0.060 0.048 0.041

Figure 2: Comparison on tracking arms. In each subfigure,
the index of frame is given at the top of image. The green
arms correspond to Landmark-Spectral while the red ones
correspond to GC-Spectral (Proposed).

we first apply PCA to original frames, reducing their di-
mension to D = 500 and treating these features as sam-
ples. L = 60 frames are labeled, which are selected by our
method and “Landmark” respectively. Finally, applying the
spectral method (Zhang, Zha, and Zhang 2008), we learn the
locations of wrists and elbows in the unlabeled frames.

Fig. 2 illustrates our results. Compared with Landmark-
Spectral, our method achieves better results: in the nor-
mal case where two arms do not obstruct with each other
(i.e., the frames #281, #882, #1157), our algorithm is
slightly better than Landmark-Spectral; in the challeng-
ing case where two arms overlap together (i.e., the frame
#1039) or one arm is obstructed by hand (i.e., the frames
#599), our algorithm achieves encouraging tracking results
while Landmark-Spectral fails to learn the correct locations.
The reason is that our sample selection algorithm makes a
wiser selection than that of “Landmark”. Some frames con-
taining challenging cases are selected smartly to label.

Classification Case
Our active manifold learning method is also suitable for
classification. The data sets we used include: 1) The ARface
data set (Martinez 1998) contains over 4000 frontal view
faces corresponding to 126 people’s faces. We use a sub-
set of the database consisting of 2600 images from 50 male
subjects and 50 female subjects. 2) The Extended YaleB data
set contains 2414 frontal face images of 38 persons. Follow-
ing the settings in (Jiang, Lin, and Davis 2011), each face in
the two data sets above is represented as a 540-dimensional
random-face feature vector. 3) The Caltech101 data set (Fei-

Table 2: Comparison on Classification Accuracy (%)
ARface

Method\#labels 5/Class 10/Class 15/Class
Random-GraphSC 69.4 86.2 89.7
Harmonic-GraphSC 75.9 90.0 90.3
Landmark-GraphSC 76.5 90.2 90.7
GC-GraphSC (Proposed) 79.7 92.7 93.9

Extended YaleB
Method\#labels 5/Class 10/Class 15/Class
Random-GraphSC 56.2 68.3 78.6
Harmonic-GraphSC 62.8 83.1 88.2
Landmark-GraphSC 60.4 80.2 87.8
GC-GraphSC (Proposed) 73.0 84.1 88.7

Caltech101
Method\#labels 5/Class 10/Class 15/Class
Random-GraphSC 51.9 61.4 67.5
Harmonic-GraphSC 54.2 61.9 68.2
Landmark-GraphSC 53.3 62.1 68.3
GC-GraphSC (Proposed) 56.0 64.2 69.5

Fei, Fergus, and Perona 2007) contains 9144 images from
101 object classes and a “background” class.

Applying GraphSC, we first learn dictionary and attain
sparse codes of samples. The configuration of dictionary fol-
lows the set in (Jiang, Lin, and Davis 2011) as well. For the
samples (codes) belonging to the same class, we select a part
of them as training set by the “Random”, the “Landmark”,
the “Harmonic” and our method respectively. Finally, given
labeled samples, we train a SVM classifier. The classifica-
tion results for various labeled samples per class are shown
in Table 2. We find that our method improves classification
accuracy greatly compared with the landmark method.

Further Analysis
Note that with the increase of selected samples the advan-
tage of the proposed method seems to be limited in both re-
gression and classification. This is the nature of active learn-
ing because the sufficiency of the selected sample can make
up the robustness of sample selection. The more samples are
labeled, the higher probability that they are sufficient to de-
scribe the sample space. In an extreme case, given a set of
samples, if we require all samples to be labeled, our method
will have no improvement because all active learning meth-
ods above select same samples to label. This phenomenon
should not influence the evaluation of our method — our
method obtains improved results over its alternatives when
they label same number of samples, indeed, especially in the
case labeling few samples and the case having noise.

Conclusions
We proposed a heuristic method to select samples for label-
ing in semi-supervised manifold learning. Our method can
be viewed as an algebraic interpretation of active learning,
which selects a principal submatrix from the alignment ma-
trix with moderate condition number. In the future, we will
further explore the theory for our method.
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