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Abstract

Interactions among people or objects are often dynamic
in nature and can be represented as a sequence of net-
works, each providing a snapshot of the interactions
over a brief period of time. An important task in an-
alyzing such evolving networks is change-point detec-
tion, in which we both identify the times at which the
large-scale pattern of interactions changes fundamen-
tally and quantify how large and what kind of change
occurred. Here, we formalize for the first time the net-
work change-point detection problem within an on-
line probabilistic learning framework and introduce a
method that can reliably solve it. This method combines
a generalized hierarchical random graph model with a
Bayesian hypothesis test to quantitatively determine if,
when, and precisely how a change point has occurred.
We analyze the detectability of our method using syn-
thetic data with known change points of different types
and magnitudes, and show that this method is more
accurate than several previously used alternatives. Ap-
plied to two high-resolution evolving social networks,
this method identifies a sequence of change points that
align with known external “shocks” to these networks.

Networks are frequently used as a general framework to
quantify and analyze the interactions between objects or
people. Network models can be used to better understand
the large-scale structure of interactions by identifying clus-
ters of highly interacting communities or functional groups
of structurally equivalent nodes. However, these interactions
are often dynamic in nature, and traditional approaches can
overlook the non-stationary structure of real networks. In
these dynamic and temporally evolving systems we are not
only interested in understanding the large-scale structure but
also identifying if, when and how it changes in time.

For instance, in social networks, change points may be
the result of normal periodic behavior, as in the weekly tran-
sition from weekdays to weekends. In other cases, change
points may result from the collective anticipation of or re-
sponse to external events or system “shocks”. Detecting such
changes in social networks could provide a better under-
standing of patterns of social life and an early detection of
social stress caused by, e.g, natural or man-made disasters.
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Here we define the network change-point detection prob-
lem and introduce an online probabilistic learning algorithm
for solving it. Identifying a change point requires inferring
a structural “norm” for interactions across a sequence of
graphs and accurately detecting if, when and how this norm
has shifted at some point in time. To characterize what kind
and how large a change occurred, we prefer interpretable
models of network structure, so that changes in parameter
values have direct meaning with respect to the network’s
large-scale structure. Here, we take the novel approach of
characterizing network norms via probabilistic distributions
over graphs, which we learn in an online fashion. Identifying
the timing and shape of such change points divides a net-
work’s evolution into contiguous periods of relative struc-
tural stability, allowing us to subsequently analyze each pe-
riod independently, while also facilitating hypotheses about
the underlying processes shaping the data.

Beyond specialized solutions for change-point detection
in cybersecurity domains (Lévy-Leduc and Roueff 2009),
many “change-point detection” methods for networks are in
fact solving the distinct anomaly detection problem of iden-
tifying network snapshots that deviate significantly from a
stationary network norm (Hirose et al. 2009; Akoglu and
Faloutsos 2010). In contrast, traditional change-point detec-
tion focuses on the more difficult problem of identifying sig-
nificant shifts in the norm itself. Solving this problem re-
quires distinguishing a statistically significant change from
mere noise, and thus qualitative approaches are likely to be
insufficient (Sun et al. 2007; Berlingerio et al. 2013).

Much like traditional online change-point detection meth-
ods for scalar- or vector-valued time series (Basseville and
Nikiforov 1993), our approach for the network change-point
detection problem has three components:

1. select a parametric family of probability distributions ap-
propriate for the data, and a sliding window size w;

2. infer two versions of the model, one representing a change
of parameters at a particular point in time within the win-
dow, and the one representing the null hypothesis of no
change over the entire window; and,

3. conduct a statistical hypothesis test to choose which
model, change or no-change, is the better fit.
Past work on the network change-point detection prob-

lem has typically converted the sequence of networks into
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Figure 1: A snapshot of the Enron email network from Oc-
tober 2001 and its corresponding GHRG dendrogram. In the
dendrogram, leaves are vertices in the email network and the
tree gives their nested group structure.

a time series of scalar values and then applied traditional
techniques (Priebe et al. 2005; McCulloh and Carley 2011).
Here, we introduce a novel solution based on generative
models of networks, which define a parametric probabil-
ity distribution over graphs. Our particular choice of model
is the generalized hierarchical random graph (GHRG),
which compactly models nested community structure at all
scales in a network and provides an interpretable output
for later analysis. Our approach, however, is entirely gen-
eral, and the GHRG could be replaced with another genera-
tive network model, e.g., stochastic block models (Holland,
Laskey, and Leinhardt 1983; Nowicki and Snijders 2001),
hierarchical graph models (Clauset, Moore, and Newman
2007; Blundell and Teh 2013), or Kronecker product graph
model (Leskovec et al. 2005). Finally, to choose between the
change versus no-change models, we use a Bayesian hypoth-
esis test, with a user-defined parameter specifying a target
false-positive rate.

We then show that this approach quantitatively and accu-
rately determines if the network norm has changed, when
precisely the norm change occurred, and how the norm has
changed. Specifically, we present a taxonomy of different
types and sizes of network change points and a quantita-
tive characterization of the difficulty of detecting them using
synthetic network data with known change points. We then
test the method on two real, high-resolution evolving social
networks of physical and digital interactions, showing that
it more accurately recovers the timing of known significant
external events than comparable techniques.

Defining a probability distribution over
networks

Under a probabilistic approach to change-point detec-
tion, we must choose a parametric distribution over net-
works. Here, we introduce the generalized hierarchical ran-
dom graph (GHRG) model. This model has several fea-
tures that make it attractive for change-point detection and
generalizes the popular hierarchical random graph (HRG)
model (Clauset, Moore, and Newman 2007). First, the
GHRG naturally captures both assortative and disassortative
community structure patterns, models community structure
at all scales in the network, and provides accurate and in-
terpretable fits to social, biological and ecological networks.
Second, our generalization relaxes the requirement that the

dendrogram is a full binary tree, thereby eliminating the
HRG’s non-identifiability and improving the model’s inter-
pretability for quantifying how a network’s structure varies
across a change point. Third, we use a Bayesian model
of connection probabilities that quantifies our uncertainty
about the network’s underlying generative model.

The GHRG models a network G = {V,E} composed of
vertices V and edges E ⊆ {V × V }. The model decom-
poses the N vertices into a series of nested groups, whose
relationships are represented by a dendrogram T . Vertices
in G are leaves of T , and the probability that two vertices
u and v connect in G is given by a parameter pr located
at their lowest common ancestor in T . In the classic HRG
model (Clauset, Moore, and Newman 2007), each tree node
in T has exactly two subtrees, and pr gives the density of
connections between the vertices in the left and right sub-
trees. As a result, distinct combinations of dendrograms and
probabilities produce identical distributions over networks,
producing a non-identifiable model. In the GHRG, we elim-
inate this possibility by allowing tree nodes to have any num-
ber of children and preferring more compact trees. Figure 1
illustrates the GHRG applied to a network of email commu-
nications.

Given tree T and set of connection probabilities {pr}, the
GHRG defines a distribution over networks and a likelihood
function

p(G |T, {pr}) =
∏
r

pEr
r (1− pr)Nr−Er , (1)

whereEr is the number of edges between vertices with com-
mon ancestor r and Nr is the total number of possible edges
between vertices with common ancestor r:

Nr =
∑

ci<cj∈Cr

|ci||cj | , (2)

where Cr is the set of direct descendants of r and ci is the
set of network vertices decending from dendrogram node i.

One approach to setting the connection probability param-
eters {pr} would be to choose their values via maximum
likelihood, setting each p̂r = Er /Nr However, this choice
provides little room for uncertainty and is likely to increase
our error rate in change-point detection. Consider the case
where exactly zero connections Er = 0, or equivalently all
connections Er = Nr, are observed for a particular branch
r. Under maximum likelihood, we set pr = 0 or 1. If a
subsequent network has, or lacks, even a single edge whose
common ancestor is r, then Er > 0 or Er < 1, and the like-
lihood given by Eq. (1) drops to 0, an unhelpful outcome.

We mitigate this behavior by assuming Bayesian priors
on the pr values. Now, instead of setting pr to a point value,
we model each pr as a distribution, which quantifies our un-
certainty in its value and prevents its expected value from
becoming 0 or 1. For convenience, we employ a Beta distri-
bution with hyperparameters α = β = 1, which corresponds
to a uniform distribution over the parameters pr. Because the
Beta distribution is conjugate with the Binomial distribution,
we may integrate out each of the pr parameters analytically

p(G |T, α, β)=
∏
r

Γ(α+β)

Γ(α)Γ(β)

Γ(Er+α)Γ(Nr−Er+β)

Γ(Nr+α+β)
.

(3)
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Learning the model
Fitting the GHRG model to a network requires a search over
all trees on N leaves and the corresponding link probability
sets {pr}, which we accomplish using Bayesian posterior
inference and techniques from phylogenetic tree reconstruc-
tion.

Tree structures are not amenable to classic convex opti-
mization techniques, and instead must be searched explic-
itly. However, searching over all non-binary trees is costly.
Phylogenetic tree reconstruction faces a similar problem,
which is commonly solved by taking a majority “consensus”
of a set of sampled binary trees (Bryant 2003). This consen-
sus procedure selects the set of bipartitions on the leaves
that occur in a majority of the sampled binary trees, and
each such set denotes a unique non-binary tree containing
exactly those divisions. For instance, if every sampled tree
is identical, then each is identical to the consensus tree; if
every sampled tree is a distinct set of bipartitions, the con-
sensus tree has a single internal node to which all of the leaf
nodes are connected. Thus, we estimate T in the GHRG by
using a Markov Chain Monte Carlo (MCMC) procedure to
first sample the posterior distribution of bipartitions. From
this set of sampled bipartitions, we derive their non-binary
majority consensus tree (an approach previously outlined in
Ref. (Clauset, Moore, and Newman 2007), but not used to
produce a probabilistic model) and assign link probabilities
{pr} to the remaining tree nodes.

Given this formulation, we may update the posterior dis-
tribution over the parameter pr given a sequence of observed
networks {Gt} by updating the hyperparameters as

α̃r=α+
∑
{Gt}

EGt
r β̃r=β+

∑
{Gt}

Nr−EGt
r . (4)

Thus, we obtain the posterior hyperparameters from the sum
of the prior pseudocounts of edges and the empirically ob-
served edge counts (number of present and absent connec-
tions). This Bayesian approach produces an implicit reg-
ularization. As the number of observations Nr increases,
the posterior distribution becomes increasingly peaked, re-
flecting a decrease in parameter uncertainty. In the GHRG
model, parameters closer to the root of T represent larger-
scale structures in G and govern the likelihood of more
edges. These parameters are thus estimated with greater cer-
tainty, while the distribution over parameters far from the
root, representing small-scale structures, have greater vari-
ance. This implicit regularization prevents over-fitting to
small-scale structural variations and improves the inferred
norm’s robustness to noise.

Detecting change points in networks
The final piece of our online network change-point detection
method is to determine whether and when the parameters of
our current model of “normal” connectivity have changed.
To accomplish this, we use the posterior Bayes factor over
a sliding window of fixed length w to detect if any changes
have occurred with respect to a GHRG model fitted over the
window. The size of the window determines how abrupt a
change has to be in order to be detected. Larger windows

allow more gradual changes to be detected. A change is de-
tected if the factor exceeds a threshold determined by a de-
sired false positive rate.

Posterior Bayes factor
To determine whether or not we believe a change has oc-
cured within a particular window we use the posterior Bayes
factor (Aitkin 1991). Similar to a likelihood ratio test (Aitkin
1997), but consistent with our Bayesian framework, the pos-
terior Bayes factor is a ratio of the observed data’s likeli-
hood under two different models: a null hypothesis model
H0, in which no change occurs, and an alternative hypothe-
sis model H1, in which a change occurs at some particular
time tc. However, rather than evaluate the likelihoods un-
der maximium likelihood parameters, we use the posterior
marginal likelihood by weighting the average likelihood by
the posterior distribution. For the GHRG, this is calculated
by updating the prior hyperparameters (α, β) in Eq. (3) with
the posterior hyperparameters (α̂, β̂) in Eq. (4).

We restrict our consideration of change points to those
within a sliding window of w networks, the last of which
is at the “current” time τ . We assume the change point tc
occurs between some pair of snapshots, which we indicate
using a 0.5 offset. For the no-change model, we say that all
networks within the window were drawn from a model with
parameters ψ(∅). For the change model, we let ψ(0) denote
the model parameters for networks up to tc within our win-
dow and ψ(1) the parameters for networks after tc, but still
within the window. Rewriting the change and no-change hy-
potheses in terms of such a shift in a parametric distribution
over graphs at tc, we have

H0 : ψ(∅) = ψ(∅) (no change) H1 : ψ(0) 6= ψ(1) (change) .

Using ψ̃ = {α̃r, β̃r} to denote the set of posterior hy-
perparameters, the GHRG’s posterior Bayes factor for a se-
quence of graphs {Gτ−w+1, ..., Gτ} is

Λt̂c =

log

t̂c−0.5∏
t=τ−w+1

p(Gt |Tτ , ψ̃(0)

t̂c
)

τ∏
t=t̂c+0.5

p(Gt |Tτ , ψ̃(1)

t̂c
)

τ∏
t=τ−w+1

p(Gt |Tτ , ψ̃(∅))
,

where ψ̃(∅) is the set of posterior hyperparameters pertain-
ing to the no-change hypothesis (no change point anywhere
in the window of w networks), while ψ̃(0)

t̂c
and ψ̃(1)

t̂c
are the

hyperparameters for the networks up to and then following
the point t̂c, respectively.

Finally, the time at which the change occurs tc is itself an
unknown value, and must be estimated. We make the con-
servative choice, choosing t̂c as the time point between a
pair of consecutive networks that maximizes our test statis-
tic Λ across the window. Letting gτ for a given window of w
networks ending at τ be that largest value

gτ = max
τ−w+1< t̂c<τ

Λt̂c , (5)
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Figure 2: Results for merge, split, fragment and form change points, where the size of the change is parameterized by the
structural index µ (orange line) and a discontinuity occurs at the true point of change. The resulting distributions of (top row)
estimated change points times t̂c (green bars), and (bottom row) detection times td (blue bars), for each change type. The 0.5
time offset indicates that the estimated change point time t̂c occurs between a pair of consecutive network snapshots, while td
gives the time of the last network in the window when a detection event occurs. False detections (false positives) occur when
td < tc; no detection (false negatives) occur when τ − w + 1 > tc without a detection.

we then say that the time of detection td is the first time point
τ at which gτ exceeds a threshold h (called a “stopping rule”
in the change-point detection literature):

td = min{τ : gτ > h} . (6)

Parametric bootstrapping
The choice of threshold h, which gτ must exceed for a de-
tection to occur, sets the method’s resulting false positive
rate and the distribution of gτ under the null model. Recent
results on model comparison for statistical models of net-
works, and specifically the stochastic block model, of which
the GHRG is a particularly useful special case, suggest that
for technical reasons the null distribution can deviate sub-
stantially from the χ2 distribution (Yan et al. 2012). To avoid
a misspecified test, we estimate the null distribution numer-
ically, via Monte Carlo samples from a parametric boot-
strap distribution (Efron and Tibshirani 1993) defined by the
GHRG for the no-change model. In this way, we estimate
the null distribution exactly, rather than via a possibly mis-
specified approximation.

For each network we sample from the no-change GHRG
model and calculate gτ from Eq. (5) to obtain its distri-
bution under the hypothesis of no change. Using the sam-
pled distribution, the threshold h may then be chosen so that
p(gτ > h) = pfp is the desired false positive rate. In practice
we do this by calculating a p-value for the test case by count-
ing the proportion of likelihood ratios in our null distribution
that are higher than our test statistic gτ :

p-value =
|{gτ}null > gτ |
|{gτ}null|

. (7)

Thus, if we find a p-value below the chosen threshold, we

say a change is detected, and when the no-change model is
correct, we are incorrect no more than pfp of the time.

Detectability of change points
Before applying our method to empirical data with unknown
structure and unknown change points, we first systemati-
cally characterize the detectability of different types of net-
work change points under controlled circumstances on syn-
thetic data, generated using our GHRG model, with known
structure and changes.

The following change-point types constitute difficult but
realistic tests that cover a broad variety of empirically ob-
served large-scale changes to network structure. For our nu-
merical tests, we choose network with N = 30 vertices
and a sparse and constant expected number of connections
(marginal link probability of 0.2). These small networks pro-
vide a more difficult test case than larger networks because
the limited amount of data make change points harder to
detect since it becomes harder to characterize the norms.
Furthermore, we define four general types of change points:
splitting, when one large community divides in two; merg-
ing, when two communities combine (the time-reversal of
splitting); formation, when one of two groups of vertices add
edges to make a community; and fragmentation, when one
of two groups loses all its edges (the time-reversal of forma-
tion).

Defining the structural index µ = pout /(pin + pout) pro-
vides a single parameter that controls the switching between
these distinct states. For the merge/split change points, we
choose the merged state to be µ = 0.5, which produces a
single community in which every edge occurs with the same
probability pin = pout. In the split state, the network is com-
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prised of two distinct communities.
For formation/fragmentation change points, we use the

same two-community model, but now fix the link probabil-
ity within one community and use µ to describe relationship
between the pin and pout of the second community.

We now summarize these change points with respect to µ:

merge µ 6= 0.5→ µ = 0.5 fragment µ < 1→ µ = 1

split µ = 0.5→ µ 6= 0.5 form µ = 1→ µ < 1 .

All tests used a w = 4 window size and a 0.05 false-positive
rate. For comparison, we used three simpler versions of our
probabilistic framework in which we replace the generative
model with a univariate Gaussian and convert the network
sequence into a time series of scalar values (mean degree,
mean geodesic distance, mean local clustering coefficient).

For each of the change types, Figure 2 shows two dif-
ferent distributions (over 100 runs): the estimated change
point t̂c and the time of detection td. We find that the es-
timated change points tend to either be correct or slightly
early. The time of detection (the end of the sliding window
when a change is detected) quantifies how many networks
after the change we must see before we identify the change
point. We find that the merge and fragment changes are de-
tected quickly, while their change points are often estimated
early. In contrast, the split and formation changes are de-
tected later, while the estimation of the change points them-
selves is more accurate.

In Figure 3 we compare the false positive and false neg-
ative error rates among all four methods. On false posi-
tives, all methods are close to 0.05, which matches the de-
sired false alarm rate. However, the false negative rates dif-
fer widely, with the simple methods performing terribly in
nearly every case, even when the size of the change is large.
In contrast, our method performs well across all four tests,
except when the size of the change is very small, e.g., when
∆µ ≈ 0, which represents the hardest cases, where small-
sample fluctuations obscure much of the actual change. In
the “split” and “merge” experiments we notice that there
seems to be a threshold around which the detectability
rapidly changes. In these experiments, for changes of small
magnitude, the networks are close to Erdős-Rényi random
graph both before and after the change point. It is likely then,
that this is related to the detectability phase transition known
to occur in the community detection problem (Decelle et al.
2011).

Change points in real networks
We now apply these approaches1 to detect changes in two
high-resolution evolving networks, the MIT Reality Mining
proximity network (Eagle and Pentland 2006) and the Enron
email network (Klimt and Yang 2004), for which a set of ex-
ternal “shocks” exists that serve as targets for change-point
detection. Both data sets are evolving networks of human
social interactions, but represent different interaction types.

We quantify the performance in terms of precision and re-
call as a function of the detection delay s between estimated

1Code for our method is available at
http://tinyurl.com/letopeel/code.html

Figure 3: False negative (bottom) error rates for our method
and the simple methods on the four different change types
for different magnitudes of change(∆µ).

change points {t̂c} and scheduled events {tc}, i.e.,

Precision(s) =
1

nc

∑
i

δ

(
inf
j

∣∣∣t̂(i)c − t(j)c ∣∣∣ ≤ s) (8)

Recall(s) =
1

na

∑
j

δ
(

inf
i

∣∣∣t̂(i)c − t(j)c ∣∣∣ ≤ s), (9)

where δ(x) is a delta function that equals 1 if x is true and
0 otherwise, and nc and na are the number of estimated
change points and actual events respectively. The precision
is then the proportion of estimated change points that occur
within a given delay s of a known event. Similarly, recall is
the proportion of known events that occur within a delay s
of an estimated change point.

Social proximity network
The MIT network is comprised of proximity data for 97 fac-
ulty and graduate students, recorded continuously via Blue-
tooth scans from their mobile phone over 35 weeks (Eagle
and Pentland 2006). From the raw scan data, we extracted
a sequence of weekly networks, in which an edge denotes
physical proximity to one of the 97 subjects at some point
that week. Associated with the dataset are 16 known external
events including public holidays, spring and winter breaks,
exam periods, etc (Eagle 2005).

For each detection method, the GHRG and the three sim-
ple methods, we used a window size w = 4, the same as
in the synthetic experiments. The results for each method
are shown in Figure 4 (top). We see that clustering coef-
ficient and mean degree slightly outperform our approach
in terms of precision, but our approach is much better than
all the baseline approaches at recall. Closer examination of
the change-points detected with each of the simple meth-
ods reveals that they exhibit low sensitivity relative to the
known external events (Eagle 2005).2 In particular, they do
pick out several real change points, including Winter break

2see long version for the identified change points for each
method, the time series of network measures, and a selection of
inferred GHRG dendrograms http://arxiv.org/abs/1403.0989
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Figure 4: Precision and recall of our method and the three
baseline methods at identifying known external events as a
function of delay (s).

(mean geodesic distance), the beginning (mean degree) and
end (clustering coefficient) of the independent activities pe-
riod. However, they also miss the majority of other events.
In particular mean degree and clustering coefficient only de-
tect a total of 2 change points, which explains the high pre-
cision scores. Furthermore there is little consistency across
these methods (with the exception of the beginning of Spon-
sor week). Thus, these techniques seem both unreliable and
inconsistent.

In contrast, the GHRG method identifies nearly all of the
known external events, along with a few additional change
points, e.g., one week before and one week after Sponsor
week. This fact agrees well with the social dynamics of
Sponsor week, an event involving 75 of the subjects and
which typically shifts work schedules dramatically as they
seek to meet deadlines and project goals (Eagle 2005).

Enron email network
The Enron network is comprised of emails among 151 users,
mostly senior management of the Enron energy company.
We identified a total of 25 events during the 3 year time-
line. Using a cleaned version of these data (Klimt and Yang
2004), we applied both the GHRG and simple methods to
weekly snapshots from May 1999 to June 2002.

Because this network sequence is very long, we exam-
ined the impact of varying window size, choosing w =
{4, 8, 16}. Results across window sizes were highly con-
sistent, although larger values produced additional change
points. This suggests that window size may operate like a
temporal resolution parameter, with longer windows giving
more resolution. The results for each method are shown in
Figure 4 (bottom) using a window size w = 16.

As with the MIT network, we again find that the simple
methods perform poorly; the GHRG method performs much
better than all of them in both precision and recall. Examin-
ing the GHRG change points and the list of external events,
we find that the identified change points correlate well with
key meetings and events such share price fluctuations. Ex-
amining the inferred dendrograms, we find that a particu-
larly large structural change occurred around the launch of
Enron online (Nov 1999).
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Figure 5: Time taken to infer GHRG for a window of 4 net-
works of varying size. Assumes sparse graphs, i.e., O(N)
edges.

Discussion
When analyzing a sequence of time evolving networks, a
central goal is to understand how the network’s structure has
changed over time, and how it might change in the future.
Change-point detection provides a principled approach to
this problem, by decomposing a potentially non-stationary
sequence of networks into subsequences of distinct but prob-
abilistically stationary structural patterns. Here, we have
presented the first change-point detection method for evolv-
ing networks that utilizes generative network models and
statistical hypothesis tests. By formalizing this problem
within a probabilistic framework, we developed a statisti-
cally principled method that can detect, in an online fash-
ion, if, when and how such change points occur in the large-
scale patterns of interactions. Under our framework, change
points occur when the shape of an estimated probability dis-
tribution over networks changes significantly.

Not all such change points are equally easy to de-
tect. Using synthetic data with known structure and known
change points, we observed that only changes of a large
enough magnitude could be detected reliably. Furthermore,
we found that changes associated with two communities
merging or with one of several communities losing its in-
ternal connections (“fragmentation”) were more difficult to
accurately detect than those associated with one community
splitting in two or with many singletons connecting to form
a new community (“formation”). This asymmetry in the de-
tectability of different types of network changes begs the
question of whether more sophisticated techniques can elim-
inate these differences, and whether adding auxiliary infor-
mation like edge weights (Aicher, Jacobs, and Clauset 2014)
or vertex attributes (Peel 2011) makes this problem easier or
harder.

That being said, change-point methods based on network
measures like the mean degree, clustering coefficient, or
mean geodesic path length performed poorly, yielding high
false negative rates even for large structural changes (Fig. 3).
This poor performance is likely the result of network mea-
sures discarding much of the specific information that gener-
ative models utilize. Applied to two high-resolution evolving
social networks, our method provided very good results, re-
covering the timing, from network data alone, of many more
known external “shock” events than the network-measure
methods (Fig. 4).

The computational burden of our current implementation
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lies in the MCMC procedure used to infer the hierarchical
structure (see Figure 5 for inference times). The recent work
of Ref. (Blundell and Teh 2013) proposes a greedy approach
to inferring a hierarchy that could naturally be used within
our change-point detection as a more scalable alternative.
However, it is important to understand what the trade-off is
between accuracy and scalability, and we believe that this
would be an interesting and useful direction for future work.

Although the GHRG model yielded good results, in prin-
ciple, any generative model could be used in its place,
e.g., the stochastic block model (Holland, Laskey, and
Leinhardt 1983; Nowicki and Snijders 2001; Aicher, Ja-
cobs, and Clauset 2014) or the Kronecker product graph
model (Leskovec et al. 2005). Similarly, the recent work in
graph hypothesis testing (Moreno and Neville 2013) could
potentially be adapted to the change-point detection prob-
lem. Two key features of the GHRG model for change-
point detection, however, are its interpretability and the way
it naturally adapts its dendrogram structure to fit the net-
work, adding or removing levels in the hierarchy, as the net-
work evolves. Combined with the strong results on synthetic
and real-world data, this approach to change-point detec-
tion promises to have broad application, perhaps particularly
in social networks, where interpretability provides a crucial
bridge to testing hypotheses about the underlying social dy-
namics driving network evolution.
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