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Abstract

We present a probabilistic model for tensor decomposi-
tion where one or more tensor modes may have side-
information about the mode entities in form of their
features and/or their adjacency network. We consider a
Bayesian approach based on the Canonical PARAFAC
(CP) decomposition and enrich this single-layer decom-
position approach with a two-layer decomposition. The
second layer fits a factor model for each layer-one fac-
tor matrix and models the factor matrix via the mode
entities’ features and/or the network between the mode
entities. The second-layer decomposition of each factor
matrix also learns a binary latent representation for the
entities of that mode, which can be useful in its own
right. Our model can handle both continuous as well as
binary tensor observations. Another appealing aspect of
our model is the simplicity of the model inference, with
easy-to-sample Gibbs updates. We demonstrate the re-
sults of our model on several benchmarks datasets, con-
sisting of both real and binary tensors.

Introduction
Learning from multiway and multirelational data is be-
coming more and more ubiquitous in the era of big data.
Multiway tensor data (Kolda and Bader 2009; Acar and
Yener 2009), in particular, arises in diverse applications,
such as recommender systems (Yin et al. 2013), multire-
lational networks (Nickel, Tresp, and Kriegel 2011), and
brain-computer imaging (Cichocki 2013), among others.
Tensor decomposition methods (Kolda and Bader 2009;
Acar and Yener 2009) provide an effective way to extract
latent factors from such data, and are now routinely used
for tensor completion of sparse, incomplete tensors. Prob-
abilistic tensor decomposition methods (Chu and Ghahra-
mani 2009; Xiong et al. 2010; Xu, Yan, and Qi 2013;
Rai et al. 2014) are especially appealing because they can
deal with with diverse data types and missing data in a prin-
cipled way via a proper generative model.

In many problems of practical interest, in addition to the
tensor data, there is also additional information for one of the
more tensor modes. For example, consider a tensor data con-
taining a three-way user-location-activity relationship de-
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noted by Y where Yijk = 1 denotes that user i visited lo-
cation j and performed activity k. In addition to the ten-
sor data Y , there may be additional information associated
with one or more of the modes of the tensor. For examples,
we may be given user attributes, location attributes, and a
user-user social network (Fig 1 (a)). Leveraging such addi-
tional sources of information can lead to improved tensor
decomposition and completion, especially when a signifi-
cant amount of tensor data is missing, or data in an entire
slice is missing, or in cold-start problems involving tensor
data (Ermiş, Acar, and Cemgil 2013; Narita et al. 2012).
There has been a recent interest in tensor decomposition
methods that leverage side-information associated with one
or more of the tensor modes (Ermiş, Acar, and Cemgil 2013;
Narita et al. 2012).

Motivated by this problem, in this paper, we present a
probabilistic, fully Bayesian approach for tensor decompo-
sition and completion with side-information. Our approach
has the following key advantages: (i) ability to incorporate
side-information from modes that have side-information in
form of a feature matrix and/or an adjacency network be-
tween the mode entities, (ii) a two-layer decomposition of
the tensor, with the second layer decomposition also provid-
ing a binary vector representation for entities in each mode,
which can be useful in its own right, (iii) a generative, fully
Bayesian model which allows modeling both real-valued
and binary-valued tensors and infers the appropriate tensor
rank from the data, and (iv) conjugate Bayesian inference
for both real and binary data, allowing easy to derive Gibbs
sampling updates to facilitate a fully Bayesian analysis.

The Model
At the core of our proposed model is the Canonical
PARAFAC (CP) decomposition (Kolda and Bader 2009;
Xiong et al. 2010; Rai et al. 2014) model. Formally, a K-
way tensor X ∈ Rn1×n2×···×nK can be represented as:

X =
R∑
r=1

λr · u(1)
r ◦ u(2)

r ◦ · · · ◦ u(K)
r

where nk denotes the dimension of tensor X along the
kth way (or mode) of the tensor, u(k)

r ∈ Rnk , ‘◦’ denotes
the outer product, and R is the rank of the tensor X . This
construction essentially expresses the tensor X as a sum of
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(a) (b) (c)

Figure 1: (a) Illustration of a tensor with side information available for two of its modes. (b) Second-layer factorization of the
mode k factor matrix as in Equation 1. (c) the graphical model

R rank-1 tensors. Another concise representation can be via
a diagonal tensor Λ = diag(λ1, λ2, · · · , λR) and a set of
mode factor matrices U (k) = [u

(k)
1 ,u

(k)
2 , · · · ,u(k)

R ], k =

1, 2, · · · ,K, where U (k) ∈ Rnk×R is the factor matrix of
mode k of the tensor: X = [[Λ,U (1),U (2), · · · ,U (K)]].

The probabilistic CP decomposition models (Xiong et
al. 2010; Rai et al. 2014) assume a Gaussian prior on
the columns/rows of each factor matrix, e.g., u(k)

r ∼
Nor(0, Ink) or u(k)

ik:
∼ Nor(0, IR). A key question is

specifying/inferring the rank of the decomposition. In this
paper, we will follow the multiplicative Gamma process
(MGP) (Bhattacharya and Dunson 2011; Rai et al. 2014)
construction: λr

ind∼ Nor(0, τ−1r ), for 1 ≤ r ≤ R, τr =∏r
l=1 δl, δ1 ∼ Ga(a1, 1), δr ∼ Ga(a2, 1), with a2 >

1, for 1 < r ≤ R, which provides an efficient way to in-
fer the rank.

Two-Layer CP Decomposition with
Side-Information
The existing probabilistic CP decomposition meth-
ods (Xiong et al. 2010; Rai et al. 2014) are based on
a single-layer decomposition of the underlying tensor
X which admits a decomposition in terms of the factor
matrices {U (k)}Kk=1, and each factor matrix is assumed
drawn from a Gaussian prior. Moreover, these methods
cannot leverage side-information (e.g., a feature matrix
F (k) and/or a network A(k)) that may be available for
one or more of the tensor modes. We first show how the
side-information in form of the mode k feature matrix
F (k) can be incorporated via our proposed two-layer CP
decomposition. We will then show how the mode k network
A(k) can be incorporated in the model. We will refer to
our model as BCPFN (abbreviated for Bayesian CP with
Features and Networks).

Incorporating Mode Features: The mode features F (k)

are introduced in the model via a two-layer approach, which
models the mode k latent factor matrixU (k) by another fac-
tor model:

U (k) = V (k)D(k) + F (k)β(k) +E(k) (1)

The second-layer factor model in Equation 1 represents each
mode factor matrix U (k) ∈ Rnk×R in terms of a low-

rank component V (k)D(k) (where V (k) ∈ Rnk×M ,D(k) ∈
RM×R, with M ≤ R), plus a regression model on the ob-
served mode feature/attribute matrix F (k) ∈ Rnk×L via a
set of regression coefficients β(k) ∈ RL×R. Note that it is
possible to have more than one feature matrix for mode k,
in which case we can have a separate regression model for
each feature matrix. Also, in the absence of the mode fea-
ture matrix, the regression term will be ignored. The matrix
E(k) ∈ Rnk×R captures the idiosyncratic noise. We fur-
ther assume V (k) to be a sparse matrix (see Figure 1 (b))
of size nk ×M , modeled as an element-wise product of a
binary matrix Z(k) ∈ {0, 1}nk×M and a real-valued matrix
S(k) ∈ Rnk×M .

This model essentially provides a two-layered represen-
tation for each of the nk entities in mode k: one in terms
of the mode factor matrix U (k) ∈ Rnk×R from the first
layer of CP decomposition, and the other in terms of the
sparse coefficients V (k) ∈ Rnk×M of a layer-two dictio-
nary D(k) ∈ RM×R with the sparse matrix V (k) repre-
sented as an element-wise product of a binary matrix and a
real-valued matrix, V (k) = Z(k) �S(k) (akin to the way in
Beta-Bernoulli process based latent factor models (Paisley
and Carin 2009)), obtained from the second layer of decom-
position of U (k) (Equation 1).

In particular, the sparse representation V (k) (or the binary
matrix Z(k)) can be useful in its own right. For example,
it immediately yields a multiway generalization of overlap-
ping stochastic blockmodels (Miller, Jordan, and Griffiths
2009; Latouche et al. 2011) by representing each mode k en-
tity ik ∈ {1, . . . , nk} in terms of a sparse real-valued/binary
vector. This representation also provides a way to simulta-
neously learn binary hash codes for multimodal data (each
modality would correspond to one tensor mode), generaliz-
ing the existing methods for learning hash codes, which are
limited to data having only two modalities (Zhen and Ye-
ung 2012; Bronstein et al. 2010; Zhen and Yeung ). In this
particular setting for multimodal hashing, a binary-valued
main tensor could correspond to the multimodal relational
constraints between the objects in different modalities, and
raw features of objects in each modality can be used as side-
information. Besides, this two-layer representation can also
be seen as a nonlinear decomposition of the main tensor Y .
This is in contrast with standard CP decomposition which
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performs a linear decomposition of the tensor.
The representation of mode k factor matrixU (k) in terms

of mode k observed features F (k) is also appealing in cold-
start problems in recommender systems. In these problems,
a new entity i∗ in some tensor mode may not have any infor-
mation in the tensor data. To predict its latent factors U (k)

i∗
,

it observed features F (k)
i∗

can be leveraged using the factor
model given in Equation 1. This approach to deal with cold-
start problem is also reminiscent of the regression latent fac-
tor model (Agarwal and Chen 2009) for two-dimensional
matrices, which are a special case of multiway tensors.

Incorporating Mode Network: Often, a network be-
tween the entities of some tensor mode(s) may be given.
We denote the mode k network by a binary matrix A(k) ∈
{0, 1}nk×nk , with its elements denoted as A

(k)
ikjk

, 1 ≤
ik, jk ≤ nk, where A(k)

ikjk
= 1 denotes that entity ik and

jk are similar (have an edge between them). We assume that
the edge probability p(A

(k)
ikjk

) is a logistic function of the
inner product of factors uik ∈ R1×R and ujk ∈ R1×R of
entires ik and jk, respectively:

p(A
(k)
ikjk

= 1) =
1

1 + exp(−u(k)
ik
u
(k)
jk

>
)

(2)

Note that the network A(k) need not be fully observed;
we may only be given the network information for a subset
of mode k entity-pairs, in which case we only model the
observed edges.

Modeling Layer-Two Latent Variables: We now de-
scribe the prior distributions over the remaining latent vari-
ables of the proposed model. For the variables in layer-two
factor modelU (k) = (Z(k)�S(k))D(k)+F (k)β(k)+E(k),
we assume the binary matrix Z(k) ∈ {0, 1}nk×M is drawn
from on a Beta-Bernoulli process (Paisley and Carin 2009):

z
(k)
ikm

∼ Bernoulli(π(k)
m )

π(k)
m ∼ Beta(α, β)

where z(k)ikm
, ik = 1, 2, · · · , nk,m = 1, . . . ,M is the

(ik,m)-th element of Z(k), and α and β are the hyper-
parameters for the Beta prior.

The priors on D(k) ∈ RM×R and S(k) ∈ Rnk×M

are given by d
(k)
m ∼ Nor(0, R−1IR), s

(k)
ik

∼
Nor(0, γ−1s IM ), where d(k)m ∈ R1×R,m = 1, 2, · · · ,M ,
s
(k)
ik
∈ R1×M , ik = 1, 2, · · · , nk, and γs is the precision of

sik with a diffuse Ga(10−6, 10−6) prior.
The mode-specific regression coefficients matrix β ∈

RL×R is assumed drawn as β(k)
l ∼ Nor(0, ρ2IR), l =

1, 2, · · · , L, where β
(k)
l ∈ R1×R. Finally, E(k) ∈

Rnk×R is the matrix of residuals with rows e
(k)
ik

∼
Nor(0, σ2IR), ik = 1, 2, · · · , nk.

Inference
The goal of inference in our model is to infer the latent
variables {U (k),Z(k),S(k),D(k),β(k)}Kk=1, and the latent
variables {δr}Rr=1, and {λr}Rr=1 associated with the mul-
tiplicative Gamma process construction, given real or bi-
nary tensor observations which we will denote by Y =
{yi}i∈I , where I is the index set of all the tensor observa-
tions and an index i is of the form i1i2 . . . iK . When the
tensor observations are real-valued, we assume the Gaus-
sian noise model: p(Y|X ) =

∏
iNor(yi|xi, τ−1ε ), where

xi =
∑R
r=1 λr

∏K
k=1 u

(k)
ikr

and τε is the precision of noise.
When the tensor observations are binary-valued (e.g., for
multirelational social network data), we assume the logis-
tic link function: p(Y|X ) =

∏
i(

1
1+e−xi )yi( e−xi

1+e−xi )1−yi .
Apart from the tensor observations Y , we may also have
side-information in form of the mode k feature matrix F (k)

and/or the mode k networkA(k).
Since exact inference is intractable in the model, we use

Markov Chain Monte Carlo (MCMC) to perform approx-
imate inference. One appealing aspect of the inference in
our model, as we will show, is that inference can be per-
formed using closed-form Gibbs sampling updates, even
when the tensor observations are binary, or when the like-
lihood term involves the binary mode network A(k). This
is accomplished via using the Pólya Gamma sampling strat-
egy (Polson, Scott, and Windle 2012), which leads to lo-
cally conjugate Gibbs updates in our model, enabling effi-
cient inference. Recently, (Rai et al. 2014) also employed
Pólya-Gamma sampling for Bayesian CP decomposition of
binary tensors but only considered a single-layer decompo-
sition and did not consider side-information in form of fea-
tures and networks associated with the tensor modes. We
compare with their method in our experiments.

For brevity, we provide all the sampling update equations
in the appendix.

In this section, we provide the sampling update equations
for {U (k),Z(k),S(k),D(k), and β(k)}Kk=1. Update equa-
tions for the variables {δr}Rr=1, and {λr}Rr=1 associated with
the multiplicative Gamma process are provided in the ap-
pendix.

Updating U (k): Note that in our CP decomposition
model with side information, the mode k factor matrixU (k)

generates two types of observations: the main tensor Y and
the mode k network A(k). When the main tensor Y is real-
valued, i.e., p(Y|X ) =

∏
iNor(yi|xi, τ−1ε ), we have:

xi = c
(k)
ikr
u
(k)
ikr

+ d
(k)
ikr

(3)

where c
(k)
ikr

= λr
∏
k′ 6=k u

(k)
ik′r

and d
(k)
ikr

=∑
r′ 6=r λr′

∏K
k=1 u

(k)
ikr′

. Since U (k) also depends on
the network observations A(k) which are binary-valued,
due to the logistic link function, the likelihood is not conju-
gate. We use the Pólya-Gamma sampling strategy(Polson,
Scott, and Windle 2012) in this case to facilitate deriving
closed-form Gibbs sampling update. In order to do so, we

first denoting B(k)
ikjk

= u
(k)
ik
u
(k)
jk

>
=

∑R
r=1 u

(k)
ikr
u
(k)
jkr

, which
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leads to the following:

u
(k)
ikr

=
1

u
(k)
jkr

B
(k)
ikjk
−

∑
r′ 6=r u

(k)
ikr′

u
(k)
jkr′

u
(k)
jkr

(4)

Then with the ψ(k)
ikjk

∼ PG(1, B
(k)
ikjk

), where PG denotes
the Pólya-Gamma distribution (Polson, Scott, and Windle
2012), u(k)

ik
is drawn from the Gaussian:

u
(k)
ik
∼ Nor(µ̂(k)

ik
, Σ̂

(k)
ik

)

where the posterior covariance is given by Σ̂
(k)
ik

=

(Σ
(k)
ik

−1
+ Ω

(k)
ik

)−1, Ω
(k)
ik

= diag(τ
(k)
ik1
, τ

(k)
ik2
, · · · , τ (k)ikR

), and
using Equation 3, 4, and following the Pólya Gamma sam-
pling scheme (Polson, Scott, and Windle 2012), we have

τ (k)nr = τe
∑
Y,ik=n

c
(k)
ikr

2
+

∑
A,ik=n

u
(k)
jkr

2
ψ
(k)
ikjk

, 1 ≤ r ≤ R

The posterior mean is defined as

µ̂
(k)
ik

= Σ̂
(k)
ik

(Σ
(k)
ik

−1
µ

(k)
ik

+ Ω
(k)
ik
α

(k)
ik

)

with µ(k)
ik

= (s
(k)
ik
�z(k)ik

)D(k) +T
(k)
ik
F (k), Σ

(k)
ik

= γ−1ε IR,

α
(k)
ik

= [α
(k)
ik1
, α

(k)
ik2
, · · · , α(k)

ikR
]> and again, following the

Pólya Gamma sampling scheme (Polson, Scott, and Windle
2012), we have

α(k)
nr = (τ (k)nr )−1[τe

∑
Y,ik=n

c
(k)
ikr

(yi − d(k)ikr
)

+
∑

A,ik=n

u
(k)
jkr

(A
(k)
ikjk
−0.5−ψ(k)

ikjk

∑
r′ 6=r

u
(k)
ikr′

u
(k)
jkr′

)], 1 ≤ r ≤ R

When the tensor observations Y are binary, i.e.,

p(Y|X ) =
∏
i

(
1

1 + e−xi
)yi(

e−xi

1 + e−xi
)1−yi

we need to introduce another set of Pólya Gamma vari-
ables(Rai et al. 2014) for each tensor observation: φi ∼
PG(1, xi). With the inclusion of these variables, the updates
of u(k)

ik
, 1 ≤ ik ≤ nk, 1 ≤ k ≤ K are similar to the real Y

case, and are given by

τ (k)nr =
∑
Y,ik=n

c
(k)
ikr

2
φi +

∑
A,ik=n

u
(k)
jkr

2
ψ
(k)
ikjk

, 1 ≤ r ≤ R

α(k)
nr = (τ (k)nr )−1[

∑
Y,ik=n

c
(k)
ikr

(yi − 0.5− φid
(k)
ikr

)

+
∑

A,ik=n

u
(k)
jkr

(A
(k)
ikjk

−0.5−ψ(k)
ikjk

∑
r′ 6=r

u
(k)

ikr
′u

(k)

jkr
′)], 1 ≤ r ≤ R

Updating Z(k): For the update of z
(k)
ikm

, ik =
1, 2, · · · , nk, m = 1, 2, · · · ,M, k = 1, 2, · · · ,K,

p(z
(k)
ikm
|−) ∝ Nor(u(k)

ik
|(s(k)ik

� z(k)ik
)D(k)

+ F
(k)
ik
β(k), γ−1ε IR)× Bern(z

(k)
ikm
|π(k)
m )

(5)

Therefore z
(k)
ikm

∼ Bern( c1
c1+c0

), where c1 =

π
(k)
m exp[−γε2 (s

(k)
ikm

2
d
(k)
m d

(k)
m

>
− 2s

(k)
ikm

∆
(k)
ik,−md

(k)
m

>
)],

c0 = 1 − π(k)
m , and ∆

(k)
ik,−m = u

(k)
ik
− F (k)

ik
β(k) − (s

(k)
ik
�

z
(k)
ik

)D(k) + (s
(k)
ikm
� z(k)ikm

)d
(k)
m .

Updating S(k): For the update of s
(k)
ikm

, ik =
1, 2, · · · , nk, m = 1, 2, · · · ,M, k = 1, 2, · · · ,K,

p(s
(k)
ikm
|−) ∝ Nor(u(k)

ik
|(s(k)ik

� z(k)ik
)D(k)

+ F
(k)
ik
β(k), γ−1ε IR)×Nor(s(k)ik

|0, γ−1s IM ) (6)

Therefore s
(k)
ikm

∼ Nor(µ
s
(k)
ikm

,Σ
s
(k)
ikm

), where

Σ
s
(k)
ikm

= (γs + γεz
(k)
ikm

2
dmd

>
m)−1, and µ

s
(k)
ikm

=

γεΣs(k)ikm
z
(k)
ikm

∆
(k)
ik,−md

>
m. Note that when z

(k)
ikm

= 0,

Σ
s
(k)
ikm

= γ−1s , and µ
s
(k)
ikm

= 0.

Updating π(k): For the update of π
(k)
m ,

m = 1, 2, · · · ,M, k = 1, 2, · · · ,K, p(π
(k)
m |) ∝

Beta(π
(k)
m |a0, b0)

∏nk
ik=1 Bern(z

(k)
ikm
|π(k)
m ), which leads

to the simple update:

π(k)
m ∼ Beta(a0 +

nk∑
ik=1

z
(k)
ikm

, b0 + nk −
nk∑
ik=1

z
(k)
ikm

)

Updating D(k): For the update of layer-two dictionary
matrix D(k), we have for d(k)m , m = 1, 2, · · · ,M, k =
1, 2, · · · ,K,

p(d(k)m |−) ∝
nk∏
ik=1

Nor(u(k)
ik
|(s(k)ik

� z(k)ik
)D(k)

+ F
(k)
ik
β(k), γ−1ε IR)×Nor(d(k)m |0, R−1IR) (7)

Therefore d
(k)
m ∼ Nor(d(k)m |µd(k)

m
,Σ
d
(k)
m

),

where d
(k)
m ∼ Nor(d(k)m |µd(k)

m
,Σ
d
(k)
m

), Σ
d
(k)
m

=

(R + γε
∑nk
ik=1 s

(k)
ikm

2
z
(k)
ikm

2
)−1I , µ

d
(k)
m

=

γε(
∑nk
ik=1 s

(k)
ikm

z
(k)
ikm

∆
(k)
ik,−m)Σ

d
(k)
m

, and ∆
(k)
ik,−m =

u
(k)
ik
−T (k)

ik
F (k)− (s

(k)
ik
� z(k)ik

)D(k) + (s
(k)
ikm
� z(k)ikm

)d
(k)
m .

Updating β(k): For the update of mode k regression co-
efficient matrix β(k) ∈ RL×R, we have for β(k)

l , l =
1, 2, · · · , L, k = 1, 2, · · · ,K,

p(β
(k)
l |−) ∝

nk∏
ik=1

Nor(u(k)
ik
|(s(k)ik

� z(k)ik
)D(k)

+ F
(k)
ik
β(k), γ−1ε IR)×Nor(β(k)

l |0, ρ
2IR) (8)

Therefore β
(k)
l ∼ Nor(β(k)

l |µβ(k)
l

,Σ
β

(k)
l

),

where Σ
β

(k)
l

= (R + γε
∑nk
ik=1 F

(k)
ikl

2
)−1IR,

µ
β

(k)
l

= γε(
∑nk
ik=1 F

(k)
ikl

Λ
(k)
ik,−l)Σβ(k)

l

, and Λ
(k)
ik,−l =

u
(k)
ik
− (s

(k)
ik
� z(k)ik

)D(k) − F (k)
ik
β(k) + F

(k)
ikl
β
(k)
l .
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Table 1: AUC Scores: Binary Tensor Completion with Side-Information

Lazega-Lawyers UCLAF
95% missing 50% missing 95% missing 50% missing

Bayesian CP 0.6037 (±0.0081) 0.8207 (±0.0059) 0.8412 (±0.0412) 0.9113 (±0.0134)
BCPFN 0.6414 (±0.0203) 0.8336 (±0.0101) 0.8855 (±0.0312) 0.9407 (±0.0156)

Related Work
The performance of tensor decomposition methods tends to
deteriorate as the amount of missing data in the tensor be-
comes large (Ermiş, Acar, and Cemgil 2013; Acar, Kolda,
and Dunlavy 2011). To improve the performance of ten-
sor decomposition and completion methods in high missing
data regimes, methods based on coupled matrix-tensor fac-
torization (CMTF) (Ermiş, Acar, and Cemgil 2013; Acar,
Kolda, and Dunlavy 2011; Simsekli et al. 2013) have been
proposed. The CMTF, originally inspired by collective ma-
trix factorization (Singh and Gordon 2008), assumes that the
some of the tensor modes have associated feature matrices,
and the tensor and the mode k feature matrix both share
the mode k factor matrix. These methods however lack a
rigorous generative model for the data and therefore can-
not model more general types of data such as binary-valued
tensors, and do not have a Bayesian formulation unlike our
framework. Also, these methods cannot leverage networks
assocaited with the tensor modes. Due to its inability in deal-
ing with binary tensors, the CMTF framework cannot be
applied for problems such as modeling multirelational data
with side-information.

The work in (Narita et al. 2012) uses network informa-
tion via a graph Laplacian approach. However there are sev-
eral key differences from our work: (i) it is however lim-
ited to real-valued tensors; (ii) the the graph is assumed to
be fully observed; (iii) the computational complexity such a
model based on graph regularization scales quadratically in
the number of entities in each mode.

In contrast to the above methods, our framework is gen-
eral enough to allow modeling both real-valued as well as
binary tensors, and at the same time, can incorporate one
or more feature matrices and/or adjacency network between
the entites of tensor modes. Moreover, unlike these meth-
ods, our method does not require the rank of tensor decom-
position to be specified which our model infers in a manner
similar to (Rai et al. 2014).

Experiments
We perform experiments on both real-valued and binary-
valued tensor data, each having features and/or network as-
sociated with one or more tensor modes. We are especially
interested in regimes when the main tensor has a signifi-
cantly large amount of missing data. For our experiments,
we use the following datasets:

(i) Lazega-Lawyers Data: This is a multirelational
dataset consisting of a 71× 71× 3 binary tensor consisting
of 3 type of relationships (work, advice, friendship) between
71 lawyers in some New England law firms (Lazega 2001).
The dataset also consists of 7 real-valued features for each

lawyer, such as gender, location, age, years employed, etc).
(ii) UCLAF Data: This is sparse binary 164 × 168 × 5

tensor (Zheng et al. 2010) containing data from 164 users,
visiting a subset of 168 locations, and performing a subset
of 5 activities. For this data, we also have two feature matri-
ces containing information about location features and user-
location preferences, respectively.

(iii) EEG data: This data consists of a real-valued tensor
of size 15 × 16 × 560, along with the network between the
560 entities in mode 3 constructed using their binary valued
labels (an edge exists if two entites share the same label).

We compare our method with Bayesian CP decompo-
sition (Rai et al. 2014), a recently proposed state-of-the-
art method for Bayesian CP decomposition, except that it
cannot leverage side-information, and with coupled matrix-
tensor factorization (CMTF) (Ermiş, Acar, and Cemgil
2013; Acar, Kolda, and Dunlavy 2011) which can leverage
side-information. Note that CMTF cannot deal with binary
tensors and/or binary networks, so we could not compare
with these on binary tensors, but we provide a comparison
with this method on the real-valued EEG data.

The goal of our experiments is to demonstrate how our
model leverages the side-information and leads to improved
tensor decomposition especially in the cases where the
tensor has a significantly high fraction of missing data,
where Bayesian CP methods such as (Xiong et al. 2010;
Rai et al. 2014), which even though being flexible model
for handling both binary and real tensors, could break down
when the amount of missing data becomes too high.

Each experiment is run 10 times with different splits of
observed and missing data. We report both mean and the
standard deviations. We run MCMC for 1000 iterations, with
600 burnin iterations, and collect samples every five sam-
ples, after the burnin phase. We compute the posterior aver-
ages using the samples collected after burnin. For Bayesian
CP and our method, the rank R of the tensor need not be set
(inferred by the MGP prior). For our method, the parameter
M was simply set to R (though it can be inferred using pri-
ors such as the Indian Buffet Process). For CMTF, we tried
a range of values for the rank and report the best results.

Binary Tensor Completion with Side-Information
In our first experiment, we compare our model with
Bayesian CP decomposition (Rai et al. 2014) on the task
of binary tensor completion. For this task, we evaluate both
methods on the Lazega-Lawyers data and the UCALF data.
To simulate the setting of significantly high fraction of miss-
ing data, we tried two settings: 95% missing and 50% miss-
ing. We report the Area under the Receiver Operating Char-
acteristic (AUC) curve for the task of predicting the hid-
den entries in the tensor. As shown in Table 1, our method
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Table 2: EEG Data: Comparision with Coupled Matrix-Tensor Factorization

% Mean-Squared Error (lower better) % Variance Explained (higher better)
50% missing 75% missing 50% missing 75% missing

CMTF 0.1515 (±0.0212) 0.8267 (±0.0682) 84.58% (±0.96) 17.49% (±3.12)
Bayesian CP 0.1662 (±0.0332) 0.2657 (±0.0241) 85.12% (±1.06) 73.19% (±2.64)

BCPFN 0.1420 (±0.0102) 0.2289 (±0.0211) 85.79% (±1.01) 77.19% (±2.35)

Figure 2: Tensor completion for varying amount of missing data: Left: Lazega-Lawyers Data (AUC Scores). Right: EEG Data
(MSE)

significantly outperforms Bayesian CP especially when the
amount of missing data is very high (95%).

Real-Valued Tensor Completion with
Side-Information

For the EEG data, which is a real-valued tensor, we com-
pare our model BCPCN with Coupled Matrix Tensor Fac-
torization (Ermiş, Acar, and Cemgil 2013; Acar, Kolda, and
Dunlavy 2011) (CMTF) and with Bayesian CP. For this data,
the third mode has binary labels which we provide as feature
for CMTF. We experiment with two missing data settings:
50% missing and 75% missing. The results are shown in Ta-
ble 2 where we show both mean-squared-error and the per-
centage variance explained. In addition to performing better
than Bayesian CP, our model does better than CMTF (which
does take into account the side-information) for both these
settings. Moreover, the difference between our model and
CMTF becomes more pronounced for the 75% missing case,
which suggests that our Bayesian framework is more robust
to missing data even in the regimes when a significantly high
fraction of data is missing.

Finally, we experiment with randomly held-out fractions
of data in the main tensor and predict it using the observed
data. For the Lazega Lawyers data and the EEG data, we
vary the amount of observed data in the main tensor from
5% to 50% with increments of 5%. We run each method for
each of these setting (each experiment is further repeated 10
times) and compare our model with Bayesian CP which can-
not leverage side-information. As our experiment in Figure 2
shows, in the cases when the amount of missing data is very
high, our model performs considerably better than Bayesian
CP, which shows the benefit of our model for being able to
leverage side-information in an effective manner.

Conclusion and Future Work
We have presented a probabilistic, fully Bayesian tensor
decomposition method for sparse tensors, leveraging side-
information in form of the features and/or network of the
entities in each tensor mode. Our method is fairly general
and can be applied for both real-valued as well as binary
tensor data. Moreover, diverse types of side-information can
be naturally incorporated in our framework.

The two-layer tensor decomposition approach presented
here can in fact be further generalized by introducing nonlin-
earities on the first layer factors, akin to deep learning meth-
ods (Bengio 2009; Bengio, Courville, and Vincent 2013),
e.g, using a sigmoid operation, prior to the second layer de-
composition. To the best of our knowledge, deep learning
methods have not yet been developed for tensor decomposi-
tion and we leave this generalization to future work.

Our framework is not limited to only tensor decomposi-
tion but can also be used for other problems such as multi-
way generalizations of overlapping clustering (Latouche et
al. 2011) and multimodal hashing (Zhen and Yeung 2012).
Currently we use MCMC based on closed-form Gibbs sam-
pling updates to perform inference in this model. In terms
of computation, in spite of being considerably more general,
our method is only slightly more expensive than Bayesian
CP (Rai et al. 2014), this extra cost is due to the additional
layer of variables (second-layer factorization) to be sampled.
Scaling up the inference for our model would be another fu-
ture avenue of work.

Appendix
Updating MGP variables: We sample δr, 1 ≤ r ≤ R as
δr ∼ Ga(ar + 1

2 (R − r + 1), 1 + 1
2

∑R
h=r λ

2
h

∏h
l=1,l 6=r δl).

For sampling λr, 1 ≤ r ≤ R, when tensor Y is real-valued,
we have λr ∼ N (µ̂r, τ̂

−1
r ), where τ̂r = τr + τe

∑
i a

r
i
2
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and µ̂r = τ̂−1r τe
∑
i a

r
i(yi − bri). For the case when Y is

binary, we have λr = 1
ari
xi − bri

ari
. First the augment random

variable φi is drawn independently from the Pólya-Gamma
distribution: φi

ind∼ PG(1, xi) where PG(·, ·) represents the
Pólya-Gamma distribution. So xi ∼ N (yi−0.5φi

, φi
−1).Then

λr, 1 ≤ r ≤ R is drawn from Gaussian. We use the
Pólya Gamma sampling: λr ∼ N (µ̂r, τ̂

−1
r ) where τ̂r =

τr +
∑
i a

r
i
2φi and µ̂r = τ̂−1r

∑
i a

r
i(yi − 0.5− φibri).
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