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Abstract
Learning an appropriate feature representation across
source and target domains is one of the most effec-
tive solutions to domain adaptation problems. Conven-
tional cross-domain feature learning methods rely on
the Reproducing Kernel Hilbert Space (RKHS) induced
by a single kernel. Recently, Multiple Kernel Learn-
ing (MKL), which bases classifiers on combinations
of kernels, has shown improved performance in the
tasks without distribution difference between domains.
In this paper, we generalize the framework of MKL
for cross-domain feature learning and propose a novel
Transfer Feature Representation (TFR) algorithm. TFR
learns a convex combination of multiple kernels and
a linear transformation in a single optimization which
integrates the minimization of distribution difference
with the preservation of discriminating power across
domains. As a result, standard machine learning mod-
els trained in the source domain can be reused for the
target domain data. After rewritten into a differentiable
formulation, TFR can be optimized by a reduced gradi-
ent method and reaches the convergence. Experiments
in two real-world applications verify the effectiveness
of our proposed method.

Introduction
Conventional supervised learning has been successfully ap-
plied to various fields based on the assumption that there
are plenty of labeled training samples following the same
distribution of test samples. However, in many real-world
applications, label information is expensive or even impos-
sible to be obtained in a target domain. In this case, one may
turn to collect labeled data from a related but different do-
main, i.e., source domain, as prior knowledge. Apparently,
classifiers trained only in source domain cannot be directly
reused in target domain due to the distribution difference.
Recently, there is an increasing interest in developing feature
representation methods (Long et al. 2012; Long et al. 2013;
Saenko et al. 2010; Pan, Kowok, and Yang 2008; Pan et
al. 2011) for knowledge transfer between domains (Caruana
1997; Pan and Yang 2010).

Generally, the key challenge in cross-domain feature
learning is to explicitly minimize the distribution difference
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between domains while preserving the important properties
(e.g., variance or geometry) of data. According to whether
the feature representation is linear or nonlinear, these meth-
ods can be classified into two categories. The first category
explores a linear transformation as a bridge for information
transfer between domains. For example, Geodesic Flow Ker-
nel (GFK) (Gong et al. 2012) integrates an infinite num-
ber of linear subspaces to learn domain invariant feature
representation. Joint Distribution Adaptation (JDA) (Long
et al. 2013) constructs cross-domain feature subspace un-
der Principal Component Analysis (PCA) (Jolliffe 1986). In
(Wang et al. 2014), a shared Mahalanobis distance is opti-
mized based on information theory. Although these meth-
ods can be optimized efficiently, they may lose the capa-
bility to capture the high order statistics and the underly-
ing structures of complex data spaces. The second category
explores a nonlinear transformation. Specifically, a heuris-
tic nonlinear map (Daumé III 2007) is constructed in the
supervised case. Maximum Mean Discrepancy Embedding
(MMDE) (Pan, Kowok, and Yang 2008) learns a nonpara-
metric kernel matrix by preserving the data variance. How-
ever, these methods are limited to the transductive setting
and the optimization is computationally expensive. To over-
come the drawbacks above, the nonlinear method Transfer
Component Analysis (TCA) (Pan et al. 2011) applies the
empirical kernel map (Schölkopf, Smola, and GengMüller
1998) of a single predefined kernel function and learns some
transfer components. It is shown that the performance of
TCA heavily depends on the choice of the single kernel.

Recently, Multiple Kernel Learning (MKL), which bases
Support Vector Machine (SVM) or other kernel meth-
ods on combinations of kernels, emphasizes the need of
learning multiple kernels instead of fixing a single ker-
nel in the literature (Bach, Lanckriet, and Jordan 2004;
Lin, Liu, and Fuh 2011; Kim, Magnani, and Boyd 2006;
Rakotomamonjy et al. 2008). Although these methods are
shown to achieve improved performance and flexibility, they
are not explicitly developed for domain adaptation. When
training and test data are drawn from different domains, the
distribution difference will make the optimal kernels learnt
in source domain invalid in target domain.

In this paper, we make great efforts to alleviate the limita-
tions discussed above and propose a novel Transfer Feature
Representation (TFR) algorithm. TFR selects a convex com-
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bination of multiple kernels to induce a Reproducing Kernel
Hilbert Space (RKHS) and then learns a cross-domain linear
transformation in this space. Overall, TFR is distinguished
by three main contributions. Firstly, to the best of our knowl-
edge, TFR has made the first attempt to incorporate MKL
with cross-domain feature learning. Finding an optimal way
to combine multiple kernels definitely benefits the explo-
ration of prior knowledge and the description of data charac-
teristics. Moreover, the diversity of kernel functions adopted
in TFR will further improve the flexibility and effectiveness.
Secondly, in TFR, the linear transformation and the multiple
kernels are learnt in a single optimization, such that standard
machine learning models (e.g., classification and regression)
trained in source domain can be reused in target domain. In
the formulation of TFR, three conditions are taken into ac-
count: 1) minimizing the distribution difference; 2) preserv-
ing the geometry of target domain data; 3) preserving the
label information of source domain data. Thirdly, instead of
using alternate optimization, we rewrite TFR problem into
a differentiable formulation with constraints on the multi-
ple kernel weights. The differentiation of this formulation
wraps a positively semi-definite (PSD) matrix optimization
and we prove that this optimization has a closed-form solu-
tion. Following (Rakotomamonjy et al. 2008), reduced gra-
dient method is employed to iteratively update the weights
and the PSD matrix simultaneously, leading to rapid con-
verge. Experimental results verify the effectiveness of TFR
compared with state-of-the-art transfer learning methods.

Relative Works
Maximum Mean Discrepancy
To measure the distance between data distributions, many
parametric criteria (e.g., Kullback-Leibler divergence) have
been proposed by assuming or estimating the detailed distri-
bution formats. To avoid such a nontrivial task, Borgwardt
et al. propose Maximum Mean Discrepancy (MMD) (Borg-
wardt et al. 2006) for comparing distributions in the Repro-
ducing Kernel Hilbert Space (RKHS)H induced by a kernel
K. Given a series of observations X = {x1, ...,xn1

} drawn
from the distribution P and observations Z = {z1, ..., zn2

}
drawn from Q, the empirical estimate of MMD is:

‖ 1

n1

n1∑
i=1

φ(xi)−
1

n2

n2∑
i=1

φ(zi)‖H, (1)

where φ : R → H with K(xi,xj) = φ(xi)
Tφ(xj). There-

fore, the distance between P and Q can be estimated as the
distance between the data means inH.

Multiple Kernel Learning
Instead of directly learning a nonparametric kernel matrix
or using a single predefined kernel function, MKL considers
that the learnt kernel function is a convex combination of
given (basis) kernels (Bach, Lanckriet, and Jordan 2004):

K(xi, xj) =

M∑
m=1

dmKm(xi, xj), dm ≥ 0,

M∑
m=1

dm = 1, (2)

where Km can simply be classical kernels (e.g., RBF ker-
nels) with different parameters. Following Equation (2),

many MKL methods have been proposed to learn the
weights dm and a specific machine learning model (e.g.,
SVM) simultaneously (Gönen and Alpaydin 2008; Rako-
tomamonjy et al. 2008). It is shown that the ensemble ker-
nel based on the learnt weights dm can achieve better per-
formance than a single basis kernel or the average kernel.
However, these methods are limited by the underlying as-
sumption that training data and test data are drawn from the
same distribution.

We would also like to mention that Jie et al. (Jie, Tom-
masi, and Caputo 2011) and Duan et al. (Duan, Tsang,
and Xu 2012) learn MKL-based classifiers to address cross-
domain problems. In contrast, our method incorporates
MKL with transfer feature learning by optimizing a linear
transformation and kernel weights at the same time. There-
fore, standard machine learning models trained in the source
domain can be directly used for the target domain data.

Transfer Feature Representation via Multiple
Kernel Learning

In this section, we introduce the proposed Transfer Feature
Representation (TFR) algorithm in detail.

Problem Definition
Denote Xsrc as a set of n1 labeled training samples drawn
from the source domain: Xsrc = {(xs

1, y
s
1), ..., (xs

n1
, ysn1

)},
where xs

i ∈ Rd and ysi ∈ Ys is the class label. Denote Xtar

as a set of n2 unlabeled testing samples drawn from the tar-
get domain: Xtar = {xt

1, ...,x
t
n2
}, where xt

i ∈ Rd. Denote
X = Xsrc ∪ Xtar = {xs1, ..., xsn1

, xt1, ..., x
t
n2
} ∈ Rd×N

with N = n1 + n2. Let Pt(Xtar) and Ps(Xsrc) be the
marginal probability distributions of Xtar and Xsrc respec-
tively, and Pt(Xtar) 6= Ps(Xsrc).

Suppose a kernel function K is constructed by multiple
bases kernels as Equation (2). Denote φ : Rd → H as the
nonlinear map induced by K. The task of TFR is to learn the
optimal weights dm and a shared linear transformation W in
H simultaneously by: 1) explicitly reducing the distribution
difference between Pt(Wφ(Xtar)) and Ps(Wφ(Xsrc)); 2)
preserving the geometry of Xtar; 3) preserving the label in-
formation of Xsrc. This task adopts multiple kernels rather
than a single one to precisely characterize data from differ-
ent aspects, where various existing kernel functions can be
applied as bases. The learnt kernel weights and transforma-
tion optimally transfer the discriminating power gained from
the source domain to the target domain, that is, the same la-
beled points are kept close and the differently labeled points
are pushed far apart.

Reducing Mismatch of Data Distribution
MMD has been widely employed in both linear and nonlin-
ear transfer feature learning methods for measuring the dis-
tribution difference. In this section, we first revisit the ideas
behind these two kinds of methods, and then propose a linear
transformation in RKHS as an integration of these methods.

Linear methods explore a transformation W or a Maha-
lanobis distance A across two domains. Following Equation
(1), the distance between Ps(WXsrc) and Pt(WXtar) is
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measured by the squared distance between the sample means
in the two domains (Long et al. 2013; Wang et al. 2014):

‖ 1

n1

n1∑
i=1

Wxs
i −

1

n2

n2∑
i=1

Wxt
i‖2 = tr(XLXTA), (3)

where WTW = A ∈ Rd×d is PSD. L = [Lij ] with
Lij = 1

n2
1

if xi,xj ∈ Xsrc; Lij = 1
n2
2

if xi,xj ∈ Xtar; oth-

erwise Lij = − 1
n1n2

. Although these linear subspace learn-
ing methods can be efficiently optimized and easily gener-
alized to new data points, they show limitations in captur-
ing the high order statistics and the underlying structures of
complex data spaces.

A nonlinear transformation method is proposed by Pan
et al. (Pan, Kowok, and Yang 2008) to learn a kernel ma-
trix K instead of explicitly finding the corresponding φ
(K(xi,xj) = φ(xi)

Tφ(xj)), where the squared distance
between the sample means in the two domains is:

‖ 1

n1

n1∑
i=1

φ(xs
i )− 1

n2

n2∑
i=1

φ(xt
i)‖2 = tr(KL), (4)

where K ∈ RN×N . Although this nonlinear method bene-
fits from finding the inner structure of data and the correla-
tion between data points, it has to solve an expensive semi-
definite programming problem (Boyd and Vandenberghe
2004) and is limited to the transductive setting.

It is a natural idea that Equation (3) and Equation (4)
can be combined together to take use of their advantages
and alleviate their limitations. Suppose Xsrc and Xtar are
mapped to a Reproducing Kernel Hilbert Space (RKHS) H
by a nonlinear map φ : Rd → H. We focus on learning a
linear transformation W in this RKHS H. In this term, the
distance between Ps(Wφ(Xsrc)) and Pt(Wφ(Xtar)), de-
noted asDist(Wφ(Xsrc),Wφ(Xtar)), is given as follows:

‖ 1

n1

n1∑
i=1

Wφ(xs
i )− 1

n2

n2∑
i=1

Wφ(xt
i)‖2 = tr(WΦLΦTWT ),

(5)
where Φ = {φ(xs

1), ..., φ(xs
n1

), φ(xt
1), ..., φ(xt

n2
)}. Follow-

ing (Schölkopf, Smola, and GengMüller 1998), W inH can
be parameterized as a linear combination of data points, i.e.,
W = UΦT . Substituting W to Equation (5), we obtain

Dist(Wφ(Xsrc),Wφ(Xtar)) = tr(UΦT ΦLΦT ΦUT )

= tr(KLKÂ),
(6)

where Â = UTU ∈ RN×N is PSD and K = ΦT Φ. In-
stead of specifying K in Equation (6) as a single predefined
kernel function, we define K as a convex combination of M
positive-definite kernels. The adoption of multiple kernels is
a feasible way for improving performance and robustness in
transfer learning. Following the definition of K in Equation
(2), the problem in Equation (6) can be rewritten as:

tr(KLKÂ) = tr[(

M∑
m=1

dmKm)L(

M∑
m=1

dmKm)Â], (7)

where Km =

(
Ks

m

Kt
m

)
, Ks

m ∈ Rn1×N and Kt
m ∈ Rn2×N

are the kernel matrices induced by Km in the source and

the target domains. Within this framework, the problem of
minimizing the distance between data distributions defined
in Equation (5) is now reduced to the choice of weights dm
and the learning of PSD matrix Â. Once dm and Â are ob-
tained, the distance between a new test point xp and any
training point xi can be computed as follows:

d(Wφ(xp),Wφ(xi)) = (kp − ki)
T Â(kp − ki), (8)

where ki = ΦTφ(xi) =
∑

m dm[km(xs
1,xi), ..., km(xt

n2
,

xi)]
T and kp = ΦTφ(xp) =

∑
m dm[km(xs

1,xp), ...,
km(xt

n2
,xp)]T . In this term, our proposed feature learning

method generalizes to out-of-sample patterns.

Preserving Properties of Xtar and Xsrc

For discriminating power transfer from source domain to
target domain, some important properties of data should be
preserved. Inspired by (Wang et al. 2014), we combine mini-
mizing the distribution difference with: 1) preserving the ge-
ometry of Xtar; 2) preserving the label information of Xsrc.

For preserving the geometry of Xtar, a diffusion kernel
KT (Kondor and Lafferty 2002) is defined on a weighted
graph structure Gt with the adjacency matrix Mt = [Mt

ij ]:
Mt

ij = exp(‖xt
i − xt

j‖2/2σ2) if xti is one of the k nearest
neighbor of xtj ; otherwise Mt

ij = 0. Let Dt be an n2 × n2
diagonal matrix with Dt

ii =
∑

j Mt
ij . The Laplacian of

Gt can be defined as Lt = Dt − Mt, and the Normal-
ized Laplacian is L̃t = (Dt)−

1
2 L(Dt)−

1
2 . The eigenval-

ues and eigenvectors of L̃t are denoted as λti and φti, so
that L̃t =

∑t
i λ

t
i(φ

t
i)(φ

t
i)

T . In this term, KT is defined
as: KT =

∑n
i=1 exp(−σ2

d/2λ
t
i)(φ

t
i)(φ

t
i)

T , where σd is the
width of the diffusion kernel.

We construct a linear kernel Kt
l for Wφ(Xtar):

Kt
l =

M∑
m=1

dmKt
mÂ

M∑
m=1

(dmKt
m)T . (9)

Based on the criterion defined in (Wang and Jin 2009), the
distance between KT and Kt

l can be expressed as:

d(Kt
l‖KT ) =

1

2
(tr(K−1

T Kt
l)− log|Kt

l |+ log|KT | − n2)

=
1

2
(tr((

M∑
m=1

dmKt
m)TK−1

T (

M∑
m=1

dmKt
m)Â)

− log|(
M∑

m=1

dmKt
m)Â(

M∑
m=1

dmKt
m)T |+ log|KT | − n2).

(10)
For preserving discriminating information of Xsrc, a dif-

fusion kernel KS is defined on a weighted graph struc-
ture Gs with the adjacency matrix Ms = [Ms

ij ]: Ms
ij =

exp(‖xs
i − xs

j‖2/2σ2) if ysi = ysj ; otherwise Ms
ij = 0. In

this term, KS =
∑m

i=1 exp(−σ2
d/2λ

s
i )(φ

s
i )(φ

s
i )

T , where λsi
and φsi are eigenvalues and eigenvectors of the Normalized
Laplacian of Gs. The distance between KS and Ks

l (the lin-
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ear kernel of Wφ(Xsrc)) is obtained as:

d(Ks
l ‖KS) =

1

2
(tr(K−1

S Ks
l )− log|Ks

l |+ log|KS | − n1)

=
1

2
(tr((

M∑
m=1

dmKs
m)TK−1

S (

M∑
m=1

dmKs
m)Â)

− log|(
M∑

m=1

dmKs
m)Â(

M∑
m=1

dmKs
m)T |+ log|KS | − n1).

(11)

Learning Algorithm
Cost Function By minimizing Equation (8), Equation
(10) and Equation (11) simultaneously, we propose a novel
nonlinear projection method for domain adaptation. Opti-
mizing this overall objective function is challenging since
it is not convex. Standard approaches, such as the alternate
optimization algorithm, lack the convergence guarantees and
may lead to numerical problems. Therefore, we rewrite the
overall cost function as follows:

min
d
J(d) with dm ≥ 0,

M∑
m=1

dm = 1, (12)

where d = (d1, ..., dM ) and

J(d) = min
Â�0

tr((

M∑
m=1

dmKm)(K′ + λL)(

M∑
m=1

dmKm)Â)

− log|(
M∑

m=1

dmKt
m)Â(

M∑
m=1

dmKt
m)T |

− log|(
M∑

m=1

dmKs
m)Â(

M∑
m=1

dmKs
m)T |,

K′ =

(
K−1

S 0
0 K−1

T

)
.

(13)
In the following section, we will firstly prove that J(d) has
a closed-form solution. Secondly, the existence and the cal-
culation of the gradient of J(·) is discussed. Finally, prob-
lem (12) is optimized by a reduced gradient method and con-
verges at the local minimum.

Optimization
Proposition 1. The optimal solution of J(d) is:

Â∗ = 2((

M∑
m=1

dmKm)(K′ + λL)(

M∑
m=1

dmKm))−1. (14)

Proof. The derivative of Equation (13) w.r.t. Â is:

((

M∑
m=1

dmKm)(K′ + λL)(

M∑
m=1

dmKm))− 2Â−1.

Since Km � 0, K′ � 0 and L � 0, Proposition 1 now
follows by setting the derivative to 0.

Proposition 2. J(·) is differentiable and we have:

∂J

∂dm
=2

M∑
i=1

ditr(Km(K′ + λL)KiÂ
∗)

−
n1∑
i=1

1

|K̃s|
(|Vs

i |)−
n2∑
i=1

1

|K̃t|
(|Vt

i |),

(15)

where K̃s and K̃t are defined as:

K̃† = (
M∑
i=1

diK
†
i )Â

∗(
M∑
i=1

diK
†
i )

T , † ∈ {s, t},

Vs
i and Vt

i are defined as:

V†i =

 K̃†(1,1) ...
∂K̃†(1,i)

∂dm
... K̃†(1,n)

...
...

...
...

...
K̃†(n,1) ...

∂K̃†(n,i)
∂dm

... K̃†(n,n)

 ,

where n refers to n1 when † = s, otherwise n = n2. Denote
K̄† as 2

∑M
k=1 dkK†mÂ∗(K†k)T , then we have ∂K̃†(i,j)

∂dm
=

K̄†(i, j).

Proof. Following Proposition 1, Â∗ is unique for any ad-
missible value of d. This unicity ensures the differentiabil-
ity of J(·) based on Theorem 4.1 in (Bonnaus and Shaoiro
1998). Therefore, Equation (15) is obtained by simple dif-
ferentiation of problem (12) with respect to dm.

To optimize problem (12), we develop an efficient and ef-
fective procedure which performs reduced gradient descent
on J(·) with the constraint {d|

∑
m dm = 1, dm > 0}. This

procedure does converge to the local minimum of differen-
tiable function J(·) (Luenberger 1984). Specifically, once
the gradient in Equation (15) is obtained, d is updated in
a descent direction to ensure the equality and the positivity
constraints. Denote u as the index of the largest component
of d (i.e., u = arg max

m
dm). Following (Rakotomamonjy et

al. 2008), the reduced gradient descent for updating d is:

Dm =


0 if dm = 0 & ∂J

∂dm
− ∂J

∂du
> 0

∂J
∂du
− ∂J

∂dm
if dm > 0 & m 6= u∑

v 6=u
dv>0

∂J
∂dv
− ∂J

∂du
if m = u.

(16)
The overall procedure of the proposed method is summa-

rized in Algorithm 1. In practice, M with a relatively small
value (e.g., M = 11 in our experiments) can generally guar-
antee satisfying results. The computational complexity of
TFR is O(Tmax ×N3), where Tmax is the number of itera-
tions in Algorithm 1. Experiments show that TFR converges
rapidly (generally converges less than five iterations).

Algorithm 1 Transfer Feature Representation
Initialization:

set {dm}Mm=1 with random admissible values.
Iteration:
1: while not convergence do
2: Compute Â∗ with K =

∑M
m=1 dmKm.

3: Compute ∂J
∂dm

and the descent direction Dm.
4: d← d + γD, where γ is the step size.
5: end while

3076



(a) (b) (c)

Figure 1: (a) Classification error rates on Y vs F data set. (b) Classification error rates on F vs Y data set. (c) Convergence
evaluation of TFR.

Experiments
In this section, we evaluate our method TFR in two cross-
domain learning related applications: 1) face classification
and 2) text classification.

Experiment Setup
The proposed method TFR is systematically compared with
five state-of-the-art feature-based transfer learning meth-
ods including: 1) linear ones: Joint Distribution Adapta-
tion (JDA) (Long et al. 2013), Transferred Fisher’s Lin-
ear Discriminant Analysis (TrFLDA) (Si, Tao, and Geng
2010) and Cross-Domain Metric Learning (CDML) (Wang
et al. 2014); 2) nonlinear ones: Transfer Component Anal-
ysis (TCA) (Pan et al. 2011) and Semi-supervised Trans-
fer Component Analysis (SSTCA) (Pan et al. 2011). Mean-
while, we report the results of metric learning method Infor-
mation Geometry Metric Learning (IGML) (Wang and Jin
2009). In the experiments, 1-nearest neighbor classifier (1-
NN) is used as the base classifier without parameters tuning.

For the comparison methods, their parameters spaces are
empirically searched by cross validation and the best results
are reported. TFR involves four parameters: σd, σ, λ and
k. Specifically, we search σd based on the validation set in
the range {0.1, 1, 10}, σ in the range {0.01, 0.1, 1, 10, 100}
and λ in the range {0.1, 1, 10}. Across the experiments, the
performance of TFR is stable for a wide range of these pa-
rameters. The neighborhood size k for TFR is 3. Basis ker-
nel functions are predetermined for TFR: linear kernel and
Gaussian kernels with 10 different bandwidths, i.e., 0.5, 1,
2, 5, 7, 10, 12, 15, 17, 20. SSTCA and TCA are evaluated
with these 11 basis kernels respectively and the best results
are reported. To evaluate the effectiveness of kernel weights
learning in TFR, TFR also applies these 11 basis kernels
with the average weights (denoted as TFR-avg).

Cross-Domain Face Classification
Data Preparation FERET (Phillips et al. 2000) and
YALE (Belhumeur, Hespanha, and Kriegman 1997) are two
public face data sets. FERET data set contains 13,539 face
images from 1,565 individuals, where each image is col-
lected with different poses, illuminations and facial expres-
sions. YALE data set has 165 images from 15 individu-
als. Some example face images are shown in Figure 2.

Following the previous works (Si, Tao, and Geng 2010;
Wang et al. 2014), two cross-domain data sets are con-
structed: 1) Y vs F: the source domain set is YALE, and the
target domain set consists of 100 individuals randomly se-
lected from FERET. 2) F vs Y: the source set contains 100
individuals randomly selected from FERET, and the target
set is YALE. The dimensionality of each image is reduced
to 100 by PCA, where 99.99% energy is preserved.

Results of Face Classification The training data set con-
tains all the labeled source domain data and some randomly
selected unlabeled target domain data, while the test data set
contains the rest of unlabeled target domain data. FERET
and YALE have different classes. At the test stage, the la-
bel of the test point is predicted as that of the nearest tar-
get domain training data point using the learnt transforma-
tion. Note that the label information of target domain data is
available only at the test stage. Figure 2 shows the misclas-
sification rates versus a varying number of unlabeled target
domain training data. The results are obtained by averaging
over 10 runs. JDA is inapplicable which requires that source
and target domains share the same class. TrFLDA has only
part of the results, since it suffers from numerical problems
when there is not enough target domain training data.

Some observations can be concluded from Figure 2.
Firstly, on Y vs F, metric learning algorithm IGML and base-
line Euclidean show their limits for cross-domain tasks. Sec-
ondly, on F vs Y which has a small target domain data set,
IGML performs much better than TCA, SSTCA, CDML and
TrFLDA. That is, when source domain and target domain
have different classes, these methods fail to separate differ-
ent classes for target domain data by learning a transforma-
tion from labeled source domain data and a few unlabeled

Figure 2: Image examples from (a) FERET and (b) YALE.
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Table 1: 1-NN classification errors (in percent) with varying size of target domain data in the training process on (from top to
bottom) Reuters-21578 and 20-Newsgroups data sets.

Data Set orgs vs people orgs vs place people vs place
Size (%) 50 60 70 80 90 50 60 70 80 90 50 60 70 80 90
Eucliden 50.50 51.16 51.10 52.24 53.33 48.91 49.32 50.65 50.50 49.27 50.56 51.04 51.68 53.02 57.41

TCA 48.51 43.58 46.48 47.93 50.07 51.44 49.16 50.80 53.59 51.92 47.40 50.12 50.80 53.59 54.41
SSTCA 48.84 45.96 49.54 42.15 49.24 42.99 42.93 46.05 47.45 44.23 43.63 45.71 45.05 45.45 45.37
CDML 46.34 46.07 46.49 47.24 49.33 47.22 47.32 46.67 45.50 42.69 47.04 45.48 46.67 47.50 43.52

JDA 47.52 46.17 48.90 48.24 46.28 48.56 47.80 52.40 50.24 54.81 48.80 48.33 52.40 50.24 47.22
IGML 47.68 47.62 46.41 47.63 50.71 47.50 49.12 48.37 48.67 45.31 48.03 48.72 49.65 50.60 51.85
TFR 43.71 44.93 45.07 47.93 50.89 44.72 45.24 44.60 44.37 42.31 49.19 45.03 45.60 44.37 43.52

TFR-avg 47.85 45.13 46.38 48.17 52.37 46.83 49.40 45.73 47.85 50.00 50.44 45.71 48.61 52.92 44.64

Data Set comp vs rec comp vs sci comp vs talk rec vs sci rec vs talk sci vs talk
Size (%) 30 40 50 30 40 50 30 40 50 30 40 50 30 40 50 30 40 50
Eucliden 52.40 53.71 56.20 61.41 59.62 62.97 55.24 58.47 54.23 57.06 55.33 56.29 45.10 43.33 46.73 52.75 53.08 55.79

TCA 50.64 49.66 49.54 50.35 49.72 50.70 43.76 44.90 45.23 58.86 49.18 49.87 43.74 44.02 43.87 50.56 50.50 50.61
SSTCA 51.92 51.11 51.54 50.64 50.75 50.41 44.83 45.21 43.35 49.26 51.41 50.83 43.21 44.79 43.35 48.41 47.75 48.95
CDML 51.27 51.90 51.54 49.14 48.27 51.59 46.52 49.06 43.17 50.52 50.87 49.54 45.72 51.44 46.25 53.52 49.59 52.17

JDA 52.61 51.28 52.87 48.88 48.70 47.85 46.14 47.55 45.39 53.29 52.49 49.67 47.85 48.43 48.69 50.92 50.37 51.02
IGML 55.21 52.04 53.85 53.35 50.56 53.12 47.97 49.72 50.99 56.08 52.59 56.09 43.12 42.02 43.18 53.39 50.63 53.85
TFR 49.36 48.98 50.00 48.37 49.03 48.21 46.32 44.41 42.45 48.79 49.39 50.09 45.32 46.87 43.45 48.32 47.95 48.51

TFR-avg 51.37 50.09 50.26 48.92 50.32 49.38 47.09 48.36 43.10 50.09 49.67 51.23 48.74 51.38 48.29 50.09 49.87 50.29

target domain data. Thirdly, although TFR-avg is quite ef-
fective here, the ensemble kernel based on the learnt weights
in TFR provides higher accuracy. In general, TFR achieves
the lowest error rate across all the data sizes, which illus-
trates its effectiveness in separating different target domain
classes even when source domain and target domain has dif-
ferent class numbers.

Cross-Domain Text Classification
Data Preparation Reuters-21578 and 20-Newsgroups are
two benchmark text data sets which are widely used for eval-
uating the transfer learning algorithms (Dai et al. 2007b;
Li, Jin, and Long 2012; Pan et al. 2011). These data sets
are organized in a hierarchical structure by different top cat-
egories and different subcategories. Data from different sub-
categories under the same top category is related. Following
this strategy, three cross-domain data sets are constructed
based on Reuters-21578: orgs vs people, orgs vs place and
people vs place; six cross-domain data sets are constructed
based on 20-Newsgroups: comp vs rec, comp vs sci, comp vs
talk, rec vs sci, rec vs talk and sci vs talk.

Results of Text Classification For Reuters-21578, train-
ing data set contains all the labeled source domain data and
randomly selected (50%, 60%, 70%, 80% or 90%) unlabeled
target domain data. For 20-Newsgroups, training data set
contains randomly selected 50% labeled source domain data
and randomly selected (30%, 40% or 50%) unlabeled tar-
get domain data. At the test stage, the remaining unlabeled
target instances are compared to the points in the labeled
source domain using the learnt transformation. We compare
our proposed TFR, TFR-avg with TCA, SSTCA, CDML and
JDA, where TrFLDA is inapplicable for this binary classifi-
cation task. Euclidean is used as the baseline. The classifica-
tion results across different training data sizes are shown in
Table 1 by averaging over 10 runs.

Some observations can be concluded from the results. The

first general trend is that the kernel-based nonlinear transfor-
mation methods TCA, SSTCA, TFR and TFR-avg always
outperform the linear methods CDML and JDA, showing the
advantage of nonlinear leaning in domain adaptation prob-
lems. The second general trend is that the results of non-
transfer metric learning method IGML are better than that
of the transfer algorithms on rec vs talk. A possible expla-
nation is that the distributions of source and target data are
not significantly varied on this data set. But we would like
to mention that the transfer methods perform well on other
cross-domain data sets. The third general trend is that TFR
achieves the minimal error rate on most of the data sets,
which illustrates its reliable and effective performance by
optimally combining multiple predefined kernel functions.

Convergence We have proven that TFR does converge to
the local minimum. In this section, we employ data set orgs
vs people to evaluate the convergence efficiency. As shown
in Figure 2(c), the objective values of TFR converge after
less than five iterations. We have similar observations for
other data sets, details are not given due to the lack of space.

Conclusion
In this paper, we have proposed a novel feature representa-
tion algorithm to address domain adaptation problem based
on multiple kernel learning. It differs from the existing ap-
proaches in that using a convex combination of basis kernels
can better explore prior knowledge and describe underlying
data characteristics. An efficient learning algorithm, based
on reduce gradient, is employed to simultaneously learn the
linear transformation and the kernel weights. As a result, the
discriminating power gained from the source domain is opti-
mally transferred to the target domain. Experimental results
in two real-world applications demonstrate the advantages
of our method. In future work, we plan to add low-rank con-
straint to the linear transformation and find the optimal low
dimensional space for domain adaptation problem.
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