
Detecting and Tracking Concept Class Drift
and Emergence in Non-Stationary Fast Data Streams

Brandon S. Parker and Latifur Khan
University of Texas at Dallas

2601 North Floyd Road
Richardson, TX 75083-0688 U.S.A.
{brandon.parker, lkhan}@utdallas.edu

Abstract
As the proliferation of constant data feeds increases
from social media, embedded sensors, and other
sources, the capability to provide predictive concept
labels to these data streams will become ever more
important and lucrative. However, the dynamic, non-
stationary nature, and effectively infinite length of data
streams pose additional challenges for stream data min-
ing algorithms. The sparse quantity of training data also
limits the use of algorithms that are heavily dependent
on supervised training. To address all these issues, we
propose an incremental semi-supervised method that
provides general concept class label predictions, but it
also tracks concept clusters within the feature space us-
ing an innovative new online clustering algorithm. Each
concept cluster contains an embedded stream classifier,
creating a diverse ensemble for data instance classifi-
cation within the generative model used for detecting
emerging concepts in the stream. Unlike other recent
novel class detection methods, our method goes beyond
detecting, and continues to differentiate and track the
emerging concepts. We show the effectiveness of our
method on several synthetic and real world data sets,
and we compare the results against other leading base-
line methods.

Introduction
While the data mining disciplines of classification and clus-
tering are well studied for static data, only within the last
two decades has data stream mining both been of academic
interest and need due to the recent explosion of data stream
availability through social media feeds, cloud services, and
Big Data concepts. Not only has the volume of data grown
tremendously, but the very nature of data has been revolu-
tionized with ideas of soft ontologies and schemaless data
streams and stores. These alterations in our fundamental
view of data pose a challenge to the tradition view of data
mining and the existing traditional data mining algorithms.
One of the well known problems in stream mining is con-
cept drift. However, a lesser explored issue is the emergence
of entirely new concept classes within the stream, called
novel classes. Figure 1 depicts some fundamental drift is-
sues present in data streams. The primary contributions to

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

change within a non-stationary stream can be categorized as
concept drift, feature evolution, and concept evolution.

Figure 1: Three main challenges of dynamic data stream
drift with two examples of each

Since the approach developed in this research effort en-
compasses both stream clustering and ensemble classifier
creation, it has several similarities to various sub-areas of
stream mining research. None of the other methods, how-
ever, adequately address all the stream mining issues as our
approach, an algorithm named SluiceBox.

Among the key contributions of this research, the algo-
rithmic method described herein provides:
• a new approach to novel class detection that extends be-

yond mere detection into also subspace locating and con-
cept tracking,

• a new emergent class detection and tracking method that
is easily combined with advancing classification meth-
ods, as demonstrated using Leveraging Bagging (Bifet,
Holmes, and Pfahringer 2010), and

• a new online clustering methodology that combines dy-
namic cluster quantity with subspace optimization.
In the next section, we explore some important prior work

relevant to our approach and problem domain. The third sec-
tion then describes our classifier and clustering design in
greater detail followed by a section providing experimental
results demonstrating the comparative capabilities of three
variations of the SluiceBox algorithm compared with two
baseline methods. The paper then concludes with a section
discussing future work.

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

2908

Background and Related Work
The closest works to the SluiceBox method are ECSMiner
(Masud et al. 2011) and its feature evolution improvement
DXMiner (Masud et al. 2010). In both, the authors address
all three core drift issues, but they use simple ensemble vot-
ing, handle only pre-normalized continuous-valued features,
and retain a homogenized conglomeration of all features in
all ensemble model evaluations. (Masud et al. 2011) out-
lines an approach to use an ensemble of hyper-spheres to
capture the decision boundary for classes as the stream is
processed. These methods only use continuous-valued fea-
tures, and normalize these features so that they all range
from (0.0,1.0) in the data set as a pre-processing task.

ECSMiner takes a chunk-based approach to stream min-
ing, wherein it caches a segment of the data stream (typically
between 500 and 5000 data points), and then predicts the la-
bels and novelty of the data points within that data chunk,
and subsequently uses the data chunk to update the classifi-
cation ensemble model. Prediction of a label for a given test
data instance is provided via ensemble voting from the con-
structed multi-chunk ensemble. Note that the algorithm sim-
ply identifies novel instances on a per instance basis, with-
out regard for locating or tracking the novel concepts in the
feature space. Within each ensemble member classifier, the
decision to identify a data point as a novel concept instance
uses the qNSC identified in (Masud et al. 2011) and (Ma-
sud et al. 2010), which measures a combined value of both
the separation of the new data point from existing concept
classes and the cohesion or local density of nearby outliers.

Our approach differs significantly from ECSMiner and
DXMiner in that it uses all potential attributes (numeric and
nominal) without pre-normalization, is fully online instead
of chunk-based, offers full concept tracking including sub-
spaces and emerging novel clusters, and can be easily paired
with other stream classifiers for semi-supervised learning.

Grimson and Stauffer (Stauffer and Grimson 1999) offers
an interesting insight into stream mining and novel class de-
tection as well. The focus of (Stauffer and Grimson 1999) is
object extraction from motion imagery data, so the overall
domain and solution is significantly different than the do-
main of instance classification and novel class detection in
generic data streams, but initial concept of separating back-
ground data from foreground data using a Gaussian process
can be loosely applied for finding outliers in a data stream.
Furthermore, their approach for creating and growing new
background models dynamically as the stream progresses
is conceptually aligned with our need to create new multi-
dimensional clusters and use them to collect data observa-
tions until the new group can be considered a sufficiently
large set to declare as a novel concept, or until labeled data
is provided. In a similar domain to (Stauffer and Grimson
1999), Zweig et al. in (Zweig, Eshar, and Weinshall 2012)
use a tiered discriminative classifier in order to discern novel
class objects in imagery.

Design
The SluiceBox algorithm uses all incoming data points
in an unsupervised fashion to update a collection of sub-

Figure 2: High level flow and call graph for the SluiceBox
method with classifier models φ, cluster models θ, attribute
vector x, label y and weights w

space aware clusters. Unlike traditional K-Means cluster-
ing (Hastie, Tibshirani, and Friedman 2009), this cluster-
ing method has the ability to vary the number of clusters as
necessary, similar to the capability of x-Means (Pelleg and
Moore 2000), and can also vary the subspace covered by
each cluster, similar to the capabilities of methods described
in (Cheng, Fu, and Zhang 1999). For any true supervised
training (i.e. labeled) data, the classifier model (notated φ)
embedded within each cluster model (notated θ) is trained.
For unlabeled (i.e. ’test’) data, an imputed label is provided
at a drastically reduced training weight in order to provide a
minimal best guess among the classifiers until true training
data arrives. The overall data flow and functional call graph
is depicted in Figure 2. The two principle functions are de-
scribed in pseudo code below.

This formulation of clusters with embedded classifiers can
be viewed as an ensemble of learners, diversified by logical
separation in the feature space. Therefore, label prediction
follows a typical weighted majority voting method, using the
distance from the query point to each cluster as the weight
applied to each cluster-embedded classifier’s prediction.

Algorithm 1 lists the main procedure for the SluiceBox
method. The set of clusters persist as Θ, and the number
of clusters are bounded by input parameters that provide a
minimum (Kmin) and maximum (Kmax) limit. The algo-
rithm assumes that an initial warm-up phase provides a rel-
atively small set of contiguous training data to boot strap
the model. While the length of this warm-up phase is en-
tirely configurable, the value of 5,000 data points was used
as it tended to provided all algorithms under test with the
best start up window. Within the warm-up phase, all data
instance are used as supervised training data, but after the
warm-up phase, the occurrence of training data is modeled
by the test harness as a uniform distribution with probabil-
ity of ground truth being P (ε). During the warm-up phase,
no metrics were counted against any of the algorithms in the
experiments reflected later in this paper, since multiple algo-
rithms exhibited the same trait of very low accuracy in the
initial segment of the data stream. Lines 2-4 of Algorithm

2909

Algorithm 1 SluiceBox High Level Process
Require: Assistant Classifier Φs
Require: Sieve Cluster model Θ
Require: Data Stream D
Require: Training Fraction ε
1: for all x ∈ D do
2: if in warmpup phase then . First 5000 data points
3: TRAIN(Θ, x, y(x), ω)
4: TRAIN(Φs, x, y(x), ω)
5: else
6: if x ∈ DL then . Labels appear with P (ε)
7: SIEVETRAIN(Θ, x, y(x), ω) . Algo. 2
8: TRAIN(Φs, x, y(x), ω)
9: else

10: hΦ ← PREDICT(Φs,x)
11: hΘ ← SIEVEPREDICT(Θ,x)
12: if hΘ = Novel then
13: h(x)← Novel
14: else if hΘ == Outlier then
15: PUSH(Ξ ,x)
16: else
17: h(x)← (hΦ · wΦ) + (hΘ · wΘ)
18: end if
19: SIEVETRAIN(Θ, x, hΦ, ωSSL) . Algo. 2
20: end if
21: end if
22: for all x ∈ Ξ past their deadline do
23: repeat lines 10-19, except 14-16 . finalize
24: end for
25: TRAIN(Θu, x, hΦ, ω ← 1)
26: Report h(x)
27: end for

1 represent this warm-up phase, where the initial models Θ
and Φs are trained.

Lines 6-8 of Algorithm 1 cover the case when training
(i.e., labeled) data does enter the system. Training data is of-
ten sparse and latent compared to the unlabeled data instance
within the stream. When training data arrives, it is used to
train both the cluster model Θ (line 7) and the co-training
classifier model Φs (line 8). The co-training classifier is an
optional capability, and the experimental results shown later
depict variations of SluiceBox with and without using Φs.

Lines 10-19 of Algorithm 1 are the main thrust of the pro-
cess, wherein data points enter the system, obtain a predicted
label, and are immediately used for unsupervised training.
Specifically, we obtain two hypotheses in lines 10-11 from
the ensemble of classifiers embedded in the cluster model
Θ and the co-training mode Φs respectively. If the clus-
ter model Θ predicts (lines 12-13) that the data point is a
member of a novel class (that is, lands in a cluster with no
trained labels), then the prediction for the query point x is
finalized as a novel class and given a serial identifier per-
taining to the novel concept cluster to which it most likely
belongs. Note that, unlike ECSMiner and related methods,
the declaration of novelty is cluster-based, which provides
additional feature-space location and tracking of the novel
concepts within the model. If the query point lands in a la-
beled concept cluster within the cluster model Θ, then the
combined weighted vote of Θ and Φs are used as the final

Figure 3: SluiceBox Modeling Structure

prediction label for x (line 17). The weights wΘ and wΦ are
configurable such that a balance can be achieved between
them as needed. As demonstrated in the experimental results
shown later, SluiceBox is extremely adept at detecting and
tracking emerging concept classes, but performs only mod-
erately well in overall prediction accuracy of known labels.
The inclusion and usage of the Φs model is specifically to
mitigate this and enhance the general prediction accuracy
of the method. From another viewpoint, this architecture al-
lows SluiceBox to be used in conjunction with any other
strong classifier such that the novel class discovery can be
relegated to SluiceBox, effectively providing a fast snap-on
enhancement to existing classification methods that would
be represented by Φs.

Even if Φs is not used in the final prediction (by setting
wΦ ← 0), the predicted label for x is used with a very small
weight ωSSL (e.g. 0.001) as shown in line 19 in order to pro-
vide the cluster-embedded ensemble a reasonable hypothe-
sis basis in the presence of sparse training information. Note
that when an actual training instance enters the system, the
training weight of 1.0 (line 7) would quickly overpower and
correct the semi-supervised training weights provided by Φs

to the cluster-embedded ensemble members.
The final case of the unsupervised training block is de-

picted in lines 14-15, where the query data point is found
not to be a likely member of any current cluster. In this case,
the query instance x is placed on to a very short delay queue
of size δ (where typically 5 ≤ δ ≤ 50). More technically,
the data point x is placed on the queue with a deadline of
δ future instance counts. In other words, the hypothesis for
x must be finalized after exactly δ more data points have
entered the system, regardless of other conditions or events.

Clustering
Algorithm 2 illustrates how the clustering model is incre-
mentally updated as new data instances arrive. The overall
classifier and cluster model is illustrated in Figure 3. Lines
2-5 take care of maintaining the limited data queue/cache
(typically set to 2,000 instances). Line 6 then retrieves the

2910

Algorithm 2 SluiceBox AnyMeans Live Update Function
Require: Instance Cache Dτ

Require: Max Cluster Limit Kmax

Require: Learning Rate λ
Require: Minimum Cluster Size q
1: function SIEVETRAIN(ClusterModel Θ, Instance x)
2: PUSH(Dτ ,x)
3: if size(Dτ) > τ then
4: REMOVELAST(Dτ)
5: end if
6: cmin ← FINDNEARESTCLUSTER(Θ, x)
7: for all c ∈ Θ do
8: wc ← wc × λ
9: if c == cmin then

10: wc ← wc + (1− λ)
11: end if
12: end for
13: dist← DISTANCE(cmin,x)
14: if dist < GETRADIUS(cmin) then
15: ASSOCIATE(cmin, x)
16: RECOMPUTESTATISTICS(cmin)
17: else . Check for novel concept cluster emergence
18: qNHmin ← COMPUTEQNH(cmin, x)
19: qNHout ← COMPUTEQNH(Ξ, x)
20: qNSC ← qNHmin−qNHout

Max(qNHmin,qNHout)

21: if qNSC > 0 then
22: cnew ← CREATENEWCLUSTER(x)
23: if |Θ| > Kmax then
24: REMOVESMALLESTWEIGHT(Θ)
25: end if
26: Θ← Θ ∪ cnew
27: end if
28: end if
29: if resynch timer expired then
30: ANYMEANSSYNCH(Θ, Dτ)
31: TRAINEMBEDDEDLEARNERS(Φ, Dτ)
32: end if
33: end function

cluster nearest to the new data instance x from the cluster
model Θ.

Lines 7-13 of Algorithm 2 provides a reinforcement learn-
ing based relevance management. Here, every cluster’s rele-
vance is reduced by multiplying the current relevance value
wc by the decay (or learning) factor λ in line 8. The one clus-
ter most likely to contain the new data instance, however, is
then given a boost to its weight by adding (1−λ) in line 10.
Line 12 then stores the new weight. These weights should
not be confused with the weights used for prediction dis-
cussed earlier, as the prediction weighting is based solely on
the distance from the query point to the cluster. These cluster
weights are used internally to determine which cluster is the
weakest and thus will be sacrificed in order to make room
for a new emerging cluster under the appropriate conditions,
which is explained momentarily.

Line 13 captures the distance between the nearest cluster
and the new data instance x. If the data instance is a likely
member of the nearest cluster, then it is added to the cluster,
and the cluster statistics are recomputed (lines 15-16). Oth-
erwise, the new data point is considered an outlier, and a sub-
process determines whether there are sufficient conditions to

Classes Features # of
DataSet Total Active Num Nom Records
IRND5M 100 17 10 0 5000000
KDD99 23 8 34 8 4898431
PAMAP2 13 3 53 1 2872533
FC 7 3 54 0 500000

Table 1: Data Sets Characteristics

create a new cluster representing an emerging concept clus-
ter. Note that a new cluster is not necessarily a novel concept
cluster, in that rapid concept drift or other feature evolution
changes could cause an existing concept to present another
centroid or dense region in the feature space. The new clus-
ter is only considered a novel cluster if it does not end up
with any labeled training data assigned to it.

Lines 18-26 handle the potential emergence of a new clus-
ter, and its addition to the cluster model Θ. Lines 18 and
19 find the qNH neighborhoods exactly the same as dis-
cussed in (Masud et al. 2011), but used here to determine
when to create a new cluster. If, as depicted in line 21, the
qNSC value is positive (i.e. greater than zero), then a suffi-
cient number of outlier data points have a sufficient density
as compared to the data points in the nearest cluster, and
the outlier points are sufficiently separated from the known
clusters (as established by the else condition in line 17 from
line 14). In this case, a new cluster is created containing the
new data instance and the outlier points that fell within the
q-Neighborhood (qNHout) that was discovered.

If the maximum number of clusters already exists, as
checked in line 23, then the weakest cluster currently within
the cluster model set Θ is removed in line 24, after which
the new cluster can be safely added in line 26. Note that the
selection of the cluster with the smallest weight utilizes the
weighting of the clusters that is established in lines 8-12,
such that the removed cluster is likely an older cluster which
has not been updated in some time.

Finally, lines 29-32 handle the case where periodic resyn-
chronization is configured, and the resynchronization fre-
quency timeout has occurred. The TrainEmbeddedLearners
procedure follows the online training function native to the
embedded classifier (e.g., Naive Bayes).

Once at the conclusion of the warm-up phase (first 5,000
training points), and then subsequently on a periodic (if con-
figured) basis, the *-Means (”any-Means”) clustering al-
gorithm batch-oriented process is invoked. While the in-
cremental processing function described above is sufficient
to maintain the clustering under moderate streaming data
conditions, the resynchronization process is used to ini-
tially establish (and periodically re-establish) the cluster-
ing model more aggressively and following an iterative
expectation-maximization (E-M) methodology (Hastie, Tib-
shirani, and Friedman 2009), (Mitchell 1997), (Russell and
Norvig 2003). Compared to the typical depiction of the E-M
algorithm, this process is more complex as it contains three
separate maximization sub-steps, separated by incremental
expectation estimation steps.

2911

DataSet ECSMiner LB SB SBLB SBStrm
FC@0.001 48.09 60.19 29.29 26.83 21.92
FC@0.05 38.03 89.39 67.33 73.99 49.89
FC@0.1 47.52 91.23 71.30 79.93 54.14

FC@0.25 56.52 92.36 75.73 83.82 59.14
FC@1.0 65.96 93.34 77.35 87.20 63.67

IRND5M@0.001 10.86 47.59 78.62 83.84 80.99
IRND5M@0.05 30.18 84.36 42.49 66.55 34.91
IRND5M@0.1 41.51 85.91 44.15 78.22 38.43
IRND5M@0.25 56.87 87.50 44.93 84.25 40.44
IRND5M@1.0 68.44 89.17 45.35 87.95 42.08
KDD99@0.001 19.91 97.41 51.51 95.41 42.68
KDD99@0.05 67.83 99.18 94.25 97.99 78.38
KDD99@0.1 75.86 99.31 95.70 98.28 80.37

KDD99@0.25 87.04 98.55 96.32 97.61 82.69
KDD99@1.0 94.28 98.41 96.66 97.69 85.03

PAMAP2@0.001 27.55 63.97 38.95 61.30 30.88
PAMAP2@0.05 7.01 74.96 40.19 62.04 47.27
PAMAP2@0.1 3.95 77.31 44.35 64.97 39.87

PAMAP2@0.25 10.37 80.28 49.32 69.14 30.67
PAMAP2@1.0 52.27 82.02 54.09 73.01 19.27

Rank Avg 4.40 1.15 3.15 2.05 4.25

Table 2: Experimental Classifier Accuracy Results showing
algorithm comparison for different data sets (Higher values
are better).

Empirical Results
In order to test the methods described herein, we lever-
aged the MOA framework (Kranen et al. 2012) and tested
against the implemented ECSMiner (ECSM) (Masud et al.
2011) and LeveragingBagging (LB) (Bifet, Holmes, and
Pfahringer 2010) algorithms. We then tested three variations
of our SluiceBox method. The first, notated as SB, is the
SluiceBox method with a resynchronization occurring ev-
ery 20,000 data points and the semi-supervised advisor al-
gorithm contributing with a training weight of only 1/1000.
The second variation, noted as SBLB uses the Leveraging
Bagging (LB) algorithm as the semi-supervised advisor al-
gorithm with a training weight contribution of 1/1000 and
a final prediction vote weight equal to the cluster ensemble
vote. Finally, the variation notated as SBStrm is like the SB
variation, but without any resynchronization (i.e. pure online
method). For all variations of our method, a data cache size
of 2,000 data points, a retry queue size of 5, and a maximum
cluster limit of 75 were used. Due to the variation in the
scores down the table, the average score is only moderately
useful, so an additional summary metric, Average Row Rank,
is also provided, indicating the average ranking of each al-
gorithm for each data set row, where a rank of 1 indicated
the algorithm is the best for the row.

We utilized three baseline real world data sets: PAMAP2
(Anguita et al. 2012), Forest Cover (FC)(Bache and Lich-
man 2013), and KDD Cup ’99, from the UCI repository
(Bache and Lichman 2013). We also used two synthetic data
sets using a newer Induced Random Non-Stationary Data
generator plug-in created for MOA. The characteristics of
these data sets are depicted in Table 1, with number of class
labels that occur in each data set (as Total) and the maximum
number of concurrent labels (as Active) in a 5000-point sam-
ple window. When the warmup phase contains the maxi-

mum number of concurrent active labels, the PAMAP2 has
10 novel classes, but IRND5M has 83 novel classes, provid-
ing a better evaluation set for the algorithms. In the reported
results, we vary the quantity of training data (i.e. training
fraction) for each data set, notated as a suffix to the data set
abbreviation indicating the decimal fraction of labeled data
used. The SluiceBox and ECSMiner methods are generative
methods - a necessary condition for novel class detection.
The Leveraging Bagging method, however, is a discrimina-
tive model using decision trees. As noted in (Lasserre and
Bishop 2007), discriminative models tend to find larger deci-
sion margins and perform better with adequate date, whereas
generative models will have the potential for higher accu-
racy when labeled data is not as prevalent. When true train-
ing data is sparse (as indicated by the decimal value follow-
ing the ’@’ sign on each data set), the number of cohesive
unlabeled concept clusters increases proportional to the la-
beled concept clusters, providing the novel class detection
portion of the method a greater opportunity to contribute to
overall accuracy. This is also the cause of the accuracy in-
crease for the IRND5M data set with @0.001 in our method
—the larger abundance of new labels in the stream and our
method can detect all the novel class instances (i.e., low FNR
for @0.001 in Table 3). The drop in accuracy with increas-
ing ground truth prevalence is due to the fact that generative
models are less effective with existing class instance classi-
fication and fewer number of novel class instances will be
present and detected in the stream.

We report two categories of results below. First is the
overall accuracy of the classifiers with regard to predicting
the correct label (or correctly predicting novelty). The re-
sults are shown in Table 2. Note that the Leveraging Bagging
(LB) (Bifet, Holmes, and Pfahringer 2010) method is quite
accurate overall. However, in the presence of more novel
class emergence and low training data quantity, as seen in
the first IRND5M line, the SluiceBox method boost the ac-
curacy of leverage bagging (see the SBLB column) where
alone Leverage Bagging experiences high error. Compared
to the capability comparable ECSMiner, all of the Sluice-
Box variations achieve higher accuracy ratings and a better
overall average ranking. Observe that overall the SBLB col-
umn demonstrates a positive symbiotic relationship effec-
tively using the strengths of the LB and SB methods as ap-
propriate to the data. The second result set, Table 3 focuses
strictly on the False Positive Rate (FPR) and False Negative
Rate (FNR) of novel class detection, not label accuracy. Ob-
viously the Leveraging Bagging algorithm will never predict
a novel class, so it would have a perfect FPR, and likewise
a 100% FNR. The SBStrm variation, despite its lower over-
all accuracy, does the best at the novel class detection (best
FNR). Looking at the column summary row at the bottom,
the ECSM provides a lower false positive rate, but a sig-
nificantly worse false negative rate (i.e. it misses true novel
concepts) compared to the SBStream variation.

Conclusion
The presented methodology demonstrates an improved ap-
proach to handling concept evolution and novel class emer-
gence found in data streams, as demonstrated the theoretical

2912

DataSet ECSM LB SB SBLB SBStrm
FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR

FC@0.001 0.04 89.51 n/a 100.00 72.41 14.42 73.72 28.54 89.76 3.11
FC@0.05 2.06 83.28 n/a 100.00 20.58 29.18 20.83 36.42 36.68 46.86
FC@0.1 3.92 48.56 n/a 100.00 15.40 36.63 15.12 38.31 33.17 43.44

FC@0.25 3.93 46.87 n/a 100.00 11.16 38.43 11.48 40.91 29.08 48.21
FC@1.0 3.75 45.28 n/a 100.00 8.84 38.70 8.75 42.15 23.07 48.99

IRND5M@0.001 0.19 97.50 n/a 100.00 79.61 8.42 86.31 1.83 87.33 5.26
IRND5M@0.05 0.94 96.24 n/a 100.00 3.40 94.97 22.66 46.50 14.26 79.19
IRND5M@0.1 0.50 97.49 n/a 100.00 0.54 98.96 9.57 71.01 8.22 84.81

IRND5M@0.25 0.22 98.53 n/a 100.00 0.02 99.90 3.99 84.18 6.51 86.46
IRND5M@1.0 0.07 99.35 n/a 100.00 1.48 97.48 1.46 93.29 7.02 86.81
KDD99@0.001 16.00 96.57 n/a 100.00 19.35 66.74 2.50 78.07 39.58 40.25
KDD99@0.05 11.09 49.33 n/a 100.00 2.76 64.52 1.31 74.89 20.23 21.83
KDD99@0.1 8.99 64.51 n/a 100.00 1.82 72.74 1.13 82.63 18.73 15.43
KDD99@0.25 5.19 51.33 n/a 100.00 1.39 78.12 1.14 84.53 16.29 17.66
KDD99@1.0 4.15 67.18 n/a 100.00 1.35 78.16 0.90 88.77 14.05 49.64

PAMAP2@0.001 26.07 44.35 n/a 100.00 39.59 49.04 16.28 55.34 5.50 85.51
PAMAP2@0.05 83.13 2.65 n/a 100.00 37.48 64.10 19.31 68.25 34.57 100.00
PAMAP2@0.1 69.27 37.25 n/a 100.00 33.14 62.27 17.06 72.86 46.43 31.49
PAMAP2@0.25 27.33 85.16 n/a 100.00 29.12 63.09 13.79 87.60 60.46 17.98
PAMAP2@1.0 6.14 87.76 n/a 100.00 28.54 60.27 11.04 81.92 76.61 9.49

Rank Avg 1.95 2.95 n/a 4.95 2.40 2.40 2.05 2.65 3.60 2.00

Table 3: Novel Class Experimental Error Results showing algorithm comparison for different data sets (Lower values are better).

basis and empirical evidence presented herein. The Sluice-
Box method goes beyond the previous established methods
like ESCMiner, in that it not only detects the emergence of
a novel class, but actually locates and tracks the concepts
as deviate and drift, and SluiceBox can be used as a snap-
in enhancement to provide these capabilities to any other
classifier, enhancing both. Future research will continue to
improve the overall classification accuracy and speed of the
SluiceBox method to reduce the dependency on co-trained
classifiers for such contexts.

Acknowledgments
Supervisory role from author L. Khan supported by NSF
Award No. CNS-1229652 and DMS-1322353.

References
Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; and Reyes-Ortiz, J. L.
2012. Human activity recognition on smartphones using a multi-
class hardware-friendly support vector machine. In Proceedings of
the 4th international conference on Ambient Assisted Living and
Home Care, IWAAL’12, 216–223.

Bache, K., and Lichman, M. 2013. UCI machine learning reposi-
tory.

Bifet, A.; Holmes, G.; and Pfahringer, B. 2010. Leveraging bag-
ging for evolving data streams. In Proceedings of the 2010 Euro-
pean Conference on Machine Learning and Knowledge Discovery
in Databases: Part I, ECML PKDD’10, 135–150. Berlin, Heidel-
berg: Springer-Verlag.

Cheng, C.-H.; Fu, A. W.; and Zhang, Y. 1999. Entropy-based sub-
space clustering for mining numerical data. In Proceedings of the
fifth ACM SIGKDD international conference on Knowledge discov-
ery and data mining, KDD ’99, 84–93.

Hastie, T.; Tibshirani, R.; and Friedman, J. 2009. The Elements of
Stasticial Learning. New York: Springer-Verlag, 2nd edition.

Kranen, P.; Kremer, H.; Jansen, T.; Seidl, T.; Bifet, A.; Holmes,
G.; Pfahringer, B.; and Read, J. 2012. Stream data mining us-
ing the moa framework. In Proceedings of the 17th International
Conference on Database Systems for Advanced Applications - Vol-
ume Part II, DASFAA’12, 309–313. Berlin, Heidelberg: Springer-
Verlag.
Lasserre, J., and Bishop, C. M. 2007. Generative or Discrimina-
tive? Getting the Best of Both Worlds. BAYESIAN STATISTICS
8:3–24.
Masud, M. M.; Chen, Q.; Gao, J.; Khan, L.; Han, J.; and Thurais-
ingham, B. 2010. Classification and novel class detection of data
streams in a dynamic feature space. In Proceedings of the 2010 Eu-
ropean conference on Machine learning and knowledge discovery
in databases: Part II, ECML PKDD’10, 337–352.
Masud, M.; Gao, J.; Khan, L.; Han, J.; and Thuraisingham, B.
2011. Classification and novel class detection in concept-drifting
data streams under time constraints. Knowledge and Data Engi-
neering, IEEE Transactions on 23(6):859–874.
Mitchell, T. 1997. Machine Learning. Singapore: McGraw-Hill,
2nd edition.
Pelleg, D., and Moore, A. W. 2000. X-means: Extending k-means
with efficient estimation of the number of clusters. In Proceedings
of the Seventeenth International Conference on Machine Learning,
ICML ’00, 727–734.
Russell, S., and Norvig, P. 2003. Artificial Intelligence: A Modern
Approach. New Jersey: Prentice Hall, 2nd edition.
Stauffer, C., and Grimson, W. E. L. 1999. Adaptive background
mixture models for real-time tracking. In Computer Vision and Pat-
tern Recognition, 1999. IEEE Computer Society Conference on.,
volume 2, –252 Vol. 2.
Zweig, A.; Eshar, D.; and Weinshall, D. 2012. Identification of
novel classes in object class recognition. In Weinshall, D.; Anem-
ller, J.; and van Gool, L., eds., Detection and Identification of Rare
Audiovisual Cues, volume 384 of Studies in Computational Intelli-
gence. Springer Berlin Heidelberg. 47–55.

2913

