
Improving Multi-Step Prediction of Learned Time Series Models

Arun Venkatraman, Martial Hebert, and J. Andrew Bagnell
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213

arunvenk@cs.cmu.edu, {hebert, dbagnell}@ri.cmu.edu

Abstract
Most typical statistical and machine learning ap-
proaches to time series modeling optimize a single-
step prediction error. In multiple-step simulation, the
learned model is iteratively applied, feeding through
the previous output as its new input. Any such pre-
dictor however, inevitably introduces errors, and these
compounding errors change the input distribution for
future prediction steps, breaking the train-test i.i.d as-
sumption common in supervised learning. We present
an approach that reuses training data to make a no-regret
learner robust to errors made during multi-step predic-
tion. Our insight is to formulate the problem as imita-
tion learning; the training data serves as a “demonstra-
tor” by providing corrections for the errors made dur-
ing multi-step prediction. By this reduction of multi-
step time series prediction to imitation learning, we es-
tablish theoretically a strong performance guarantee on
the relation between training error and the multi-step
prediction error. We present experimental results of
our method, DAD, and show significant improvement
over the traditional approach in two notably different
domains, dynamic system modeling and video texture
prediction.

Determining models for time series data is important in ap-
plications ranging from market prediction to the simulation
of chemical processes and robotic systems. Many super-
vised learning approaches have been proposed for this task,
such as neural networks (Narendra and Parthasarathy 1990),
Expectation-Maximization (Ghahramani and Roweis 1999;
Coates, Abbeel, and Ng 2008), Support Vector Regres-
sion (Müller, Smola, and Rätsch 1997), Gaussian process
regression (Wang, Hertzmann, and Blei 2005; Ko et al.
2007), Nadaraya-Watson kernel regression (Basharat and
Shah 2009), Gaussian mixture models (Khansari-Zadeh and
Billard 2011), and Kernel PCA (Ralaivola and D’Alche-Buc
2004). Common to most of these methods is that the objec-
tive being optimized is the single-step prediction loss. How-
ever, this criterion does not guarantee accurate multiple-step
simulation accuracy in which the output of a prediction step
is used as input for the next inference.

The prevalence of single-step modeling approaches is a
result of the difficulty in directly optimizing the multiple-

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

step prediction error. As an example, consider fitting a sim-
ple linear dynamical system model for the multi-step error
over the time horizon T from an initial condition x0,

A∗ = arg min
A

T∑
t=1

∥∥xt −Atx0

∥∥2

2
(1)

Even this squared-loss objective is difficult to optimize in
two ways: it is non-convex in A, and though differentiable,
the matrix power derivatives are non-trivial. In comparison,
the single-step squared loss used in supervised learning,

A∗ = arg min
A

T−1∑
t=0

‖xt+1 −Axt‖22 (2)

is more appealing to solve as it has an easy, closed form so-
lution. Abbeel et al. propose a generalization of (1) coined
the “lagged error” criterion which penalizes deviations dur-
ing forward simulation. However, as noted by the authors,
this objective is also non-linear and non-convex as the sec-
ond step prediction is conditioned on the output of the first.
They propose either a simpler but still non-convex approxi-
mation (Abbeel, Ganapathi, and Ng 2005) that can be itera-
tively optimized or Expectation Maximization (Abbeel and
Ng 2005b) to find a local optimum to the multi-step error.

If the predictive model is differentiable, one can apply
“backpropagation-through-time” (Werbos 1990; Langford,
Salakhutdinov, and Zhang 2009). Unfortunately, such gra-
dient methods are limited in the model classes they can con-
sider, effectively ruling out broad classes of some of the
most effective regression algorithms including decision trees
and random forests. Moreover, such methods – even on sim-
ple linear predictive models – tend to suffer from a “gradient
collapse” and ill-conditioning (Bengio, Simard, and Fras-
coni 1994), where the gradient decreases exponentially in
the prediction horizon T . Finally, to our knowledge, no for-
mal guarantees have been provided for any such optimiza-
tion of multi-step predictive error. Perhaps as a result, many
approaches in the literature focus on using single-step pre-
diction models to take advantage of techniques developed in
the statistical and machine learning communities.

In this paper, we introduce a new meta-algorithm, DATA
AS DEMONSTRATOR (DAD), for improving the multi-step
prediction capability of a time-series learner. Our contribu-
tions are:

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

3024



– We propose a simple, easy to implement meta-algorithm
that can wrap an existing time-series learning procedure.

– Our method makes no assumption on differentiability.
This allows our algorithm to be utilized on top of a larger
array of supervised learning algorithms.

– Our method is data-efficient in improving a learned
model. Without querying the actual system for more train-
ing data, our method is able to achieve better performance
on the multi-step criterion by reusing training data to cor-
rect for prediction mistakes.

– Moreover, through a reduction to imitation learning, we
demonstrate that when the learner exhibits the no-regret
property, we can provide performance guarantees that re-
late the one-step predictive error to the multi-step error.

Finally, we demonstrate experimentally that our method im-
proves the multi-step prediction error.

Problem Setup
We consider the problem of modeling a discrete-time time-
series (system) characterized by a time-indexed state xt gen-
erated from some stationary dynamics,

xt+1 = E[f(xt)] (3)

The problem we address is to learn a model given K sample
trajectories ξk ∈ Ξ of {x0, x1, . . . , xTk

} generated by the
system (3). As motivated in the introduction, it is easiest to
learn a forward prediction model by considering the predic-
tion of single, consecutive steps in each trajectory. To do so,
we create a datasetD of input-target pairs {(xt, xt+1)}i and
optimize for a learned model:

M̂ = arg min
M∈Γ

∑
i

`M ({(xt, xt+1)}i) (4)

for some regression loss function ` and class of models Γ.
For multiple-step prediction and simulation with the learned
model M̂ , we follow the simple two-step procedure:

Step 1: x̂t+1 = M̂ (x̂t)

Step 2: Return to Step 1 with x̂t ← x̂t+1

One may naively intuit that the error is linear in the num-
ber of predictions - the multiple-step prediction horizon - as
would be expected in the supervised learning setting; how-
ever, this ignores the feedback effect from the learner’s pre-
diction error. At each execution of Step 1, prediction error
results in a state that could be outside of the training data
distribution in Ξ. In practice, this results in even more error,
cascading through to later predictions.

Theorem 1. Let M̂ be learned model with bounded single-
step prediction error ‖M̂(xt)− xt+1‖ ≤ ε. Also let M̂ be
Lipshitz continuous with constant L > 1 under the metric
‖·‖. Then, ‖M̂(x̂T )− xT+1‖ ∈ O (exp(T log(L))ε)

Proof. From the Lipshitz continuous property, bounded er-
ror assumption, and the triangle inequality, we can show that
‖M̂(x̂T )− M̂(xT )‖ ≤ L‖M̂(x̂T−1)− M̂(xT−1)‖+ Lε.

Applying the same process, we eventually get
‖M̂(x̂T )− M̂(xT )‖ ≤∑T

t=1 L
tε. Using the

bounded error assumption along with another
application of triangle inequality, we arrive at
‖M̂(x̂T )− xT+1‖ ≤

∑T
t=0 L

tε ∈ O (exp(T log(L))ε).

The bound in Theorem 1 tells us that the multi-step pre-
diction error is bounded by an exponential in the time hori-
zon. This bound is tight. Consider a fitted a linear model
Â > 1 on a 1-D training trajectory ξ, with bounded error ε
and Lipshitz constant Â. If we make a single-step error ε on
the first step of forward simulation, x̂1 = Âx0 = x1 + ε, we
get: x̂T+1 = ÂT (x1 + ε) Then,

‖x̂T+1 − xT+1‖ = ‖ÂT (x1 + ε)− xT+1‖ ∈ Ω(ÂT ε) (5)

It is also worthwhile to note the Lipshitz constant conditions:
For L > 1, we get the bound in Theorem 1. If L = 1, the
bound reduces to O(Tε), which is equivalent to the result
for the supervised learning setting. Finally, for L < 1, we
get O(Lε). This situation specifies a stable fitted model that
decays to zero change in state over the time horizon. For
many time-series problems, this results in boring simulated
behavior as the predictions converge to the mean, as exem-
plified with the “Fireplace” video texture in the experimen-
tal section. For many real-world problems, a model that is
near the limit of stability is preferred. As a result, we may
learn approximations that are unstable, yielding the expo-
nential bound as shown above. In the following sections, we
motivate and develop an algorithm which can achieve regret
linear in the prediction horizon.

DATA AS DEMONSTRATOR Algorithm
To resolve differences in the train and test (forward predic-
tion) distributions, it would be convenient to augment our
training set to meet the test distribution. This is reminiscent
of recent work in interactive imitation learning in which the
expert demonstrator is queried in order to learn a control pol-
icy. Though a natural approach, collecting new data on the
induced ‘test’ distribution may be impossible.

Practically, it could be expensive to query the true sys-
tem at the incorrectly predicted state (e.g. an inverted heli-
copter). The more impeding concern, however, is that the
predicted states may not be feasible for the generating sys-
tem. Consider data collected from a pendulum mass on a
string with radius 1. The mechanics of the system require
the Euclidean coordinates to reside on the unit circle. Dur-
ing forward simulation with an approximate model, we may
predict points off this constraint manifold. This situation is
illustrated in Figure 1(a).

Instead, we synthetically generate correction examples for
the learner to use. Since the given training trajectories are
time-indexed, they can provide a correction for each time
step when simulating from points along the training trajec-
tories, as depicted in Figure 1(b). This idea motivates our
algorithm, DATA AS DEMONSTRATOR (DAD).

3025



Figure 1: In typical time-series systems, realized states of
the true system are a small subset or even a low-dimensional
manifold of all possible states. Cascading prediction errors
from forward simulation with a learned model will often re-
sult in predicted infeasible states (Fig. 1(a)). Our algorithm,
DATA AS DEMONSTRATOR (DAD), generates synthetic ex-
amples for the learner to ensure that prediction returns back
to typical states (Fig. 1(b)).

Reduction to imitation learning
DATA AS DEMONSTRATOR forward simulates a learned
model, collecting data on the encountered prediction, ‘test’
time, distribution by simulating from points along training
trajectories. The next model is trained from input-target
pairs created by pointing the ‘test’ time prediction to the
correct next time-indexed state along the trajectory. By it-
erating and retraining a new model on the aggregate dataset,
DAD can be considered a Follow-The-Leader algorithm.

Since we are applying corrections from the dataset, we
can also interpret DAD as a simplified scenario of interactive
imitation learning. Let the expert be the training data which
“demonstrates” expert actions by specifying at each point in
time the correct state for the next time step. The learned
time-series model M acts as the state dependent action pol-
icy π̂. The state dynamics simply pass on the predictions
from the learned model as the input for the next state.

This reduction to the interactive imitation learning setting
allows us to avail ourselves of the theoretical guarantees for
the Dataset Aggregation algorithm (DAGGER) introduced
in (Ross, Gordon, and Bagnell 2011). Notationally, let a
ground truth trajectory from the underlying system be ξ =

{x0, x1, . . .}, and let ξ̂ = {x0, x̂1, x̂2, . . .} denote the trajec-
tory induced by starting at x0 from the true trajectory and it-
eratively applying the model M as described in the two-step
forward prediction procedure. Let PM := PM (ξ̂, ξ) denote
the distribution of the time-synchronized pairs (x̂t, xt) from

Algorithm 1 DATA AS DEMONSTRATOR (DAD)
Input:

B Number of iterations N , set {ξk} of K trajectories of
time lengths {Tk}.
B No-regret learning procedure LEARN
B Corresponding PREDICT procedure for multi-step
prediction that takes an initial state, model, and number
of time steps.

Output: Model M̂
1: Initialize aggregate data set D ← {(xt, xt+1)} of

(Tk − 1) input-target pairs from each trajectory ξk
2: Train initial model M0 ← LEARNER(D)
3: for n = 1, . . . , N do
4: for k = 1, . . . ,K do
5: (x̂1, . . . , x̂T )← PREDICT(ξk(0),Mn, Tk)
6: D′ ← {(x̂1, ξk(2)), . . . , (x̂Tk−1, ξk(Tk))}
7: D ← D ∪D′
8: end for
9: Mn ← LEARN(D)

10: end for
11: return Mn with lowest error on validation trajectories

the predicted states and the true system’s trajectory.
Let εN be the true loss of the best model in hindsight, de-

fined as εN = minM∈Γ
1
N

∑N
i=1 Ex∼PMi

[`M (x)]. Finally,

let M̂ = arg minM∈M1:N
Ex∼PM

[`M (x)] be the model re-
turned by DAD that performed best on its own induced dis-
tribution of states. We are then able to achieve the following
performance guarantee:

Theorem 2. Given a bounded single-step prediction
(regression) loss ` and associated no-regret learning pro-
cedure LEARN, DAD has found a model M̂ ∈ M1:N as
N →∞, such that Ex∼P

M̂

[
`
M̂

(x)
]
≤ εN + o(1).

Proof. We setup the imitation learning framework as de-
scribed earlier: learned policy π̂ = M̂ and degenerate state
dynamics that rely on the policy (learned model) to solely
transition the state. By this reduction to imitation learning,
the result follows from Theorem 4.1 of (Ross, Gordon, and
Bagnell 2011).

We can also relate the number of iterations of DAD to get
a linear performance guarantee with respect to the predic-
tion horizon for the regularized squared loss, a commonly
used regression loss. Letting J(M) =

∑T
t=0 `[(ξ̂(t), ξ(t))]

define the multiple-step prediction error, we get:

Theorem 3. If ` is the regularized squared loss over a linear
predictor (or kernel linear regressor) and ifN is Õ(T ), then
∃ M̂ ∈M1:N found by DAD such that J(M̂) ≤ O(T · εN )

Proof. The regularized squared loss on a linear prediction
model (or on a kernel linear regressor) is strongly convex
in the model parameters. The result then follows from our
reduction and Theorem 3.2 of (Ross, Gordon, and Bagnell
2011).

3026



Intuitively, these results tell us that for a given time-series
modeling problem, we either fail to find a model because the
generation of synthetic training points creates conflicting in-
puts for the learner when our new data-points overlap or we
guarantee good performance after a certain number of iter-
ations. Additionally, the performance guarantees given by
Theorem 2 and Theorem 3 have some subtleties and depend
on a few critical assumptions. Firstly, DAD gives no guar-
antee on any specfic learned model M ∈ M1:N from each
iteration but only that there exists a generated model that
performs well. In addition, since the efficacy of the learner
shows up in the bound, it is necessary to have a learning pro-
cedure LEARN(D) that is capable of achieving low training
error on the single-step loss. Furthermore, the bounds we
have shown are valid with an infinite number of completely
new trajectories at each step n, a similar requirement for re-
lated methods such as SEARN (Daumé III, Langford, and
Marcu 2009), Forward training (Ross and Bagnell 2010),
and DAGGER (Ross, Gordon, and Bagnell 2011). Follow-
ing the practice of the aforementioned methods, due to lim-
ited data and for data efficiency, the iterations share a single
batch of training trajectories.

There are a large class of learning algorithms that meet the
no-regret requirement for the internal learning procedure in
DAD. A no-regret learning algorithm is one that produces a
sequence of models Mn, such that the average regret

RLEARNER =
1

N

∑
n

`Mn(xn)− min
M∈Γ

1

N

∑
n

`M (xn) (6)

tends to 0 as N → ∞. Since DAD is a Follow-The-
Leader algorithm, any strongly convex loss (e.g. regular-
ized squared loss) on the aggregated dataset will result in
a no-regret learner. In fact, stability and asymptotic con-
sistency are enough to ensure no-regret (Ross and Bagnell
2011). Additionally, we can even utilize other online learn-
ing methods to achieve the same performance bounds since
many are also no-regret (Cesa-Bianchi, Conconi, and Gen-
tile 2004). The advantage of online methods is that we no
longer have to store the ever-growing dataset but simply up-
date the learned model for every new data point.

Finally, we would like to note a few additional details
on using the DATA AS DEMONSTRATOR algorithm. Even
though Algo. 1 starts the predictions at ξk(0), better utiliza-
tion of the dataset can be achieved by starting at other points
in the training trajectories. Also, the aggregation phase may
require a thresholding or filtering step. For longer hori-
zon problems and with weaker learners, it may be difficult
to achieve improvement by giving equal importance to the
larger corrections at the end of the prediction horizon and to
the small errors made at the beginning. Intuitively, we hope
that by the end, the learned model should not wander far
away from the ground truth trajectory, and thus we ignore
those points during the training iterations.

Experimental Evaluation
To demonstrate the efficacy of the DATA AS DEMONSTRA-
TOR algorithm, we consider two markedly different, chal-
lenging time series prediction problems. Since our ap-

Figure 2: A pendulum trajectory’s ground truth (top) com-
pared with multi-step predictions displayed for time steps
1, 8, 16, 23, and 30 from the traditional minimization of
single-step error (middle) and from our approach (bottom).
The final output of DAD is closer to the true final state.

proach is a meta-algorithm, it requires an underlying no-
regret learning procedure to optimize the single-step predic-
tion error. Below, we use a simple but expressive learning
procedure, but we wish to emphasize that it could be re-
placed with other domain specific learning methods.

Single-step learning procedure: Random Fourier
Feature Regression
Motivated by prior work in kernelized modeling of dynam-
ical systems (Ralaivola and D’Alche-Buc 2004; Chaudhry
et al. 2009; Wingate and Singh 2006; Kawahara, Yairi, and
Machida 2006), we use kernel regression, a nonparametric
learning procedure that allows us to embed our data points
into a high, possibly infinite, dimensional space. Let φ(x)
define the feature map that induces the kernel k(x, y) =
〈φ(·), φ(·)〉. We minimize the λ-regularized squared loss:

min
C

1

N
· 1

2
‖CΦt −Xt+1‖2F + λ

1

2
‖C‖2F (7)

for the forward prediction model:

x̂t+1 = Cφ(x̂t) (8)

However, for some choice of kernels, such as the Gaussian
kernel, the solution to (7) cannot be evaluated as φ embeds
the original data points into an infinite dimensional space.
A standard approach would be to solve the objective in the
dual. Since DAD is a dataset aggregation algorithm that aug-
ments the dataset with O(N) new input-target pairs every
iteration, this procedure quickly becomes intractable.

Recent work in kernel machines enables us to instead
approximate φ through generating random Fourier fea-
tures (Rahimi and Recht 2007; 2008; Le, Sarlós, and Smola
2013; Lázaro-Gredilla 2010). For a shift-invariant kernel
function k, the feature map φ can be approximated by con-
structing a mapping

φ̂i(x) =

[
cos(ωTi x)
sin(ωTi x)

]
, ωi ∈ Rd ∼ F(k(·, ·)) (9)

3027



Figure 3: Ground truth (top) compared with predictions us-
ing the single-step optimized learner (middle) and with our
approach (bottom) for frames 1, 9, and 16 on a trajectory of
the Flag video texture. DAD produces results closer to the
ground truth.

System SS DAD Relative Improvement
Pendulum 6.00% 3.32% 44.7%
Cartpole 19.7% 8.46% 57.1%
Helicopter 44.2% 25.3% 42.8%

Table 1: Using DATA AS DEMONSTRATOR (DAD) to wrap
around the traditional Single-Step learner greatly improves
performance on dynamical system modeling.

where F(k(·, ·)) is the Fourier transform of the kernel func-
tion. This approximates the kernal function in expectation,
i.e. E[〈φi, φi〉] = k(·, ·). By sampling m such ωi and
concatenating to create feature vector φ̂(x), we can get a
lower variance approximation of the kernel function. Using
φ̂ in (7), allows us to retrieve the model parameter C. In
the experiments described below, we choose m = 500 and
use the Gaussian kernel. The hyperparameters λ and kernel
bandwidth σ were chosen using cross-validated grid search.

Performance Evaluation
For each test bench, we evaluate the performance of the
baseline single-step optimized predictor as well as DAD on
the task of multiple-step prediction. The multiple-step pre-
diction error is measured as the RMS error ek between the
prediction ξ̂k and the ground truth trajectory ξk, computed
as ek =

√
1

Tk

∑Tk
t=1

∥∥∥ξ̂k(t)− ξk(t)
∥∥∥2
2
. For each experiment, a

random 10% of the trajectories were used as hold out data
for performance reporting. In Tables 1 and 2, we report the
mean normalized RMSE by normalizing against the signal
power for each trajectory, pk =

√
1

Tk

∑Tk
t=1 ‖ξk(t)‖22. This nor-

malization allows us to better ascertain the magnitude of er-
ror compared to the original trajectory.

Dynamical Systems
We examine the performance of the proposed method on
simulation test benches of physical dynamical systems of
varying modeling difficulty. The pendulum and cart pole

Video SS DAD Relative Improvement
Flag 80.7% 67.2% 16.7%
Fireplace 92.8% 81.4% 12.3%
Beach 48.0% 38.4% 20.0%
Pumpjack 18.6% 15.4% 17.0%
Windfarm 39.8% 38.8% 2.57%

Table 2: DATA AS DEMONSTRATOR (DAD) significantly
improves the performance of the traditional Single-Step
method on the more complex video textures and marginal
improvement on the simpler, periodic ‘Windfarm’ texture.

datasets are constructed from their respective uncontrolled
dynamics and consist of 1000 trajectories of 30 time steps
each. Both of these systems exhibit interesting limit-cycle
behaviors. The final dynamical system we test on is the sim-
ulated helicopter from (Abbeel and Ng 2005a). This dy-
namical system operates in a larger, 21-dimensional state
space and is governed by more complicated dynamics equa-
tions. In addition, the helicopter simulation is controlled by
a closed-loop LQR controller trying to hover the helicopter
around the origin from randomly chosen starting points in
the basin of attraction. The LQR controller chooses actions
based on state and thus it poses a challenge for the learner to
extract this implicit relationship from data of the system.

Qualitatively, we can see the effect of improving a single-
step prediction model in Figure 2 for the pendulum system.
Numerical results are shown in Table 1. For all three of the
examples, including the difficult controlled helicopter sim-
ulation, DAD is able to achieve over 40% relative improve-
ment over the traditional baseline approach.

Video Textures
Dynamic video textures are image sequences generated from
some underlying structure such as a flag waving, waves lap-
ping, or a fire burning. Such systems have been studied in
the literature as time-series modeling or system identifica-
tion problems (Siddiqi, Boots, and Gordon 2007; Chan and
Vasconcelos 2007; Basharat and Shah 2009). Video textures
are inherently complicated to simulate due to being visual
observations of complex underlying dynamics. In order to
test DAD, we require many training trajectories, which is
not present in standard video texture datasets. We instead
use online videos that range from minutes to a half-hour at
24-30 fps. To make the learning faster and tractable, we use
PCA to lower the dimensionality, sample every fifth frame,
and construct trajectories with 16-26 time steps.

For many of the video texture test benches, the baseline of
single-shot, single-step regression loss optimization was sig-
nificantly improved upon by DAD. This is especially true for
the harder and less repetitive video textures such as ‘Flag’
(Figure 3) and ‘Beach’. These video textures are influenced
by complex real-world dynamics. The simpler ones, such
as ‘Pumpjack’ and ‘Windfarm’ are more cyclic, making the
test and train trajectories similar. We see minor absolute im-
provement in both, but meaningful relative improvement for
the pumpjack. This small change in absolute improvement
implies that the single-step learner was able to capture the

3028



0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Iteration

R
M

S
E

Pendlum

0 10 20 30 40 50
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Iteration

R
M

S
E

Cartpole

0 5 10 15 20 25 30 35 40 45
2200

2300

2400

2500

2600

2700

2800

2900

3000

3100

Iteration

R
M

S
E

Flag Texture

0 10 20 30 40 50
4000

4200

4400

4600

4800

5000

5200

5400

5600

5800

6000

Iteration

R
M

S
E

Fireplace Texture

0 5 10 15 20 25 30
550

600

650

700

750

800

850

900

950

1000

Iteration

R
M

S
E

Beach Texture

Figure 4: RMSE of multiple-step predictions for train (blue, circles) and test (orange, triangles) trajectories. Note that the
shown test RMSE was not used by DAD during training and was computed for visualization only.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iteration

L
o
s
s

Pendlum

0 10 20 30 40 50
0

0.5

1

1.5

Iteration

L
o
s
s

Cartpole

0 5 10 15 20 25 30 35 40 45
1

1.5

2

2.5

3

3.5

4

4.5
x 10

6

Iteration

L
o

s
s

Flag Texture

0 10 20 30 40 50
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

7

Iteration

L
o
s
s

Fireplace Texture

0 5 10 15 20 25 30
1

1.5

2

2.5

3

3.5

4
x 10

5

Iteration

L
o
s
s

Beach Texture

Figure 5: Loss on single-step predictions on the aggregated training (blue, circles) and test (orange, triangles) data set. Notice
that the error increases and then stabilizes over iterations as distribution of states induced by learner’s multiple-step prediction
stabilizes. Note that the aggregated test set is never used during training and is shown for comparative purposes only.

primary evolution, but even with DAD, it is unable to cap-
ture the remaining detail in the system (e.g. clouds in the
background of the ‘Windfarm’).

A common failing of dynamical system modeling meth-
ods is the degeneration of the forward simulation to the mean
value in the dataset. In the top frames of Figure 6(a), we see
the system converge by halfway through the prediction hori-
zon to the mean. DAD provides corrections that can mitigate
this tendency (bottom frames in Figure 6(a)). This results in
a qualitatively crisper and more believable video, as shown
in the close up (Figure 6(b)).

Finally, it is interesting to observe the multi-step error and
the single-step prediction loss over iterations of DAD. As
mentioned previously, the multi-step error does not neces-
sarily decrease with each iteration (e.g. second from left
in Figure 4). Additionally in Figure 5, we notice that the
single-step regression loss on the aggregate data set initially
increases as the learning problem is made harder through the
addition of more data. As the multi-step prediction distribu-
tion converges, the single-step loss also stabilizes.

Conclusion
We presented DAD, a data-efficient, simple to imple-
ment meta-algorithm for improving the multiple-step pre-
diction capability of a learner for modeling time-series data.
Through a reduction to imitation learning, we establish
strong theoretical performance guarantees. On a challenging
set of experiments, we show significant performance gains
over the traditional, baseline approach of minimizing the
single-step prediction error. It may be interesting to study
how DATA AS DEMONSTRATOR could be adapted for other
system identification techniques, and we have already seen
promising results in preliminary investigations with linear
regression for subspace identification on a slotcar dataset.

(a) Prediction of frames 14, 19, 26 for the baseline method (top)
and DAD (bottom). Note the averaging effect with the single-
step predictor with predictions converging on the mean from the
dataset. DAD yields crisper predicted images.

(b) Comparison of final predicted frames

Figure 6: In the Fireplace video texture, our method pro-
duces a more believable evolution.

Acknowledgements
This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship under
Grant No. DGE-1252522 and in part by the DARPA Au-
tonomous Robotic Manipulation Software Track program.
The authors also thank Jeff Schneider and Byron Boots for
valuable and insightful discussions.

3029



References
Abbeel, P., and Ng, A. Y. 2005a. Exploration and appren-
ticeship learning in reinforcement learning. In ICML, 1–8.
ACM.
Abbeel, P., and Ng, A. Y. 2005b. Learning first-order
markov models for control. In NIPS, 1–8.
Abbeel, P.; Ganapathi, V.; and Ng, A. Y. 2005. Learning ve-
hicular dynamics, with application to modeling helicopters.
In NIPS, 1–8.
Basharat, A., and Shah, M. 2009. Time series prediction by
chaotic modeling of nonlinear dynamical systems. 1941–
1948.
Bengio, Y.; Simard, P.; and Frasconi, P. 1994. Learning
long-term dependencies with gradient descent is difficult.
Neural Networks, IEEE Transactions on 5(2):157–166.
Cesa-Bianchi, N.; Conconi, A.; and Gentile, C. 2004. On
the generalization ability of on-line learning algorithms. In-
formation Theory, IEEE Transactions on 50(9):2050–2057.
Chan, A. B., and Vasconcelos, N. 2007. Classifying Video
with Kernel Dynamic Textures. IEEE Conference on Com-
puter Vision and Pattern Recognition 1–6.
Chaudhry, R.; Ravichandran, A.; Hager, G.; and Vidal, R.
2009. Histograms of oriented optical flow and Binet-Cauchy
kernels on nonlinear dynamical systems for the recognition
of human actions. IEEE Conference on Computer Vision
and Pattern Recognition 1932–1939.
Coates, A.; Abbeel, P.; and Ng, A. Y. 2008. Learning for
control from multiple demonstrations. In ICML, 144–151.
New York, NY, USA: ACM.
Daumé III, H.; Langford, J.; and Marcu, D. 2009. Search-
based structured prediction. Machine learning 75(3):297–
325.
Ghahramani, Z., and Roweis, S. T. 1999. Learning nonlinear
dynamical systems using an EM algorithm. 431—-437.
Kawahara, Y.; Yairi, T.; and Machida, K. 2006. A Ker-
nel Subspace Method by Stochastic Realization for Learning
Nonlinear Dynamical Systems. NIPS 665–672.
Khansari-Zadeh, S. M., and Billard, A. 2011. Learning
stable nonlinear dynamical systems with gaussian mixture
models. Robotics, IEEE Transactions on 27(5):943–957.
Ko, J.; Klein, D. J.; Fox, D.; and Haehnel, D. 2007. GP-
UKF: Unscented kalman filters with Gaussian process pre-
diction and observation models. 1901–1907.
Langford, J.; Salakhutdinov, R.; and Zhang, T. 2009. Learn-
ing nonlinear dynamic models. In ICML, 593–600. ACM.
Lázaro-Gredilla, M. 2010. Sparse spectrum Gaussian pro-
cess regression. The Journal of Machine Learning Research
11:1865–1881.
Le, Q.; Sarlós, T.; and Smola, A. 2013. FastfoodApprox-
imating Kernel Expansions in Loglinear Time. ICML 244–
252.
Müller, K.; Smola, A.; and Rätsch, G. 1997. Predicting
time series with support vector machines. Artificial Neural
Networks ICANN’9 1327:999–1004.

Narendra, K. S., and Parthasarathy, K. 1990. Identification
and control of dynamical systems using neural networks.
IEEE Transactions on Neural Networks 4–27.
Rahimi, A., and Recht, B. 2007. Random features for large-
scale kernel machines. NIPS 1–8.
Rahimi, A., and Recht, B. 2008. Weighted sums of random
kitchen sinks: Replacing minimization with randomization
in learning. NIPS 1–8.
Ralaivola, L., and D’Alche-Buc, F. 2004. Dynamical model-
ing with kernels for nonlinear time series prediction. NIPS.
Ross, S., and Bagnell, J. A. 2010. Efficient reductions for
imitation learning. In International Conference on Artificial
Intelligence and Statistics, 661–668.
Ross, S., and Bagnell, J. A. 2011. Stability conditions for
online learnability. arXiv preprint arXiv:1108.3154.
Ross, S.; Gordon, G. J.; and Bagnell, J. A. 2011. No-regret
reductions for imitation learning and structured prediction.
In International Conference on Artificial Intelligence and
Statistics. Citeseer.
Siddiqi, S.; Boots, B.; and Gordon, G. J. 2007. A constraint
generation approach to learning stable linear dynamical sys-
tems. In NIPS 20 (NIPS-07).
Wang, J.; Hertzmann, A.; and Blei, D. M. 2005. Gaussian
process dynamical models. In NIPS, 1441–1448.
Werbos, P. J. 1990. Backpropagation through time:
what it does and how to do it. Proceedings of the IEEE
78(10):1550–1560.
Wingate, D., and Singh, S. 2006. Kernel predictive lin-
ear Gaussian models for nonlinear stochastic dynamical sys-
tems. ICML 1017–1024.

3030




