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Abstract

This paper is concerned with model-based clustering of
discrete data. Latent class models (LCMs) are usually
used for the task. An LCM consists of a latent variable
and a number of attributes. It makes the overly restric-
tive assumption that the attributes are mutually inde-
pendent given the latent variable. We propose a novel
method to relax the assumption. The key idea is to par-
tition the attributes into groups such that correlations
among the attributes in each group can be properly mod-
eled by using one single latent variable. The latent vari-
ables for the attribute groups are then used to build a
number of models and one of them is chosen to pro-
duce the clustering results. Extensive empirical studies
have been conducted to compare the new method with
LCM and several other methods (K-means, kernel K-
means and spectral clustering) that are not model-based.
The new method outperforms the alternative methods in
most cases and the differences are often large.

Introduction
Cluster analysis is a classic research topic in AI. A
variety of approaches have been proposed, including
distance/similarity-based algorithms such as K-means, ker-
nel K-means and spectral clustering (Filippone et al. 2008),
as well as model-based methods such as Gaussian mix-
ture models (GMMs) (McLachlan and Peel 2000) and latent
class models (LCMs) (Bartholomew and Knott 1999). While
GMMs are used to analyze continuous data, LCMs are used
to deal with discrete data.

This paper focuses on LCMs. An LCM consists of a latent
variable and a set of discrete attributes (observed variables)
that describe the data. Each state of the latent variable rep-
resents a cluster to be identified, and the latent variable it-
self represents a partition of data to be obtained. The model
assumes that the attributes are mutually independent given
the clustering latent variable. In other words, the attributes
are mutually independent in each cluster. The assumption is
hence referred to as the local independence assumption. It
is often violated in practice and can lead to spurious clusters
(Garrett and Zeger 2000; Vermunt and Magidson 2002).
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In this paper, we propose a novel method to relax the local
independence assumption of LCM and to detect and model
local dependence properly so as to improve clustering qual-
ity. The idea is to: (1) Partition the attributes into groups such
that correlations among the attributes in each group can be
properly modeled using one single latent variable, and intro-
duce a latent variable for each group; (2) Construct several
models for clustering using the latent variables from Step 1;
and (3) Select of one the models to produce the final results.

Intuitively, each latent variable introduced in Step 1 can
be understood as capturing one aspect of the data.

One of the models constructed in Step 2 uses the latent
variables from Step 1 as features and introduces a new latent
variable for clustering. It produces a partition of data that is
based on all aspects of data evenly and hence is called the
balanced model. In each of the other models, attributes from
one group and latent variables for the other groups are used
as features for clustering. They produce partitions of data
that predominantly depends on only one aspect of data and
hence are called unbalanced models. We choose among the
different models using a model selection criterion. Both the
AIC score (Akaike 1974) and the BIC score (Schwarz 1978)
are considered.

All the models contain multiple latent variables that are
connected up to form a tree structure. Hence they are spe-
cial latent tree models (LTMs) (Zhang 2004; Mourad et al.
2014). This paper differs from previous works on LTMs in
that one of the latent variables is designated as the cluster-
ing variable during model construction. The objective is to
model local dependence in LCM so as to improve clustering
quality. In contrast, the objective of previous works on LTMs
is to optimize fitness to data. None of the latent variables is
designated as the clustering variable. They are sometimes all
interpreted as clustering variables, leading to multiple parti-
tions of data. So, previous works on LTMs aim at finding
the best way to cluster data simultaneously along multiple
dimensions, while this paper focuses on finding the best way
to cluster data along a single dimension.

We will start with a brief review of the basic concepts. In
the bulk of the paper, we will describe the new method, first
Step 1 and then Steps 2 and 3. After that, we will discuss re-
lated works, present empirical results and draw conclusions.
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Figure 1: A latent class model and a latent tree model.

Review of Basic Concepts
We start by giving a brief review of LCMs and LTMs. A
latent tree model (LTM) is a Markov random field over an
undirected tree, where variables at leaf nodes are observed
and variables at internal nodes are hidden. An example LTM
is shown in Figure 1((b)), where Y1 and Y2 are latent vari-
ables, while X1 – X5 are observed variables. For technical
convenience, we often root an LTM at one of its latent nodes
and regard it as a directed graphical model, i.e., a Bayesian
network (Pearl 1988). In the example, suppose that we root
the model at the node Y1. Then the numerical information
of the model includes a marginal distribution P (Y1) for the
root and one conditional distribution for each edge (e.g.,
P (X1|Y1) for Y1 → X1 and and P (Y2|Y1) for Y1 → X2).

In general, suppose there are p observed variables
X1, . . . , Xp and q latent variables Y1, . . . , Yq in an LTM.
Denote the parent of a variable Z as parent(Z) and let
parent(Z) be the empty set when Z is the root. The LTM
defines a joint distribution over X1, . . . , Xp, Y1, . . . , Yq as:

P (X1, . . . , Xp, Y1, . . . , Yq)

=
∏

Z∈{X1,...,Xp,Y1,...,Yq}

P (Z|parent(Z)).

The BIC score (Schwarz 1978) is usually used to evaluate
an LTM m: BIC(m|D) = logP (D|m, θ∗) − d(m)

2 logN,
where D is the data set, θ∗ is the maximum likelihood esti-
mate of the parameters, d(m) is the number of free probabil-
ity parameters in m, and N is the sample size. In this paper,
we sometimes also consider the AIC score (Akaike 1974):
AIC(m|D) = logP (D|m, θ∗)− d(m).

A latent class model (LCM) is an LTM with a single latent
variable. An example is shown in Figure 1((a)), where Y1 is
the latent variable and X1 – X5 are observed variables. Sup-
pose there is a data set on the observed variables. To learn
an LCM from the data set means to determine the cardinality
(i.e., the number of states) of Y1 and the probability distri-
butions P (Y1) and P (Xi|Y1) (i = 1, . . . , 5). To do so, we
initially set the cardinality of Y1 at 2 and optimized the prob-
ability parameters using the EM algorithm (Dempster, Laird,
and Rubin 1977). Then the cardinality is gradually increased
and the parameters are re-estimated after each increase. The
process stops when model score ceases to increase. The final
model is returned as the output. We will refer to this proce-
dure as LearnLCM(D, f), where D is the data set and f is
a model scoring function.

After an LCM is learned, we can calculate the poste-
rior distribution P (Y1|X1, . . . , X5) for each data case. The
data case belongs to each state of Y1 with some probabil-
ity. Hence, the posterior distributions for all data cases give

a soft partition of the data. If we assign each data case to
the state of Y1 with the maximum posterior probability, an
operation known as hard assignment, then we obtain a hard
partition of the data.

Extraction of Latent Features
In this section, we describe Step 1 of the new method. The
unidimensionality test (shortened the UD-test), is a Bayesian
statistical test which tests whether correlations among a sub-
set S of attributes can be properly modeled using one sin-
gle latent variable (Liu et al. 2013). Let m1 and m2 be the
models with the highest BIC scores among LTMs for S that
contain a single latent variable or contain no more than two
latent variables respectively. The UD-test passes if and only
if one of these two conditions is satisfied : (1) m2 contains
only one latent variable, or (2) m2 contains two latent vari-
ables and

BIC(m2|D′)−BIC(m1|D′) ≤ δ, (1)

where δ is a threshold parameter. The left hand side of equa-
tion (1) is an approximation to the logarithm of the Bayes
factor (Kass and Raftery 1995) for comparing m2 with m1.
For this reason, only the BIC score is used in the UD-test.

In our experiments, the threshold δ is set at 3 as suggested
by Kass and Raftery (1995). This means that we would
conclude the correlations among a set of attributes can be
properly modeled using one single latent variable if there is
no strong evidence pointing to the opposite. If the UD-test
passes, we say that the set S of attributes is unidimensional.

To perform the UD-test in practice, we first project the
original data set D onto S to get a smaller data set D′. The
model m1 is obtained using LearnLCM(D′, f). The model
m2 is obtained using the EAST algorithm (Chen et al 2012).
EAST searches in the space of all LTMs to find the one with
the highest BIC score. For UD-test, we restrict the space to
contain only LTMs with one or two latent variables.

In the following, we present a method proposed by Liu et
al. (2013) for partitioning the attributes in a data set into uni-
dimensional clusters, or UD clusters for short. The method
relies on mutual information (MI) (Cover and Thomas
1991). The mutual information I(X;Y ) between two vari-
ables X and Y is defined as:

I(X;Y ) =
∑
X,Y

P (X,Y ) log
P (X,Y )

P (X)P (Y )
,

where summation is taken over all possible states of X and
Y . For this work, P (X,Y ) is the joint empirical distribution
of the two variables estimated from data.

To determine the first UD cluster, one maintains a work-
ing set S of attributes that initially consists of the pair of
attributes with the highest MI. The set is then expanded by
adding other attributes one by one. At each step, one adds
the attribute that has the highest MI with the current set. The
MI between a variable X and a set S of variables is esti-
mated as I(X;S) = maxZ∈S I(X;Z). Then the UD-test
is performed to determine whether correlations among the
variables in S can still be properly modeled using one sin-
gle latent variable. If the UD-test fails, the expansion process
stops and the first UD cluster is picked.
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To illustrate the process, suppose that the working set ini-
tially contains X1 and X2, and then X3 and X4 are added
and the UD-test passes in both cases. Now consider the addi-
tion of attributeX5. Suppose the modelsm1 andm2 learned
for the attributes {X1, X2, X3, X4, X5} are as shown in
Figure 1. Further suppose the difference of BIC scores be-
tweenm2 andm1 exceeds the threshold δ. Then the UD-test
fails and it is time to pick the first UD cluster. The model
m2 gives us two possible UD clusters {X1, X2, X4} and
{X3, X5}. The first cluster is picked because it contains both
of the two initial attributes X1 and X2. In general, it might
happen that none of the two clusters given by m2 contain
both of the two initial attributes. In such a case, we pick the
one with more attributes and break ties arbitrarily.

After the first UD cluster is determined, attributes in the
cluster are removed from the data set, and the process is re-
peated to find other UD clusters. This continues until all at-
tributes are grouped into UD clusters.

After attribute partition, an LCM is learned for attributes
in each UD cluster using LearnLCM(D, f). Suppose there
are L variable clusters. Then we get L LCMs. Denote the
latent variables in the LCMs as Y1, Y2, . . ., YL. They will
be used as features for data clustering. We will refer to the
procedure that produces the L latent variables and LCMs as
AttributeGrouping(D, δ, f), where D is the data set,
δ is the threshold for UD-test, and f is the model scoring
function used when learning LCMs for the UD clusters.

Use of Latent Features for Data Clustering
In this section, we describe Steps 2 and 3 of the new method
using an example. We have run AttributeGrouping on
a version of the heart-c data set from the UCI reposi-
tory (Bache and Lichman 2013). Four UD clusters are de-
tected. The first cluster consists of the attributes: cp (chest
pain type) and exang (exercise induced angina); and the
second consists of: oldpeak (ST depression induced by
exercise), slope (slope of the peak exercise ST segment),
and thalach (maximum heart rate achieved). The two
clusters are clearly meaningful and capture two different as-
pects of the data. The other two are not given to save space.

An LCM is learned for each UD cluster of attributes. De-
note the latent variables in the four LCMs as Y1, Y2, Y3
and Y4 respectively. They are the latent features detected by
AttributeGrouping. The question is how to use the la-
tent variables to cluster the data.

One natural idea is to build an LCM using the four la-
tent variables as features. The results in the model shown in
Figure 2((a)). The top part of the model is an LCM, where
C is a new latent variable that represents the data partition
to be obtained, and is hence called the clustering variable.
Attributes are added at the bottom because the variables at
the middle level are latent and their values must be inferred
from observed variables. The model is balanced because all
UD clusters are treated in the same as far as the model struc-
ture is concerned. It will be called the balanced 3L-LTM.

In the balanced 3L-LTM, the cardinalities of the latent
variables Y1, Y2, Y3 and Y4, and the conditional distributions
of their children are inherited from the LCMs produced by
AttributeGrouping and are fixed. Those distributions

(a) Balanced 3L-LTM (b) Unbalanced 3L-LTM

Figure 2: The balanced and unbalanced 3L-LTMs learned on
the heart-c data set. The numbers in parenthesis are the
cardinalities of the latent variables estimated by our method.

define the latent features. If there were allowed to change,
then we would not be using the features as they are. We need
to determine the cardinality of the clustering variable C, the
marginal distribution P (C), and the conditional distribution
of each child of C given C, i.e., P (Yi|C) (i = 1, 2, 3, 4).
This is done using a procedure similar to LearnLCM(D, f).

In addition to the balanced 3L-LTM, we also consider a
number of unbalanced models where the attributes from one
UD cluster, together with latent variables for other UD clus-
ters, are used as features. One example is shown in Figure
2((b)), where the attributes cp and exang from one UD
cluster and the latent variables Y2, Y3 and Y4 for the other
UD clusters are used as features for the LCM at the top.
Such a model is desirable if the “true clustering” primarily
depends on only one aspect of the data.

In the unbalanced model, the cardinalities of Y2, Y3, Y4
and the conditional distributions of their children are inher-
ited from the LCMs produced by AttributeGrouping
and are fixed. We need to determine the cardinality of C, the
marginal distribution P (C), and the conditional distribution
of each child of C given C. This is done using a procedure
similar to LearnLCM(D, f). Note that we do not consider
the use of attributes from multiple UD clusters directly as
features because that would introduce local dependence.

Suppose the subroutine AttributeGrouping pro-
duces L latent features. Using those features, we can con-
struct one balanced 3L-LTM, and L unbalanced 3L-LTMs.
Among the L+ 1 models, we pick one best model as the fi-
nal output. Here we try both BIC and AIC as the criterion for
model selection. After the model is learnt, one can compute
the posterior distribution P (C|di) of the clustering variable
C for each data case di. This gives a soft partition of the data.
To obtain a hard partition, one can assign each data case to
the state of C that has the maximum posterior probability.

Algorithm 1 shows the pseudo-code for our algorithm. It
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Algorithm 1 UC-LTM(D, δ, f)

Input: D - Data, δ - Threshold for UD-test,
f - Model scoring function, either BIC or AIC .
Output: A 3-level latent tree model (3L-LTM).

1: Run AttributeGrouping(D, δ, f) to obtain a list
of latent features Y1, Y2, . . ., YL.

2: Build a balanced 3L-LTM using the latent variables Y1,
Y2, . . ., YL.

3: for each i = 1 to L do
4: Build an unbalanced 3L-LTM by deleting Yi from the

balanced model and connecting the clustering vari-
able C directly to each child of Yi.

5: end for
6: Among the (L+1) 3-level models, pick the one that has

the highest score according to the scoring function f .
7: return the selected model.

X1
X6

X5

X4X3
X2

Y

Figure 3: Illustration of the TAN-LCM. The dashed lines are
for the LCM, while the solid lines are connections among
attributes determined by Chow-Liu’s algorithm.

is called UC-LTM, which stands for Unidimensional Clus-
tering using Latent Tree Models.

Related Work

Technically LCMs are closely related to the Naive Bayes
(NB) model for classification. An LCM can be viewed as
a NB model where the class variable is not observed. In
the context of NB, a well-known method for relaxing the
local independence assumption is the tree-augmented naive
(TAN) Bayes (Friedman 1997). The idea is to allow direct
connections among the attributes. For the sake of computa-
tional efficiency, those connections are assumed to form a
tree. The same idea can applied to LCM to relax the local
independence assumption. We call this method TAN-LCM.

Figure 3 illustrates the structure of the model that TAN-
LCM uses. To build such a model, we first learn a tree
model for the attributes using Chow-Liu’s algorithm (Chow
and Liu 1968). Specifically, we create a complete weighted
graph over the attributes with empirical mutual information
between attributes as edge weights, and hence find a span-
ning tree for the graph. After that, we introduce the clus-
tering variable C and connects it to each of the attributes.
The cardinality of C, the marginal distribution P (C), and
the conditional distribution of each attribute given C are de-
termined using a procedure similar to LearnLCM(D, f).

Table 1: The performance on synthetic data of various meth-
ods. The abbreviations b and ub denote data sets generated
from the balanced and unbalanced models, respectively, in
Figure 4. UC-LTM attains the highest NMI values.

LCM Balanced
3L-LTM

UC-LTM-
AIC

UC-LTM-
BIC

syn-b-5k .48±.00 .65±.00 .65±.00 .65±.00
syn-b-10k .48±.00 .64±.00 .64±.00 .64±.00
syn-ub-5k .15±.00 .25±.01 .32±.01 .32±.01
syn-ub-10k .15±.00 .19±.05 .32±.01 .32±.01

C

Y1 Y2 Y3

X1 X2 X3 X4 X5 X7 X8X6 X9 X10 X11 X12

Y4

(a) balanced model m1

C

Y2 Y3X1 X2 X3

X4 X5 X7 X8X6 X9 X10 X11 X12

Y4

(b) unbalanced model m2

Figure 4: Generative models for the synthetic data. The car-
dinality of the class variable C is 3. The other variables are
binary variables. Model parameters are generated randomly.

Empirical Results
In this section we empirically evaluate UC-LTM on both
synthetic data and real-world data. Two versions of UC-
LTM were used in the experiments, which use the AIC and
BIC scores for model selection respectively. The synthetic
data are used to demonstrate that UC-LTM can detect and
model local dependence properly. The real-world data are
used to show the benefits of modeling local dependence.

A common way to evaluate a clustering algorithm is to
start with labeled data, remove the class labels, perform clus-
ter analysis to obtain a hard partition of data, and compare
the partition obtained with the partition induced by the class
labels. We refer to those two partitions as the cluster parti-
tion and the true data partition respectively, and denote them
by C and Ct. The quality of the cluster partition is measured
using the normalized mutual information NMI(C;Ct) be-
tween the two partitions (Zhong and Ghosh 2003), given by:
NMI(C;Ct) = I(C;Ct)/

√
H(C)H(Ct), where I(C;Ct)

is the MI between C and Ct and H(.) stands for entropy
(Cover and Thomas 1991). These quantities can be com-
puted from the empirical joint distribution P (C,Ct) of C
and Ct. NMI ranges from 0 to 1, with a larger value meaning
a closer match between C and Ct.

Results on Synthetic Data
The synthetic data were generated from the two models
shown in Figure 4. In the models, all variables have two
possible states except that the root variable has three. Model
parameters were randomly generated. Two data sets were
sampled from each model. The sample sizes were 5,000 and
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Table 2: The performances of UC-LTM and alternative methods on 30 real-world data sets. UC-LTM-AIC is used as the pivot
against which other methods are compared. The result of an alternative method on a data set is underlined if it is worse than
that of UC-LTM-AIC, and it is marked blue if the difference exceeds 10%. Bold face fonts and red color are used to indicate
the opposite. The last row summarizes the number of data sets on which an alternative method wins, ties or loses compared
with UC-LTM-AIC. The ± values indicate the standard deviation. An asterisk indicates that the performance of UC-LTM is
improved with the inclusion of unbalanced 3L-LTMs.

Unknown Number of Clusters Known Number of Clusters

LCM TAN-
LCM

UC-LTM-
BIC

UC-LTM-
AIC

k-means kkmeans specc LCM UC-LTM-
BIC

UC-LTM-
AIC

australian .16±.00 .16±.00 .31±.00 .44±.00 .30±.00 .03±.02 .07±.01 .16±.00 .31±.00 .44±.00
autos .21±.01 .08±.04 .17±.00* .23±.00* .36±.03 .23±.02 .25±.04 .36±.02 .26±.01 .37±.02

breastcancer .09±.00 .01±.00 .09±.00 .10±.00* .00±.00 .03±.01 .05±.02 .09±.00 .09±.00 .09±.00
breast-w .68±.00 .58±.10 .68±.00 .68±.00 .83±.00 .44±.10 .83±.00 .85±.00 .85±.00 .85±.00

corral .19±.00 .01±.01 .19±.00 .19±.00 .19±.00 .13±.05 .37±.05 .19±.00 .19±.00 .19±.00
credit-a .11±.02 .25±.06 .12±.00 .13±.01 .24±.00 .01±.01 .02±.00 .15±.00 .10±.01 .13±.05
credit-g .01±.00 .00±.00 .01±.00 .01±.00 .03±.00 .02±.03 .00±.00 .01±.00 .01±.00 .01±.00
diabetes .12±.00 .05±.05 .15±.02* .15±.02* .08±.00 .09±.05 .11±.03 .09±.00 .16±.00 .16±.00

flare .07±.00 .02±.02 .07±.00 .07±.00 .02±.00 .05±.02 .05±.00 .05±.00 .05±.00 .05±.00
glass .47±.02 .23±.01 .48±.00 .48±.00 .44±.00 .35±.03 .37±.06 .48±.01 .43±.01 .46±.01
glass2 .31±.00 .17±.00 .31±.00 .31±.00 .15±.00 .08±.10 .13±.07 .20±.00 .20±.00 .20±.00
heart-c .30±.00 .29±.01 .29±.00 .33±.00 .26±.00 .23±.02 .25±.02 .28±.01 .26±.01 .21±.00

heartStatlog .30±.00 .34±.00 .35±.00 .35±.00 .34±.00 .32±.02 .34±.00 .30±.00 .35±.00 .35±.00
hypothyroid .18±.00 .00±.00 .21±.00* .21±.00* .05±.08 .08±.02 .11±.06 .22±.00 .25±.00 .25±.00
ionosphere .38±.00 .41±.14 .41±.05 .44±.03 .11±.00 .26±.01 .04±.00 .48±.00 .54±.01 .54±.01

iris .83±.00 .18±.06 .83±.00 .83±.00 .76±.07 .59±.14 .83±.00 .83±.00 .83±.00 .83±.00
kr-vs-kp .06±.01 .01±.00 .04±.01 .04±.01 .00±.00 .00±.01 .00±.00 .00±.00 .00±.00 .00±.00
lymph .22±.00 .09±.02 .17±.00 .29±.00 .23±.00 .09±.02 .07±.01 .23±.02 .30±.01 .24±.00

mofn3-7-10 .04±.03 .03±.03 .05±.02* .05±.02* .06±.00 .05±.03 .01±.00 .06±.00 .06±.00 .06±.00
mushroom .49±.05 .15±.09 .52±.01 .52±.01 .15±.00 .09±.05 .04±.00 .48±.00 .48±.00 .48±.00

pima .12±.00 .04±.05 .15±.03* .15±.03* .08±.00 .07±.06 .09±.03 .09±.00 .16±.00 .16±.00
segment .68±.01 .17±.05 .63±.03 .63±.03 .59±.02 .64±.04 .72±.03 .65±.03 .65±.06 .67±.05

shuttleSmall .48±.01 .24±.06 .49±.03* .49±.03* .30±.04 .30±.03 .54±.08 .41±.01 .50±.03 .50±.03
sonar .25±.00 .17±.14 .23±.00 .23±.00 .32±.00 .33±.03 .35±.00 .31±.00 .27±.00 .27±.00

soybean .66±.02 .34±.03 .63±.02* .63±.02* .66±.01 .62±.04 .68±.03 .76±.03 .76±.01 .76±.01
vehicle .31±.01 .16±.03 .30±.01 .30±.01 .11±.00 .19±.02 .21±.04 .21±.00 .20±.01 .20±.01

vote .43±.00 .02±.00 .41±.00 .41±.00 .54±.00 .50±.03 .51±.00 .51±.00 .58±.01 .58±.01
vowel .18±.01 .04±.03 .21±.02 .21±.02 .20±.01 .23±.03 .22±.03 .22±.03 .26±.01 .26±.01

waveform21 .43±.00 .26±.01 .48±.00* .48±.00* .37±.00 .36±.01 .36±.00 .37±.00 .37±.00 .37±.00
zoo .64±.00 .04±.02 .72±.07* .72±.07* .85±.02 .14±.01 .18±.07 .86±.00 .86±.00 .86±.00

win/tie/loss 6/6/18 1/0/29 0/23/7 -/-/- 4/4/22 3/2/25 6/3/21 5/14/11 2/23/5 -/-/-

10,000 respectively. Each sample contains values for the ob-
served variables and the class variable C. The values of C
were removed before running the clustering algorithms.

Because of the way the data were generated, the correla-
tions among the attributes cannot be properly modeled using
a single latent variable. In other words, local dependence ex-
ists. UC-LTM was able to recover the generative structure
perfectly in all cases. This shows that UC-LTM is effective
in detecting local dependence and modeling it properly.

Table 1 shows the quality of the clustering results pro-
duced by UC-LTM and LCM as measured by the NMI
with the true class partitions. UC-LTM significantly out-
performed LCM regardless of the model scoring function
used. This shows the benefits of modeling local dependence.
Moreover, UC-LTM outperformed balanced 3L-LTM on the
last two data sets. This shows the benefits of including un-
balanced models when there is a predominant aspect in data.

Real-world Data: Unknown Number of Clusters
The real-world data sets were from the UCI machine learn-
ing repository. We chose 30 labeled data sets that have been
often used in the literature. The data are from various do-
mains such as medical diagnosis, biology, etc. The num-
ber of attributes ranges from 4 to 36; the number of classes
ranges from 2 to 22; and the sample size ranges from 101 to
5,800. Continuous data were discretized using the method
by Fayyad and Irani (1993). The class labels were first re-
moved and then different methods were used to recover the
class partition from the resulting unlabeled data. The results
are shown in the left half of Table 2. We use UC-LTM-AIC
as a pivot and compare it with each of the other methods. For
each data set, we check the NMI for an alternative method
and UC-LTM-AIC. The NMI of the alternative method is
marked bold if it outperforms UC-LTM-AIC, and colored
red if the difference exceeds 10%; the value is underlined
and colored blue if it is the other way around.
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Findings about UC-LTM There are two questions re-
garding UC-LTM itself. First, what is the impact of the in-
clusion of unbalanced models? To answer this question, we
have run another version of UC-LTM that uses only bal-
anced models. It turns out that the inclusion of unbalanced
models never impact negatively on the performance. It im-
proved the performance on a number of data sets, which are
marked with asterisks. The second question is whether the
choice of model selection criteria has a significant impact
on the performance. We see in the left half of Table 2 that
UC-LTM-AIC beats UC-LTM-BIC on 7 data sets. They ob-
tained the same results on all other data sets. Overall, the
performance of UC-LTM-AIC is better. In the following, we
compare UC-LTM-AIC with other methods.

Comparisons with Alternative Methods UC-LTM-AIC
outperforms LCM on 18 of the 30 data sets (those under-
lined). The differences exceed 10% on 14 data sets (those
colored blue). In contrast, LCM outperforms UC-LTM-AIC
on 6 data sets (those bold-faced). The difference exceeds
10% on only 1 data set (the one colored red). Overall, the
performance of UC-LTM-AIC is superior to that of LCM.
The results indicate that UC-LTM-AIC is beneficial to de-
tect and model local dependence.

The performance of TAN-LCM is worse than UC-LTM-
AIC on all but one data set. The differences are often drastic.
Intuitively, the clustering of discrete data is based on cor-
relations among the attributes. In TAN-LCM, much of the
correlations are explained by the edges among the attributes
themselves, which results in poor clustering performance.

A Remark A careful reader might have noticed that while
the performances of LCM and UC-LTM are good on data
sets such as iris and breast-w, they are very poor on
data sets such as credit-g and kr-vs-kp. The phe-
nomenon can be explained by considering how closely re-
lated the attributes are to the class variables. For a given data
set, calculate the average empirical NMI between the class
variable C and the attributes as follows:

A-C correlation strength =
∑
A∈A

NMI(A,C)/|A|,

where A stands for the set of all attributes. Call the quan-
tity A-C correlation strength. Table 3 shows several data sets
with either strongest or weakest A-C correlation strength. It
is clear that the performances of LCM and UC-LTM-AIC
are good when the A-C correlation strength is strong. When
the A-C correlation strength is weak, on the other hand, there
is little information about the class variable in the attributes.
It is hence unlikely to, based on the attributes, obtain a clus-
ter partition that matches the true class partition well, no
matter what clustering method is used. Consequently, both
LCM and UC-LTM-AIC have poor performances.

Real-world Data: Known Number of Clusters
We next compare the methods in the setting of known num-
ber of clusters. Here we include several methods that are not
model-based and require the number of clusters be given,
namely K-Means, kernel K-Means and spectral clustering.
The results are given on the right half of Table 2.

Table 3: Strength of attribute-class correlation and perfor-
mances of clustering algorithms.

A-C correlation LCM UC-LTM-AIC
credit-g 0.02 0.01 0.01
kr-vs-kp 0.02 0.06 0.04

breastcancer 0.04 0.09 0.10
mofn3-7-10 0.05 0.04 0.05

flare 0.05 0.07 0.07
hypothyroid 0.05 0.18 0.21

diabetes 0.07 0.12 0.15
pima 0.07 0.12 0.15

credit-a 0.09 0.11 0.13
glass 0.30 0.47 0.48

segment 0.33 0.68 0.63
soybean 0.35 0.66 0.63

zoo 0.40 0.64 0.72
breast-w 0.44 0.68 0.68

iris 0.60 0.83 0.83

In this setting, UC-LTM-AIC outperforms LCM on 11 of
the 30 data sets (those underlined), and the differences ex-
ceed 10% on 10 data sets (those colored blue). On the other
hand, LCM outperforms UC-LTM-AIC on 5 data sets (those
bold-faced), and the differences exceed 10% on 3 data sets
(those colored red). UC-LTM-AIC outperforms K-Means on
22 data sets, and the differences exceed 10% on 14 data sets.
On the other hand, K-Means outperforms UC-LTM-AIC on
4 data sets, and the difference exceed 10% on all of them.
The comparisons of UC-LTM-AIC versus kernel K-Means
and spectral clustering are similar. Overall, the performance
of UC-LTM-AIC is superior to all the alternative methods.

Note that, as we move from the setting of unknown num-
ber of clusters to the setting of known number of clusters,
the performance of UC-LTM improves on several data sets
such as autos and breast-w. However, the performance
degrades on several other data sets such as glass2 and
heart-c. This is probably due to fact that the some clus-
ters in the true class partition are very small in size. When
the number of clusters is unknown, UC-LTM would group
them together with big clusters. When the number of clusters
is given, on the other hand, UC-LTM would tend to balance
the sizes of all clusters, and therefore produce an inferior
partition. Take the data set heart-c as an example. There
are 5 true clusters with sizes 160, 136, 0, 0 and 0. When the
number of clusters is not given, UC-LTM produces 2 clus-
ters, which is ideal (i.e., only 2 non-empty true clusters).
When the number of clusters is set at 5, on the other hand,
UC-LTM partitions the data into 5 clusters of sizes 93, 56,
55, 23, 69. The clusters are now more balanced in size, but
the partition is more different from the true partition than the
partition for the setting of unknown number of clusters.

Concluding Remarks
When performing cluster analysis on discrete data using la-
tent class models (LCMs), local dependence is an issue that
should not be ignored. A method for detecting and model-
ing local dependence called UC-LTM has been proposed in
this paper. In empirical studies, UC-LTM outperforms LCM
in most cases, especially in the setting of unknown number
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of clusters. The improvements are often large (exceed 10%).
In the setting of known number of clusters, UC-LTM is also
superior to popular distance/similiarity-based methods.

It would be interesting to carry out similar research for
continuous data. Here one can either make no indepen-
dence assumptions and work with full covariance matrices,
or make the same independence assumption as in LCMs and
work with diagonal covariance matrices. There have already
been efforts in the literature to explore middle grounds be-
tween the two extremes by working with block-diagonal co-
variances. The concept of UD-test and the procedure for di-
viding attributes into unidmensional clusters from this paper
can be helpful in further work in the direction.
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