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Abstract

Symmetric Positive Definite (SPD) matrices in the form of
region covariances are considered rich descriptors for images
and videos. Recent studies suggest that exploiting the Rie-
mannian geometry of the SPD manifolds could lead to im-
proved performances for vision applications. For tasks in-
volving processing large-scale and dynamic data in computer
vision, the underlying model is required to progressively and
efficiently adapt itself to the new and unseen observations.
Motivated by these requirements, this paper studies the prob-
lem of online dictionary learning on the SPD manifolds. We
make use of the Stein divergence to recast the problem of on-
line dictionary learning on the manifolds to a problem in Re-
producing Kernel Hilbert Spaces, for which, we develop effi-
cient algorithms by taking into account the geometric struc-
ture of the SPD manifolds. To our best knowledge, our work
is the first study that provides a solution for online dictio-
nary learning on the SPD manifolds. Empirical results on
both large-scale image classification task and dynamic video
processing tasks validate the superior performance of our ap-
proach as compared to several state-of-the-art algorithms.

Introduction

In computer vision, our main focus area here, the need for
adaptive online methods arises in countless applications that
process large-scale and dynamic data (Ross et al. 2008;
Mairal et al. 2010; Lu, Shi, and Jia 2013; Wang, Wang, and
Yeung 2013; Zhang et al. 2013b; Xu et al. 2013). Structured
descriptors in the form of SPD matrices (e.g., covariance de-
scriptors) are becoming pervasive to describe images and
videos (Porikli, Tuzel, and Meer 2006; Zhang et al. 2008;
Harandi et al. 2012; Hu et al. 2012; Guo, Ishwar, and Kon-
rad 2013; Harandi, Salzmann, and Porikli 2014). Despite
their wide applications and appealing properties, SPD ma-
trices which lie on a special type of Riemannian manifold
(henceforth, referred to as SPD manifold) are difficult to an-
alyze (Harandi et al. 2012; Cherian and Sra 2014).

This paper addresses the problem of online dictionary
learning on the SPD manifolds. We consider the following
two problems: (i) Coding: Given a matrix X and a set of ma-
trices D = {Di}ki=1, where X and Di are all SPD matrices,
how can X be approximated by a combination of matrices
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in D? (ii) Dictionary Learning: Given a set of SPD matri-
ces X = {Xi}ti=1 arriving in a steaming fashion, how can
a set D be learned in an online fashion to “represent” X ac-
curately? We provide efficient approaches for tackling these
problems that take into account the geometric structure of
the SPD manifolds.

One of the difficulties in dealing with SPD matrices is that
they do not naturally lie in a linear space. To overcome this,
we follow the approach of (Harandi et al. 2012) and use a
special type of the matrix Bregman divergence, namely the
Stein divergence (Sra 2012) to recast our problems on the
SPD manifolds as problems in Reproducing Kernel Hilbert
Spaces (RKHS). As explained later, this mapping preserves
most properties of the original manifold geometry.

For coding, we propose an efficient (sparse) coding al-
gorithm in RKHS based on the method of accelerated proxi-
mal gradient (Nesterov 1983; Beck and Teboulle 2009). This
leads to a (provably) faster algorithm for coding in RKHS
than previous known approaches which were based on tech-
niques such as OMP (Nguyen et al. 2012) and Feature-Sign
Search (Gao, Tsang, and Chia 2010).

The problem of dictionary learning is to estimate a col-
lection of basis vectors over which a given data collection
can be accurately reconstructed, often with sparse encod-
ings. This is a well-investigated problem over Euclidean
spaces (Olshausen and Field 1997; Aharon, Elad, and
Bruckstein 2006; Mairal et al. 2010). However, a limitation
with traditional dictionary learning algorithms, e.g., (Ol-
shausen and Field 1997; Aharon, Elad, and Bruckstein 2006)
is the requirement to have the whole dataset available be-
forehand to minimize the learning cost. Hence, these meth-
ods cannot efficiently deal with very large data sets or data
that dynamically vary over time, such as video sequences.
In the last few years, online dictionary learning has been ex-
tensively studied in the Euclidean spaces (Mairal et al. 2010;
Kasiviswanathan et al. 2012). However, to our best knowl-
edge, there is no prior work on online dictionary learning
on the SPD manifolds. Our dictionary learning algorithm
is unique in the sense that it uses a geometric gradient de-
scent approach and at any given timepoint it only consumes
the incoming data together with seen observations over a
short time window. In contrast to existing studies for dic-
tionary learning in RKHS such as (Harandi et al. 2012;
Nguyen et al. 2012), which rely on access to the whole
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dataset and other approximations for dictionary learning, our
approach is significantly more efficient and does not approx-
imate the resulting optimization problems.

We apply our proposed approach on three commonly
encountered vision challenges of background subtrac-
tion (Sheikh and Shah 2005; Narayana, Hanson, and
Learned-Miller 2012; Haines and Xiang 2014), visual track-
ing (Ross et al. 2008; Bao et al. 2012; Wang, Wang, and
Yeung 2013), and digit recognition (Lecun et al. 1998;
Yang et al. 2011; Lu, Shi, and Jia 2013). These applications
require the use of online learning method either due to the
applications themselves (e.g., updating the model to handle
dynamic background for background subtraction or to over-
come the appearance variances for visual tracking), or to re-
duce the processing time as in the case of digit recognition.
For these applications, we empirically compare and contrast
our proposed approach against several relevant known state-
of-the-art techniques.

Related Work
The decomposition of an image or video signal using a few
atoms of a trained dictionary has been shown to deliver no-
table results for various visual tasks (Mairal et al. 2010;
Lu, Shi, and Jia 2013; Xu et al. 2013; Zhang et al. 2013a;
Lan, Ma, and Yuen 2014). Significant progress has been
made in developing the theory of sparse coding and dic-
tionary learning (batch or online) for Euclidean vector
spaces (Elad 2010; Mairal et al. 2010; Kasiviswanathan et
al. 2012) and for high dimensional feature space mapped
by implicit kernel functions (Gao, Tsang, and Chia 2010;
Nguyen et al. 2012). Similar problems on the manifold of
SPD matrices have also received recent attention (Sra and
Cherian 2011; Harandi et al. 2012; Ho, Xie, and Vemuri
2013; Cherian and Sra 2014), but none of them considers
online dictionary learning.

For the (coding) problem of representing a SPD matrix us-
ing a dictionary consisting of SPD matrices (Cherian and Sra
2014) recently proposed a formulation based on the Affine
Invariant Riemannian Metric (AIRM) distance (Pennec, Fil-
lard, and Ayache 2006). This formulation leads to a difficult
noncnovex problem, which remains non-convex even if we
take into account the geodesic convexity of the AIRM dis-
tance (even though experimental results of (Cherian and Sra
2014) suggest it could be better than using Stein divergences
for some object recognition applications). The problem of
dictionary learning remains unsolved in this Riemannian set-
ting. For the batch dictionary learning on the SPD mani-
folds, (Sra and Cherian 2011) proposed to measure the sim-
ilarity between SPD matrices using the Frobenius norm and
formulated the sparse coding and dictionary learning prob-
lems accordingly. While solving the problems using purely
Euclidean structure of SPD matrices is computationally at-
tractive, it neglects the Riemannian structure of the SPD
manifolds. Another line of research is to perform sparse cod-
ing and dictionary learning by flattening the SPD manifold
using its identity (Guo, Ishwar, and Konrad 2013). Though
such embedding considerably simplifies the follow up de-
velopments, the pair-wise distances are no longer adequate,
which can negatively affect the performance. Along similar

lines, recently (Ho, Xie, and Vemuri 2013) proposed to ex-
ploit the tangent spaces of the SPD manifold for sparse cod-
ing and dictionary learning. Since the sparse coding prob-
lem has a trivial solution in this approach, an affine con-
straint has to be added. While having an affine constraint
along with sparse coding is beneficial in specific tasks (e.g.,
clustering), in general, the resulting formulation is restrictive
and no longer addresses the original problem. Furthermore,
working in successive tangent spaces, though common, val-
ues only as a first-order approximation to the SPD manifold
at each step, and is also computationally very demanding.

In essence, the approach proposed by (Harandi et al.
2012) is the closest to our work here, where similarly RKHS
embedding was used for sparse coding and dictionary learn-
ing. Nevertheless, our work here differs significantly from
theirs as we are interested in online dictionary learning while
they consider a batch framework. Moreover, in (Harandi et
al. 2012) dictionary atoms were obtained through an ap-
proximation. Since the approximation could generate neg-
ative definite matrices, projection to the positive cone is re-
quired as a post-processing. We note that positive cone has
no boundary, and hence such projection is not well-posed.
In contrast, here we propose a principled and geometric ap-
proach to update dictionary atoms which guarantees posi-
tive definiteness of the solution. Also, the use of accelerated
techniques for sparse coding and online dictionary update
makes our approach better suited for video applications.

For each of three applications considered in this paper,
there are many online algorithms (not particularly, based on
dictionary learning). We mention a few relevant techniques
in the experimental section.

Preliminaries

We use [n] to denote the set {1, . . . , n}. Vectors are al-
ways column vectors and are denoted by bold lower letters
(e.g., a). Notation ai is used to indicate element at posi-
tion the i of vector a. Matrices are denoted by bold upper
case letters (e.g., A). The soft-thresholding operator is the
following non-linear function for a, T ∈ R: soft(a, T ) =
sign(a) ·max{|a| − T, 0}. The operator soft is extended to
a vector by applying it to every entry in the vector.

SPD Matrix and Stein Kernel

A d×d, real SPD matrix A has the property that vTAv > 0
for any non-zero v ∈ R

d. The space of d× d SPD matrices,
denoted by Sd

++, is not a vector space since, instead, Sd
++

forms the interior of a convex cone in the d2-dimensional
Euclidean space. The Sd

++ space is mostly studied when en-
dowed with a Riemannian metric, thus forming a Rieman-
nian manifold (Sra 2012). In this paper, we use Stein diver-
gence which has variety of properties akin to AIRM1 and im-
portantly can be embedded into RKHS in the form of Gaus-
sian kernel (Harandi et al. 2012). Embedding into Hilbert
space allows us to design algorithms for linear spaces with
manifold-valued data.

1A very recent paper (Harandi, Salzmann, and Hartley 2014)
showed that the lengths of curves under Stein divergence and
AIRM distance are tightly related.
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Definition 1. The Stein or S divergence is a symmetric
member of Bregman matrix divergences and is defined as:

S(A,B) � logdet

(
A+B

2

)
− 1

2
logdet(AB) .

For the Stein divergence, the following kernel (referred
henceforth as the Stein kernel)

κ(A,B) = exp{−β · S(A,B)} ,

is positive definite for certain choices of β > 0 (Sra 2012).
A positive definite kernel enables us to transpose problems
on Sd

++ to familiar problems in RKHS.
Let φ : Sd

++ → H be the implicit mapping associated
with the Stein kernel such that for any two positive definite
matrices A,B, we have κ(A,B) = φ(A)�φ(B). Note that
since κ(A,A) = φ(A)�φ(A) = 1.

Online Dictionary Learning on SPD Manifolds

In this section, we propose an online framework for dictio-
nary learning to handle streaming SPD data matrices. Many
applications on videos, such as background subtraction and
visual tracking, can be formulated as online learning process
where a model is first built, then a new observation received
is compared with the model to make a decision and finally
the model is updated using the current observation. Recogni-
tion tasks on large-scale images such as digit recognition, do
not require model updates over time, but learning the model
on the whole training data has high computation complexity.
Therefore, online learning that processes a small set of data
at each batch is extremely useful.
Problem Formulation. Let {Xt ∈ Sd

++, t = 1, 2, . . . } de-
note a sequence of streaming input matrices where Xt is
the SPD matrix introduced at time t. Using the input matrix
stream {Xt}t=1,..., we learn a dictionary of k atoms which
are also SPD matrices. Let Dt−1 = {Dt−11 , . . . ,Dt−1k}
represent the atoms of the dictionary at time t− 1.

Since we operate in an online framework, we introduce
a short sliding time window ω over which we maintain the
history. At every timestep t, our goals are:

(a) check whether φ(Xt) can be “well” approximated as
a sparse linear combination of elements from the set
{φ(Dt−11), . . . , φ(Dt−1k)} (the sparse coding step).

(b) obtain Dt1 . . . ,Dtk such that the elements of
{φ(Dt1), . . . , φ(Dtk)} form a good basis to linearly con-
struct φ(Xt−ω+1), . . . , φ(Xt) (the dictionary learning
step).

In this paper, for sparse coding we use an �2-loss function
along with an �1-regularization term:

argmin
h∈Rk

∥∥∥∥∥φ(Xt)−
k∑

i=1

φ(Dt−1i)hi

∥∥∥∥∥
2

+ λ‖h‖1 , (1)

where λ is a regularization parameter. The �2-reconstruction
error measures the quality of the approximation while the
complexity is measured by the �1-norm of the optimal h.

In the following, for simplicity we will assume t ≥ ω. We
define the problem of dictionary learning at timestep t as:

argmin
D1,..,Dk∈Sd

++

ht−ω+1,..,ht∈Rk

t∑

τ=t−ω+1

∥∥∥∥∥φ(Xτ )−
k∑

i=1

φ(Di)hτi

∥∥∥∥∥

2

+ λ‖hτ‖1 .

(2)

Here, hτi is the ith entry in the vector hτ . The solution
of (2) (D1, . . . ,Dk variables) forms the set of new dictio-
nary atoms Dt1 , . . . ,Dtk .
Solving the Sparse Coding Problem. To efficiently solve
the problem in (1), we adopt the Accelerated Proxi-
mal Gradient (APG) algorithm (Nesterov 1983; Beck and
Teboulle 2009) (see the appendices for a background on
the APG algorithm). To apply the APG algorithm, we
need the gradient of ‖φ(Xt) −

∑k
i=1 φ(Dt−1i)hi‖2 (with

respect to h) at various iterates. This gradient equals,
−2

∑k
i=1 κ(Dt−1i ,Xt) + 2Kh, where K denotes a k× k

matrix with (i, j)th entry being κ(Dt−1i ,Dt−1j ). Let L de-
note the Lipschitz constant of the above gradient function
(which can be set using the largest eigenvalue of the Hes-
sian of the loss function). Algorithm 1 details the resulting
procedure for solving (1). Subscript (p) denotes the value of
a variable at the pth iteration of the procedure.

Algorithm 1: : Kernel sparse coding (1) using APG
Input: New observance Xt ∈ Sd

++, previous dictionary
atoms Dt−11 , . . . ,Dt−1k

Initialize b(1) = h(0) ← 0, q(1) ← 1, and p ← 1
while not(converge) do

h(p) ← soft
(
b(p) +

2
∑k

i=1 κ(Dt−1i
,Xt)−2Kb(p)

L
, λ
2

)

q(p+1) ←
1+

√
1+4q2

(p)

2

b(p+1) ← h(p) +
q(p)−1

q(p+1)
(h(p) − h(p−1))

p ← p+ 1
end

Return h(p)

By the guarantees of the APG algorithm, within T =

O(
√

L/ε) iterations, h(T ) is such that ‖h(T ) − h�‖ ≤ ε,
where h� is the minimizer of (1).
Updating the Dictionary. Our algorithm for solving (2) is
based on block-coordinate descent. We optimize cyclically
over individual Di and hτi (i ∈ [k], τ ∈ {t−ω+1, . . . , t})
variables while keeping all other variables fixed. This itera-
tive optimization is reminiscent of the K-SVD approach for
dictionary learning in Euclidean spaces (Elad 2010).
Updating ht−ω+1, . . . ,ht: Let hτ = (hτ1 , . . . , hτk) for
τ ∈ {t − ω + 1, . . . , t}. We derive the updates for hτi .
Holding all variables except hτi fixed, the dictionary learn-
ing problem (2) can be reduced to:

min
hτi
∈R

‖Zτ − φ(Di)hτi‖2 + λ|hτi | , (3)

where Zτ = φ(Xτ )−
∑

j �=i φ(Dj)hτj . Zτ is never eval-
uated explicitly, instead the algorithm only needs

Z�τ φ(Di) = κ(Xτ ,Di)−
∑
j �=i

hτjκ(Dj ,Di) .
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To finish note that ‖Zτ − φ(Di)hτi‖2 = ‖hτi −
Z�τ φ(Di)‖2 (we used the fact that φ(Di)

�φ(Di) = 1).
This implies that (3) is equivalent to argminhτi

∈R ‖hτi −
Z�τ φ(Di)‖2+λ|hτi |. It is well-known that the minimizer of
this optimization problem is given by the soft-thresholding
operator, soft(Z�τ φ(Di), λ/2) (Bach et al. 2012).
Updating Di: Holding all variables except Di fixed, the
dictionary learning problem (2) can be reduced to:

arg min
Di∈Sd

++

t∑
τ=t−ω+1

‖Zτ − φ(Di)hτi‖2 .

A simple manipulation (utilizing φ(Di)
�φ(Di) = 1)

shows that the above optimization is equivalent to

arg min
Di∈Sd

++

t∑
τ=t−ω+1

‖φ(Di)−Zτhτi‖2.

Let F (Di) =
∑t

τ=t−ω+1 ‖φ(Di) − Zτhτi‖2. We min-
imize F (Di) by adopting the geometric gradient descent
technique (Bonnabel 2013; Pennec, Fillard, and Ayache
2006). To apply this technique, the gradient of F (Di) with
respect to Di (denoted by ∇Di

F ) is required. The Lemma 2
in the appendices derives ∇Di

F .
The geometric gradient descent minimizes F (Di) by it-

eratively updating,

Di(p+1)
= D

1/2
i(p)

exp
(
− αD

−1/2
i(p)

(∇Di(p)
F )D

−1/2
i(p)

)
D

1/2
i(p)

,

where Di(p) is the value of Di in the pth iteration and α

is the step size. Here, exp(·) represents the matrix exponen-
tial. The gradient descent step ensures that all iterates remain
in the SPD manifold, and in practice is known to converge
quickly (Pennec, Fillard, and Ayache 2006), as was also ev-
idenced in our experiments.
Putting it all Together. Our entire approach is outlined in
Algorithm 2. In our applications, the reconstruction error of
h∗ can be used to make a decision (to classify a pixel as
background or foreground, or to identify the best target can-
didate for tracking, etc.). Because of the non-convexity of
the dictionary learning problem, unfortunately we can not
guarantee any global convergence of our approach.2 With
regards to the running time of Algorithms 1 and 2, com-
puting the kernel function (κ(A,B)) is the most expensive
calculation, taking O(d3) time when using standard matrix
computation algorithms.

Experiments

In this section, we present results of applying the proposed
online dictionary learning framework to three vision appli-
cations. We compute a covariance matrix from each image
block. Let F =

[
f1| · · · |fm

]
be a d×m matrix, obtained

by stacking m independent feature vectors f i ∈ R
d from

2The theory for online dictionary learning developed for Eu-
clidean spaces, see e..g., (Mairal et al. 2010; Kasiviswanathan et
al. 2012), do not seem to extend to the case when the dictionaries
are learnt in RKHS using kernel functions.

Algorithm 2: : Online Framework for Sparse Coding
and Dictionary Learning on SPD Manifold

Input: SPD matrices Xt,Xt−1, . . . ,Xt−ω+1 and atoms of
previous dictionary Dt = {Dt−11 , . . . ,Dt−1k}

Decision (Sparse Coding) Step: (solve Equation (1))
Use Algorithm 1 to obtain:
h∗ ← argminh ‖φ(Xt)−∑k

i=1 φ(Dt−1i)hi‖2 + λ‖h‖1
Take a decision based on ‖φ(Xt)−∑k

i=1 φ(Dt−1i)h
∗
i ‖

Online Dictionary Learning Step: (solve Equation (2))
Initialize Dti ← Dt−1i ∀i ∈ [k] (warm restart)
while not(converge) do

for i = 1 to k do
Updating hτi (ith element of hτ ):
for τ = t− ω + 1 to t do

hτi
←

soft
(
κ(Xt,Dti

)−∑k
j=1,j �=i hτj

κ(Dtj
,Dti

), λ
2

)
end
Updating Dti (ith atom of dictionary):
Di(0) ← Dti

p ← 0
while not(converge) do

Di(p+1)
←

D
1/2
i(p)

exp

(
−αD

−1/2
i(p)

(∇Di(p)
F )D

−1/2
i(p)

)
D

1/2
i(p)

p ← p+ 1
end
Dti = Di(p) (value at convergence)

end

end
Return Dt = {Dt1 , . . . ,Dtk}

an r × r image block (e.g., each observation could cor-
respond to one pixel in the image block). In our experi-
ments, a feature vector f i at location (x, y) is constructed
as (x, y,R,G,B, |∂I/∂x|, |∂I/∂y|)�, where R, G, B are
red, green, blue color components at (x, y), and the last two
entries capture the first order gray gradients. These feature
vectors give rise to a 7×7 covariance matrix for each image
block. In the following, let l(Xt,Dt−1) denote the sparse
coding loss function defined by (1).

The values of algorithmic parameters used in our experi-
ments are: k = 5, λ = 0.01, T = 5, β = 0.1, and α = 10−7.
These parameter were tuned and then fixed for all experi-
ments. All experiments were done on a PC with 2.83GHz
CPU and 6GB memory. Codes of all compared methods
were downloaded from respective authors’ websites.

Background Subtraction

Given an video (image sequence) the aim of background
subtraction (or foreground detection) is to identify fore-
ground objects in each frame of the sequence. In doing so, a
background subtraction system usually contains three com-
ponents: (i) background modeling—builds an initial back-
ground model for every pixel using training data, (ii) back-
ground subtraction—a pixel in the query frame is compared
against its background model and classified as background
or foreground accordingly, and (iii) background update—
the detected background pixels in a query frame are used
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Method WavingTrees Fountain WaterSurface Curtain Campus Lobby TimeOfDay LightSwitch Hall Escalator
JKDE 83.96 50.06 77.64 85.95 80.42 78.06 73.41 10.40 73.49 53.75
AKDE 86.17 68.14 87.56 94.88 89.49 83.17 71.35 16.74 77.91 43.40
DPMM 94.42 67.55 84.87 84.68 86.23 68.22 79.50 17.90 71.85 29.61
GOSUS 82.86 86.19 83.76 93.53 85.53 80.94 65.83 13.68 79.29 66.23
Our Approach (off-line) 83.00 76.62 79.22 88.29 81.40 58.06 80.36 33.78 64.12 65.49
Our Approach 95.22 90.46 85.32 93.09 93.01 81.82 88.02 63.68 87.08 82.63

Table 1: Background Subtraction: F-measure (%) on ten test sequences. The second-to-last row lists the results of our approach
when the dictionary is not updated after the training step.

to further update their background models. In our setup, let
Xt be the covariance descriptor extracted from an image
block centered around a pixel in frame t. Let Dt−1 be a back-
ground dictionary such that the loss function l(Xt,Dt−1) is
“small” for background pixels and large otherwise. Then by
thresholding the loss function, one can classify this pixel as
background or foreground. If the pixel is marked as back-
ground, then we use Xt to update its background dictionary
Dt−1 to obtain Dt for detection in the next frame (at the start
dictionaries are initialized using information from training
frames). The benefit of dictionary update is that it makes
the trained background models to adapt to new observations,
which is extremely useful to overcome challenges such as il-
lumination variation or dynamic backgrounds.

We compared our approach to several state-of-the-art
methods, including Joint domain-range Kernel Density Es-
timate (JKDE) (Sheikh and Shah 2005), Adaptive Kernel
Density Estimate with hybrid feature (AKDE) (Narayana,
Hanson, and Learned-Miller 2012), Grassmannian Online
Subspace Updates with Structured-sparsity (GOSUS) (Xu
et al. 2013), and Dirichlet Process Mixture Models
(DPMM) (Haines and Xiang 2014). We used 10 sequences
from two popular benchmark datasets: Wallflower3 and I2R4

for comparison, which contain a variety of challenges such
as dynamic backgrounds (WavingTrees, Fountain, WaterSur-
face, Curtain, Campus), illumination changes (Lobby, Time-
OfDay, LightSwitch, and presence of multiple foreground
objects (Hall and Escalator). For each video sequence, we
used the first 200 frames not containing the foreground ob-
jects for training and the remaining frames were used for
detection (testing). For each pixel, the threshold used for
detection was set to the maximum reconstruction error on
the training frames plus a bias which is chosen from the set
{0, 0.01, 0.02, 0.03, 0.04, 0.05}. The block size r = 8, and
as mentioned earlier, we set ω = 1.

The F-measure is used for the quantitative evaluation, and
is defined as the harmonic mean of the recall and precision.
Table 1 demonstrates that the performance of our approach
is significantly superior to other studied methods. Our ap-
proach achieves the best performance on seven sequences
and the second best performanceon two sequences. To val-
idate the benefit of the (online) dictionary update step, we
also tried a dictionary-based approach without the dictionary
updates. As seen from Table 1, when the dictionary is not

3http://research.microsoft.com/en-us/um/people/jckrumm/
wallflower/testimages.htm

4http://perception.i2r.a-star.edu.sg/bk model/bk index.html

updated, the performance decreases significantly.
We also present qualitative evaluation of compared algo-

rithms. Figure 1 shows background subtraction results on
some example images from each of the tested sequences. We
can visually see that our approach performs better than other
compared approaches on background subtraction. It should
be emphasized that our approach detects some background
pixels along the contour of the foreground object as fore-
ground. This is because the covariance matrix is computed
from an image block and not on a single pixel. When detect-
ing a pixel, its neighboring pixels can affect its detection
result. However, considering that accurately detecting the
foreground contour is not important for most video applica-
tions, this drawback is negligible. Also in the second-to-last
row, we see visually the benefits of updating the dictionary.

Visual Tracking

Visual tracking is the task of continuously inferring the
state (i.e., center position and size) of a tracked object in
an image sequence. Let xt−1 be the state of the object in
frame t− 1. We use the particle filter based tracking frame-
work (Ross et al. 2008; Hu et al. 2012; Bao et al. 2012;
Wang, Wang, and Yeung 2013) that employs a set of parti-
cles x1

t , . . . ,x
N
t with individual weights ω1

t , . . . , ω
N
t to ap-

proximate the true posterior state distribution of xt in frame
t. As is common, we sample particles (which are referred to
as the target candidates) from a Gaussian distribution with
xt−1 as its mean and a pre-defined variance. Let Xi

t be the
covariance matrix extracted from ith target candidate at time
t. Assume that a dictionary Dt−1 is maintained such that if
the candidate Xi

t is very similar to the tracked target, then
the loss function l(Xi

t,Dt−1) is “small”. We then compute
the target candidate weight as ωi

t = exp(−l(Xi
t,Dt−1)).

The candidate with the largest weight is chosen as the track-
ing result and its covariance matrix is further used to update
the dictionary Dt−1 to obtain Dt. As the appearance of the
tracked target changes over time, dictionary update it is crit-
ical to capture target appearances at different poses or illu-
mination conditions.

We compared our approach with four state-of-the-art
methods, Incremental Visual Tracking (IVT) (Ross et al.
2008), Sparse Representation Tracking (SRT) (Bao et al.
2012), Online Non-negative Dictionary Learning (ON-
NDL) (Wang, Wang, and Yeung 2013), and Log-Euclidean
Riemannian Subspace (LogERS) (Hu et al. 2012). A total
of 12 widely used test sequences from (Ross et al. 2008;
Bao et al. 2012) were chosen for evaluating tracking perfor-
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Figure 1: Qualitative comparison of compared algorithms on 10 sequences. The second-to-last row shows the results of our
approach without the online dictionary update.

Method face face2 car david1 david2 shopping PETS walk singer woman sylv transformer
LogERS 22.75 6.43 5.28 13.41 8.07 6.84 3.89 28.58 18.18 114.67 7.36 28.56
ONNDL 6.26 5.91 2.16 8.26 3.94 2.32 2.61 8.13 14.16 5.38 4.94 55.52
SRT 34.09 12.80 1.90 58.90 81.91 49.26 4.93 107.36 73.58 129.75 29.29 163.27
IVT 11.77 7.72 1.87 90.83 6.50 49.10 3.28 134.19 5.06 131.19 51.80 150.46
Our Approach 3.99 3.06 1.92 4.50 4.79 2.68 2.40 4.94 3.29 3.53 2.49 5.54

Table 2: Visual Tracking: Average center-position errors (in pixels) on 12 test sequences.

Method face face2 car david1 david2 shopping PETS walk singer woman sylv transformer
LogERS 71.26 91.19 99.52 62.20 64.25 69.96 47.06 27.48 31.41 11.25 89.57 46.67
ONNDL 98.88 99.66 100.00 89.60 92.61 99.80 99.76 96.72 24.79 80.18 96.38 49.19
SRT 58.99 54.04 100.00 10.80 23.48 36.80 71.84 12.54 24.79 16.22 43.00 22.58
IVT 79.78 96.97 100.00 30.80 86.30 39.00 99.76 24.48 32.19 14.71 53.37 27.42
Our Approach 100.00 100.00 100.00 100.00 100.00 100.00 99.75 99.85 100.00 99.09 100.00 100.00

Table 3: Visual Tracking: Success rates (in percentage) on 12 test sequences.

mance, which contain various tracking challenges such as
partial occlusion, illumination changes, and pose changes.
For each sequence, we used the first 20 frames with manu-
ally labeled states of the tracked target for training and the
remaining frames for tracking. Similar to (Hu et al. 2012),
we resized each target candidate into a 32 × 32 image, and
then divided it into a 4 × 4 grid (therefore, the block size
r = 8). For each grid, a dictionary was learned using the
training data. When a new test frame arrives, for each target

candidate, the extracted covariance descriptor at each grid
position is reconstructed using the corresponding dictionary.
The sum of reconstruction errors over all sixteen grids is
used to compute the weight of the target candidate, and the
candidate with the largest weight is chosen as the current
tracking result. The covariance descriptors extracted from
the tracking result are used to update their corresponding
dictionaries. Here again, ω = 1.

For each video frame, the bounding box B obtained by a
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tracker (tracking algorithm) was compared with the ground-
truth bounding box Bt. The tracker is considered successful
if the overlap percentage area(B ∩ Bt)/area(B ∪ Bt) >
50%. The center-position error is defined as the Euclidean
distance (in pixels) between the centers of B and Bt. The
performance of a tracker on a sequence is evaluated using
success rate (the proportion of frames where the tracker
is successful) and average central-position error over all
frames used for testing.

As shown in Tables 2 and 3, our approach achieves the
lowest average center-position errors on nine sequences and
the highest success rates on eleven sequences. We also show
some examples of tracking results in Figures 2 and 3. The
tracked targets in the face, face2, walk, and woman se-
quences are partially occluded by some objects. The car,
david1, and singer sequences have illumination changes. On
the david2, sylv, and transformer sequences, the challenge
is the pose changes. The similar background-foreground ob-
jects appearing in the shopping and PETS sequences also
cause many trackers to fail. As seen from these examples,
our approach achieves better performance than other track-
ers when facing all of these challenges.

Ours LogERS ONNDL SRT IVT
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Figure 2: Examples of tracking results on six test sequences:
face, face2, car, david1, david2, and shopping.

In term of running speeds, the LogERS, ONNDL, SRT,
IVT, and our approach achieve an average of 4.10, 0.121,
0.9869, 6.78 and 0.93 frames/second, respectively. Our ap-
proach is only slower compared to the poorly performing
trackers. Although our approach is still not quite real-time
(as the code is in Matlab), we believe we can achieve near
real-time performance with further code optimization and
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Ours LogERS ONNDL SRT IVT

Figure 3: Examples of tracking results on six test sequences:
PETS, walk, singer, woman, sylv, and transformer.

utilizing better hardware.

Digit Recognition

Digit recognition is an important visual pattern recognition
problem that is used in many systems involving document
processing. But this task typically requires a large sized
training data. Off-line training on the whole training data has
both high computation and memory requirements. There-
fore, an online learning approach, that processes a small set
of training data at each iteration, is more practical. We chose
two handwritten digit datasets MNIST (Lecun et al. 1998)
and USPS5 for testing. The MNIST dataset has 60000 train-
ing and 10000 testing images, whereas the USPS dataset has
7291 training and 2007 testing images. As in (Lu, Shi, and
Jia 2013), we added random outliers to both the training and
testing images and then colorize them to greatly increase the
versatility and complexity (given that the digits were all in
grayscale originally). We resize each image to 15×15 pixels.
We learn separate dictionaries for each digit (so ten in total)
using covariance matrices extracted from the training data.
In the testing phase, given a digit image, we first compute
covariance matrix from it, and then reconstruct the covari-
ance matrix over the ten learned dictionaries and choose the
one with smallest reconstruction error as recognition result.

We compared our online dictionary learning method
with settings of ω = 500 and ω = size of training data,
to other dictionary learning methods (using pixel intensi-
ties as features) including online robust dictionary learning

5http://www-i6.informatik.rwth-aachen.de/∼keysers/usps.html
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(ORDL) (Lu, Shi, and Jia 2013), KSVD (Aharon, Elad, and
Bruckstein 2006), and Online Euclidean Dictionary Learn-
ing (OEDL) (Mairal et al. 2010). Table 4 lists the recognition
errors, from which we can see among dictionary learning
techniques our approach has significantly lower recognition
errors. Also, not surprisingly, larger values of ω helps. But
this improvement comes at the cost of increased processing
time, as on the MNIST dataset to learn a dictionary for a
digit our approach with ω = 500 and ω = 60000 (size of
training data) takes 240 and 3000 seconds, respectively.

Dataset Our Approach
(ω = training data size)

Our Approach
(ω = 500) ORDL KSVD OEDL

MNIST 15.4 18.9 22.7 39.2 34.3
USPS 23.6 25.1 29.4 45.3 42.5

Table 4: Error rate (%) for the digit recognition task using
different methods on the MNIST and USPS datasets.

Conclusion

We proposed an integrated framework for sparse coding and
dictionary learning on the SPD manifolds, which benefits
from both the appealing properties of SPD matrices as fea-
ture descriptors and the notion of sparsity for inference. Our
proposed method takes into account the geometric structure
of these manifolds and updates the dictionary in an online
fashion. This is in contrast to existing studies which merely
consider batch dictionary learning. The effectiveness of the
proposed approach was extensively evaluated on three im-
portant vision applications that operate on large-scale dy-
namic data.
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Appendices

Accelerated Proximal Gradient Algorithm

Consider the following unconstrained minimization problem

min
a

F(a) + G(a), (4)

where F : RN → R is a differentiable convex function and
its gradient is Lipschitz continuous with parameter L6, and
G : RN → R is a non-smooth but convex function.

Below, we describe a version of the Accelerated Proxi-
mal Gradient (APG) algorithm for solving (4) as presented
by (Beck and Teboulle 2009). Initialize b(1) = a(0) = 0,
q(1) = 1, and p = 1, the APG algorithm repeats the follow-

6The gradient of a function F is Lipschitz continuous with pa-
rameter L if ‖ ∂F

∂a |a=x
− ∂F

∂a |a=y
‖ ≤ L‖x− y‖, ∀x,y ∈ R

N .

ing steps until convergence:

a(p) = argmina

{
L

2

∥∥∥∥∥a− b(p) +

∂F
∂a

|a=b(p)

L

∥∥∥∥∥
2

2

+ G(a)
}

,

q(p+1) =
1 +

√
1 + 4q2(p)

2
,

b(p+1) = a(p) +
q(p) − 1

q(p+1)

(a(p) − a(p−1)) .

Convergence of the APG Algorithm. If {a(p)} is the se-
quence generated by the above procedure. Then within T =

O(
√

L/ε) iterations, a(T ) is such that ‖a(T ) − a�‖ ≤ ε,
where a� is the minimizer of (4).

Evaluation of Gradient for Dictionary Update

Lemma 2. The gradient of F (Di) =∑t
τ=t−ω+1 ‖φ(Di) − Zτhτi‖2 with respect to Di

is:

2β
t∑

τ=t−ω+1

hτi
κ(Xτ ,Di)

(
(Xτ + Di)

−1 − D−1
i

2

)

− 2β
t∑

τ=t−ω+1

∑
j �=i

hτi
hτj

κ(Dj ,Di)

(
(Dj + Di)

−1 − D−1
i

2

)
.

Proof. We can rewrite ‖φ(Di) − Zτhτi‖2 as (φ(Di) −
Zτhτi)

�(φ(Di)−Zτhτi). Now,
(φ(Di)− Zτhτi

)
�
(φ(Di)− Zτhτi

) = φ(Di)
�
φ(Di)

− (Zτhτi
)
�
φ(Di)− φ(Di)

�
(Zτhτi

) + (Zτhτi
)
�
(Zτhτi

) .

For the purposes of evaluating the gradient (w.r.t. to Di)
only the (Zτhτi)

�φ(Di) and φ(Di)
�(Zτhτi) terms mat-

ter (as φ(Di)
�φ(Di) = 1). In the following, we use F to

denote F (Di). The gradient of F with respect to Di is:

∂F

∂Di

=
∂

∂Di

t∑
τ=t−ω+1

‖φ(Di)− Zτhτi
‖2

=
∂

∂Di

t∑
τ=t−ω+1

(
−(Zτhτi

)
�
φ(Di)− φ(Di)

�
(Zτhτi

)
)

= −2
∂

∂Di

t∑
τ=t−ω+1

hτi
Z
�
τ φ(Di)

= −2
∂

∂Di

t∑
τ=t−ω+1

hτi

⎛
⎝κ(Xτ ,Di)−

∑
j �=i

hτj
κ(Dj ,Di)

⎞
⎠ . (5)

The first part of the gradient of (5) is:

− 2
∂

∂Di

t∑
τ=t−ω+1

hτi
κ(Xτ ,Di)

= 2β
t∑

τ=t−ω+1

hτi
κ(Xτ ,Di)

(
(Xτ + Di)

−1 − D−1
i

2

)
. (6)

The second part of the gradient of (5) is:

2
∂

∂Di

t∑
τ=t−ω+1

∑
j �=i

hτi
hτj

κ(Dj ,Di)

= −2β
t∑

τ=t−ω+1

∑
j �=i

hτi
hτj

κ(Dj ,Di)

(
(Dj + Di)

−1 − D−1
i

2

)
.

(7)

Adding (6) and (7) proves the claimed bound.
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