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Abstract

In this paper, we address the problem of large-scale
multi-view spectral clustering. In many real-world ap-
plications, data can be represented in various heteroge-
neous features or views. Different views often provide
different aspects of information that are complementary
to each other. Several previous methods of clustering
have demonstrated that better accuracy can be achieved
using integrated information of all the views than just
using each view individually. One important class of
such methods is multi-view spectral clustering, which
is based on graph Laplacian. However, existing meth-
ods are not applicable to large-scale problem for their
high computational complexity. To this end, we pro-
pose a novel large-scale multi-view spectral clustering
approach based on the bipartite graph. Our method uses
local manifold fusion to integrate heterogeneous fea-
tures. To improve efficiency, we approximate the sim-
ilarity graphs using bipartite graphs. Furthermore, we
show that our method can be easily extended to handle
the out-of-sample problem. Extensive experimental re-
sults on five benchmark datasets demonstrate the effec-
tiveness and efficiency of the proposed method, where
our method runs up to nearly 3000 times faster than the
state-of-the-art methods.

Introduction
Clustering multi-view data is an important problem. In many
real-world datasets, data are naturally represented by dif-
ferent features or views. This is due to the fact that data
may be collected from different sources or be represented by
different kind of features for different tasks. For example,
documents can be written in different languages; gene can
be measured by different techniques, e.g. gene expression,
Single-nucleotide polymorphism (SNP), methylation; im-
ages can be described by different features like Gabor (Oliva
and Torralba 2001), HoG (Dalal and Triggs 2005), GIST
(Oliva and Torralba 2001), LBP (Ojala, Pietikainen, and
Maenpaa 2002). Different features capture different aspects
of data and can be complementary to each other. Therefore,
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it is critical for learning algorithm to integrate these hetero-
geneous features to improve its accuracy and robustness. In
this paper, we focus on one specific unsupervised learning
task, i.e., multi-view spectral clustering.

Recently, spectral clustering (SC) is drawing more and
more attention because of its effectiveness (Shi and Ma-
lik 2000; Von Luxburg 2007; Ng et al. 2002; Zelnik-Manor
and Perona 2004; Nie, Wang, and Huang 2014; Chang et
al. 2015). However, the growth of the scale of data has
rendered the multi-view clustering problem more challeng-
ing. None of the existing methods is applicable on large-
scale multi-view data. In general, SC methods usually in-
volve two time consuming steps. The first step is to con-
struct the affinity graph and the second step is to compute the
eigen-decomposition. The first step usually takes O(n2d)
time while the second step takes O(Kn2) time, where n is
the number of data points, d is the dimension of features
and K is the number of clusters. Many works have been
proposed to accelerate SC algorithm (Fowlkes et al. 2004),
(Shinnou and Sasaki 2008), (Sakai and Imiya 2009), (Yan,
Huang, and Jordan 2009), (Chen et al. 2011), (Chen and
Cai 2011). These methods reply on various off-the-shelf pro-
jection or sampling methods (Bingham and Mannila 2001;
Li et al. 2014; Li, Chen, and Huang 2014) to reduce the
complexity of graph construction or eigen-decomposition.
However, they only discuss the situation of handling sin-
gle view data, which limits their usage. There are also SC
methods that deal with multi-view data, such as (Kumar,
Rai, and Daume 2011), (Cai et al. 2011). These methods
try to model the multi-view clustering problem as solving
local and global optimization among different views. Al-
though they have achieved better accuracy than single-view
SC methods, they are more computationally expensive due
to the fact that they require iterations to reach consensus of
different views or large-scale matrix inversion.

Another drawback of SC methods is that they usually do
not provide natural extension to handle the out-of-sample
problem (Nie et al. 2011; Bengio et al. 2004). To address
this problem, several methods have been proposed, e.g.
(Passerini, Pontil, and Frasconi 2004; Fowlkes et al. 2004;
Alzate and Suykens 2010; Bengio et al. 2004; Nie et al.
2011). They either rely on approximation of eigenfuncions
(Fowlkes et al. 2004; Bengio et al. 2004) or data projec-
tion such as error correcting output code (ECOC) method
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(Dietterich and Bakiri 1995; Passerini, Pontil, and Frasconi
2004) or regression model (Nie et al. 2011). None of them
address the out-of-sample problem in setting involved het-
erogeneous features.

In this paper, we proposed a multi-view spectral clustering
method that is able to deal with large-scale data. Our method
is inspired by the large-scale semi-supervised learning al-
gorithm proposed in (Liu, He, and Chang 2010). First, we
generate consensus m salient points for all views. Then we
construct bipartite graph between raw data points and these
salient points. These generated points play an important role
in capturing the manifold of the original views. Then, the
graph of all the views are combined together using a local
manifold fusion method. Finally, we run spectral clustering
on the resulting fused graph. There are several benefits of
our method: First, manifold fusion preserves the manifold
structure of all the views; Second, the construction of the
bipartite graph is very efficient; Third, by exploring the spe-
cial structure of the bipartite graph, spectral analysis on it is
also very efficient; Fourth, our method also output cluster
indicator of the salient points, which enables us to handle
the out-of-sample problem efficiently. Additionally, we have
conducted extensive experiments on five ‘ benchmark data
sets, which demonstrate the effectiveness and efficiency of
our proposed method comparing to the state-of-the-art meth-
ods.

The remainder of this paper is organized as follows: we
first introduce basic notations and concepts of spectral clus-
tering in Section 2. In Section 3, details of our proposed
large-scale multi-view spectral clustering method is pre-
sented. All the experimental results are shown in Section 4.
Finally, we conclude our work in Section 5.

Background and Notations
In this section, we will briefly introduce the notations and the
spectral clustering framework. Let X = [x1, . . . , xn]T ∈
Rn×d denote the data matrix, where n is the number of
data points and d is dimension of features. Each data point
xi ∈ Rd belongs to one of K classes C = {c1, . . . , cK}.
Given the whole dataset X , each data point is represented as
a vertex on the affinity graph and each edge represents the
affinity relation of one pair of vertexes. In practice, the k-NN
graph are usually used. Specifically, xi and xj are connected
if at least one of them is among the k nearest neighbours of
the other in the given measured (usually Euclidean distance).
The weight of the edge between xi and xj is defined as:

wij =

{
exp

(
−‖xi−xj‖

2σ2

)
, if xi and xj are connected

0, otherwise
(1)

where σ is the bandwidth parameter. Note that we use Gaus-
sian Kernel for example, this method is also applicable to
other types of kernel. Thus, W = {wij} ∈ Rn×n,∀i, j ∈
1, . . . , n is the adjacent matrix of the graph and it is a sym-
metric undirected graph. Let D ∈ Rn×n be the degree ma-
trix whose i-th diagonal element is dii =

∑n
j=1 wij . Let

L denote the normalized graph Laplacian matrix, then it is

defined as:
L = I −D−1/2WD−1/2 (2)

The objective function of the normalized spectral clustering
(Ng et al. 2002) is defined as:

min
GTG=I

Tr (GTLG), (3)

where G ∈ Rn×K is the class indicator matrix of all data.
The solution of G in Eq. (3) is the K smallest eigen vectors
of L.

Multi-view Spectral Clustering Revisit
For multi-view data, let V be the number of views and
X(1), . . . , X(V ) be the data matrix of each view, where
X(v) ∈ Rn×d(v)

for v ∈ 1 . . . , V and d(v) is the feature
dimension of the v-th view. Let L(1), . . . , L(V ) ∈ Rn×n
denote the normalized Laplacian matrices of each view, re-
spectively. Two important questions that are needed to be
answered by multi-view approaches are how to reach con-
sensus of the results and how to express the relationship
of all the views. There are several forms for the multi-
view spectral clustering (Kumar, Rai, and Daume 2011;
Cai et al. 2011). We use the following form:

min
GTG=I,a(v)

J1(G, a(v)) =
V∑
v=1

(a(v))r Tr(GTL(v)G),

s.t.
V∑
v=1

a(v) = 1, a(v) ≥ 0, (4)

where a(v) is the non-negative normalized weight factor for
the v-th view and r is a scalar to control the distribution of
different weights among different views. Here, we try to find
a consensus result G among all the views. This unique con-
sensus eliminates the need for computing the local results
for each view and the computation cost of communicating
back and forth between local results and the global result
e.g. (Kumar, Rai, and Daume 2011). To further explain the
inter-view relation, we rewrite Eq. (4) as:

min
GTG=I,a(v)

J2(G, a(v)) = Tr(GTLG),

s.t.
V∑
v=1

a(v) = 1, a(v) ≥ 0, (5)

where L =
∑V
v=1(a(v))rL(v). Here, L can be regarded as

local manifold fusion of all the views.
Equation (5) can be solve by iterative optimization tech-

niques. However, to construct the graphs for all the views
and to solve the equation is time consuming. The computa-
tional complexity is about O(TKn2 +

∑
v=1 V nd

2
v), where

T is the number of iterations.

Methodology
In this section, we present an efficient approximation algo-
rithm that can be applied to large-scale graph construction.
Then, an efficient clustering algorithm is proposed for large-
scale multi-view spectral clustering. Finally, we extended
our method to handle the out-of-sample problem.
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Large-Scale Graph Construction
In order to reduce the computational cost of multi-view
spectral clustering, we introduce a fast approximation al-
gorithm. The idea is to use a small set of data points
U = [U1, . . . , Um] ∈ Rm×d to capture the manifold struc-
ture, where each uk is called a salient point. Then a bipar-
tite graph is constructed between the raw data points and
the salient points. By utilizing the structure of the bipartite
graph, the graph construction and spectral analysis can be
perform very efficient.

The salient points can be chosen by random sampling
from raw data points or using lightweight clustering meth-
ods such as k-means. We find that the salient points gener-
ated by k-means have stronger representation power com-
pared to sampling ones, where fewer points are needed
for the same level of performance. However, in multi-view
data, different views will generate different salient points if
we run k-means independently on each view, which makes
manifold fusion impossible. Therefore, we generate salient
points on concatenated all the features and then separate re-
sulting points into different views. This process can generate
uniform salient points for different views, which will simpli-
fied the process of clustering.

With the generated points, the k-NN graph is constructed
between the raw data and the salient points. We further con-
strain that connections are only allowed between raw data
point and salient point. This constraint results in a bipartite
graph between raw data X and salient points U . And the
weight of each edge is defined as

Zij =
K(xi, uj)∑

k∈Φi
K(xi, uk)

,∀j ∈ Φi, (6)

where K() is a given kernel function (e.g. Gaussian Kernel
in Eq. (1)), Φi ⊂ {1 . . .m} denotes the indexes of s nearest
neighbours of xi in U .

For the v-th view, the affinity matrix becomes W (v) =[
0 Z(v)

Z(v)T 0

]
∈ R(n+m)×(n+m). The degree matrix be-

comes D(v) =

[
D

(v)
r 0

0 D
(v)
c

]
∈ R(n+m)×(n+m), where

Dr is a diagonal matrix of whose diagonal elements are row
sums of Z andDc is a diagonal matrix of whose diagonal el-
ements are column sums of Z. Since Z is by definition row
normalized, we have Dr = In, where In is the n by n iden-
tity matrix. The construction of the graph is extremely effi-
cient since now we only need to consider O(mn) distances.
However, directly computing eigenvectors of L in Eq. (4) is
still time consuming. Therefore, we need to transform the
problem to utilize the structure of bipartite graph.

Multi-view Spectral Clustering Algorithm
By utilize the bipartite graph, we can obtain an algorithm
that can optimize the cluster indicator of raw data points
and salient points simultaneously. We name this algorithm
Multi-view Spectral Clustering (MVSC). We first propose
our alternative optimization framework for solving Eq. (5).

With all the a(v) are initialized to be equal, i.e. a(v) = 1/V
for v ∈ 1 . . . V , we solve Eq. (5) in iterations of two follow-
ing steps.

First, we fix a(v) and then solve G, where the objective
function become:

min
GTG=I

J2(G) = Tr(GTLG), (7)

which is equivalent to original spectral clustering. The solu-
tion ofG is obtained by computeK smallest eigenvectors of
L.

Second, we fix G and then solve a(v). Let h(v) =
Tr(GTL(v)G), then the Eq. (4) can be rewritten as:

min
a(v)

V∑
v=1

(a(v))rh(v), s.t.
V∑
v=1

a(v) = 1, a(v) ≥ 0, (8)

Thus, using method of Lagrange multiplier, Eq. (8) be-
comes:

min
a(v)

V∑
v=1

(a(v))rh(v) − β(
V∑
v=1

a(v) − 1), (9)

where β is the Lagrange multiplier. With simple algebraic
manipulations, we get

a(v) =

(
r(h(v)

) 1
1−r∑V

v=1

(
rh(v)

) 1
1−r

. (10)

The first sub-problem (Eq. (7)) tries to minimize J2(G) =
Tr(GTLG), which takes O(cn2) for general case. Fortu-
nately, we can reduce the complexity by using the following
theorem.
Theorem 1. : Solving J2(G) = Tr(GTLG) is equivalent
to compute the singular vectors of Z corresponding to K
largest singular values.

Proof. Let S(v) = (D(v))−1/2W (v)(D(v))−1/2. The objec-
tive function J2(G) can be rewritten as

J2(G) = Tr(GTLG)

= Tr(GT
V∑
v=1

(a(v))rL(v)G)

= Tr(GT

(
V∑
v=1

(a(v))r(I − S(v))

)
G)

= Tr(
V∑
v=1

(a(v))rGTG

−GT
(

V∑
v=1

(a(v))rS(v)

)
G)

= n
V∑
v=1

(a(v))r − Tr(GTSG), (11)

where S =
∑V
v=1(a(v))rS(v). Then, minimizing J2 with

respect to G is equivalent to the following equation

max
GTG=I

Tr(GTSG) (12)
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The solution ofG is the eigenvectors corresponding to the
K largest eigenvalues. We can use the structure of S to trans-
form the problem of computing the eigenvectors of S to that
of computing the eigenvectors of Z. Let G = [GTX , G

T
U ]T ,

where GX , GU are rows corresponding to raw data and
salient points respectively. Therefore, the objective function
in Eq. (12) becomes

Tr(GTSG) = Tr

([
GX
GU

]T
S

[
GX
GU

])

= Tr

([
GX
GU

]T [
0 Ẑ

(Ẑ)T 0

] [
GX
GU

])
= Tr

(
2GTX ẐGU

)
, (13)

where Ẑ =
∑V
v=1(a(v))rẐ(v) and Ẑ(v) =

(D
(v)
r )−

1
2Z(v)(D

(v)
c )−

1
2 = Z(v)(D

(v)
c )−

1
2 . Thus, solving

Eq. (12) is equivalent to computing the left and right
singular vectors corresponding to the K largest singular
values of Ẑ

svd(Ẑ) = GXΣGTU , (14)

where svd() is the Singular Value Decomposition (SVD) op-
erator, Σ = diag(σ1, . . . , σK) and σ1 ≥ σ2, . . . , σK ≥ 0

are the singular values of Ẑ.

With Theorem 1, we can solve the whole problem very
efficiently. The whole algorithm is summarized in Alg. 1.

Computational analysis. The proposed Multi-view
Spectral Clustering (MVSC) consists of three stages: 1) gen-
erating salient points using k-means, 2) constructing graph
Z and 3) optimization by iteratively solving the clustering
problem. The first stage takes O(t1nmd) time, where t1
is the number of iterations for running k-means and d =∑V
v=1 d

(v). The second stage takes O(nmd) to construct
the graph Z, while constructing a normal k-NN graph of
n vertexes takes O(n2d). The third stage takes O(t2nm

2),
where t2 is the number of iterations. Note that the optimiza-
tion stage is much faster than clustering on a normal n by
n graph, which takes O(Kn2) time. So the overall time
complexity is approximately O(t1nmd + t2nm

2). Since
m, d� n, this is nearly linear to n. The computational cost
is summarized in Table 1.

Table 1: Summary of computational complexity.
Stages 1 and 2 3 Total
Normal graph O(n2d) O(Kn2) O(n2d+Kn2)
Bipartite graph O(t1nmd) O(t2nm

2) O(t1nmd+ t2nm
2)

Convergence analysis. The original problem Eq. (4) is
not a joint convex problem of a(v) and G. Hence, there is
no guarantee for obtaining a global solution. Since we di-
vide the original problem into two sub-problems and each
of them is convex problem. The proposed method will con-
verge to a local solution. In all our experiments, the process
always converges in less than 10 iterations.

Parameter r. Another advantage of our approach is us-
ing the parameter r, which controls the fusion weights of all
the views by only one parameter. Some previous methods
just simply assume equal weights (Kumar, Rai, and Daume
2011) or tuning one parameter for each view (Liu et al.
2013). The effect of r ranges from assigning equal weights
to all views when r =∞ to assigning all the weights to one
best view when r = 1. By tuning r between (1,∞) we can
reach a balance between all the views.

Algorithm 1 Multi-view Spectral Clustering (MVSC)

1: Input: Data matrix of all views X(v) ∈ Rn×d(v)

for
v ∈ 1 . . . V , Number of classes K, Number of salient
points m, parameter r.

2: Output: Cluster labels Y of each data points, all salient
points U and cluster labels of all salient points.

3: Generatem salient points using k-means on concatenate
features;

4: Compute affinity matrix Z(v) of each view.
5: Compute Laplacian L(v) of each view;
6: Initialize a(v) = 1/K;
7: repeat
8: Compute G by using Eq. (14);
9: Update a(v) by using Eq. (8);

10: until Converges.
11: Treat each row of G as new representation of each data

point and compute the clustering labels Y by using k-
means algorithm.

Out-of-sample Problem
In general, spectral clustering methods only work on the
training data. Most methods do not provide clear extension
to deal with out-of-sample points (a.k.a. test data). In con-
trast, our method can be easily extended to handle test data.
Recall that when carrying out clustering on training data,
we also get the feature vectors and clustering labels for the
salient points. Therefore, we simple find the k nearest neigh-
bours of test data among salient points and propagate the
labels to the test data. The k-NN algorithm can be done in
O(md) computational cost for each data point. Hence, p test
data points can be clustered in O(pmd) computational cost.
This computational cost is far lower than carried out k-NN
on the training data (O(pnd)).

Experiment
In this section, we conduct several experiments to evaluate
the performance of the proposed methods on five bench-
marks datasets. These datasets are summarized in Table 2.
All our experiments are conducted on a desktop computer
with a 3.4GHz Intel Core i7 CPU and 12GB RAM, MatLab
2012a (64bit).

Data Set Description
Handwritten (HW)1 is a dataset of handwritten digits of 0
to 9 from UCI machine learning repository (Frank, Asun-

1https://archive.ics.uci.edu/ml/datasets/Multiple+Features
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cion, and others 2010). It consists of 2000 data points. We
use all the 6 published features including 76 Fourier coef-
ficients of the character shapes (FOU), 216 profile corre-
lations (FAC), 64 Karhunen-love coefficients (KAR), 240
pixel averages in 2 × 3 windows (Pix), 47 Zernike moment
(ZER) and 6 morphological (MOR) features.

Caltech-101 (Fei-Fei, Fergus, and Perona 2007) image
data set consists of 101 categories of images for object
recognition problem. We follow previous work (Dueck and
Frey 2007) and select the widely used 7 classes, i.e. Face,
Motorbikes, Dolla-Bill, Garfield, Snoopy, Stop-Sign and
Windsor-Chair and get 1474 images, which we called Cal-
tech7 (Cal7). We also select a larger set named Caltech20
(Cal20) which contains totally 2386 images of 20 classes:
Face, Leopards, Motorbikes, Binocular, Brain, Camera,
Car-Side, Dolla-Bill, Ferry, Garfield, Hedgehog, Pagoda,
Rhino, Snoopy, Stapler, Stop-Sign, Water-Lilly, Windsor-
Chair, Wrench and Yin-yang. Five features are extracted
from all the images: i.e. 48 dimension Gabor feature, 40
dimension wavelet moments (WM), 254 dimension CEN-
TRIST feature, 1984 dimension HOG feature, 512 dimen-
sion GIST feature, and 928 dimension LBP feature.

Reuters2 consists of documents that are written in five
different languages and their translations. All the documents
are categorized in to 6 classes. We use the subset that are
written in English all their translations in all the other 4 lan-
guages (French, German, Spanish and Italian).

NUS-WIDE-Object (NUS) (Chua et al. July 8 10 2009)
is a dataset for object recognition which consists of 30000
images in 31 classes. We use 5 features provided by the web-
site 3, i.e. 65 dimension color Histogram (CH), 226 dimen-
sion color moments (CM), 145 dimension color correlation
(CORR), 74 dimension edge distribution and 129 wavelet
texture.

Animal with attributes (AWA)4 is a data set of ani-
mal images. It consists of 50 kinds of animals described in
6 features. We randomly sample 80 images for each class
and get 4000 images in total. All the published features
are used: Color Histogram (CQ, dim 2688), Local Self-
Similarity (LSS, dim 2000), Pyramid HOG (PHOG, dim
252), SIFT (dim 2000), Color SIFT (RGSIFT, dim 2000)
and SURF (dim 2000).

Clutering Evaluation
In this subsection, we first evaluate the capability of the pro-
posed multi-view clustering method on 5 datasets: HW, Cal-
tech7, Caltech20, Reuters and NUS. We compare the pro-
posed methods with three other state-of-art approaches as
stated bellow:

Single view Spectral Clustering (SC): Running spectral
clustering on each single view (Ng et al. 2002).

Feature Concatenation Spectral Clustering (ConSC):
Concatenating features of all the views and run spectral
clustering on the resulted feature (Kumar, Rai, and Daume
2011).

2https://archive.ics.uci.edu/ml/datasets.html
3http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
4http://attributes.kyb.tuebingen.mpg.de/

Co-regularized Spectral Clustering (CoregSC): one of
the state-of-the-art multi-view spectral clustering method
proposed in (Kumar, Rai, and Daume 2011).

Multi-Modal Spectral Clustering (MMSC): another re-
cent multi-view clustering method proposed in (Cai et al.
2011).

Multi-view Spectral Clustering (MVSC): this is the pro-
posed method in Alg. (1).

For fair comparison, we download the source code from
the authors’ website and follow their experimental setting
and the parameter tuning steps in their paper. And we
use Gaussian kernel for all the experiments except for the
Reuters dataset, where we use linear kernel. We search the
parameter r in logarithm form (log10 r from 0.1 to 2 with
step size 0.2. We also set m = 400 and construct 8-nearest-
neighbour graph between raw All the experiments are re-
peated for 10 times and average results are reported. For
the experimental results, we report three metrics (Manning,
Raghavan, and Schütze 2008): mean purity, mean mutual
information (NMI) and mean running time.

Table 3: Clustering purity comparison on all data sets. “OM”
means “Out-of-memory error” while running the experi-
ment.

Data set HW Cal7 Cal20 Reuters NUS
SC(1) 75.12% 79.22% 68.13% 53.10% 15.98%
SC(2) 75.44% 79.85% 68.13% 54.86% 16.13%
SC(3) 76.39% 79.36% 69.09% 56.92% 15.78%
SC(4) 73.47% 80.56% 67.01% 53.82% 16.29%
SC(5) 75.84% 80.48% 67.99% 56.79% 16.44%
SC(6) 78.89% 79.97% 66.90% - -
ConcatSC 59.33% 77.96% 60.33% 56.70% 26.81%
CoRegSC 82.23% 83.71% 76.11% 55.23% 26.49%
MMSC 75.84% 84.47% 69.04% 39.01% OM
Proposed 84.41% 84.66% 74.06% 57.73% 28.21%

Table 4: Clustering NMI comparison on all data sets. “OM”
means “Out-of-memory error” while running the experi-
ment.

Data set HW Cal7 Cal20 Reuters NUS
SC(1) 0.7589 0.4189 0.4842 0.3099 0.0398
SC(2) 0.7549 0.4239 0.4813 0.3033 0.0419
SC(3) 0.7556 0.4217 0.4848 0.3039 0.0403
SC(4) 0.7547 0.4220 0.4816 0.3123 0.0432
SC(5) 0.7576 0.4206 0.4830 0.3078 0.0429
SC(6) 0.7577 0.4190 0.4830 - -
ConcatSC 0.5795 0.2734 0.3590 0.3228 0.1421
CoRegSC 0.8358 0.5253 0.6107 0.3261 0.1428
MMSC 0.7920 0.5638 0.5938 0.1335 OM
Proposed 0.8324 0.5586 0.5698 0.3567 0.1493

Table 3 and Table 4 show clustering purity and NMI re-
spectively, while Table 5 shows the running time of all the
methods. In general, the multi-view methods can achieve
better results than the single view algorithms. Additionally,
our proposed method MVSC constantly outperforms the sin-
gle view methods and achieves comparable or even better
results than the other multi-view methods. For running time
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Table 2: Summary of the multi-view datasets used in our experiments.
No. HW Caltech7/20 Reuters NUS AWA
1 Pix(240) Gabor(48) English(21531) CH(65) CQ(2688)
2 Fou(76) WM(40) France(24892) CM(226) LSS(2000)
3 Fac(216) CENTRIST(254) German(34251) CORR(145) PHOG(252)
4 ZER(47) HOG(1984) Italian(15506) EDH(74) SIFT(2000)
5 KAR(64) GIST(512) Spanish(11547) WT(129) RGSIFT(2000)
6 MOR(6) LBP(928) - - SURF(2000)

# of data 2000 1474/2386 18758 26315 4000
# of classes 20 7/20 6 31 50

Table 5: Running time comparison on all data sets (seconds).
“OM” means “Out-of-memory error” while running the ex-
periment.

Data set HW Cal7 Cal20 Reuters NUS
SC(1) 1.74 10.94 29.18 556.98 852.07
SC(2) 1.54 10.30 29.27 443.92 580.36
SC(3) 1.53 10.20 29.32 422.91 478.88
SC(4) 1.53 10.16 29.15 354.68 527.62
SC(5) 1.58 10.32 29.32 307.62 633.01
SC(6) 1.53 10.24 29.33 - -
ConcatSC 2.20 11.00 26.19 556.73 2172.90
CoRegSC 16.42 61.78 180.65 7074.17 56327.26
MMSC 6.13 27.62 80.25 14556.13 OM
Proposed 0.84 1.21 2.26 135.48 19.34

comparison in Table 5, the proposed method is up to sev-
eral orders of magnitude faster than the baseline methods.
The gap is even larger in the large datasets. The other bene-
fits of the proposed method is low space complexity. In fact,
nearly all the baseline methods raise out-of-memory excep-
tion when number of data points are more than 40,000 while
the proposed method can easily handle more than 100,000
samples at once.

Out-of-sample Problem
In this subsection, we consider the out-of-sample problem.
Experiments are conducted on AWA dataset. Five fold cross-
validation is used and we report the mean purity, the mean
NMI and the mean testing time. At each fold, 1/5 of the
data are used as in-sample clustering like that in the previ-
ous subsection and the other 4/5 are used for the out-of-
sample test. For the out-of-sample test, the data and the es-
timated cluster labels of the in-sample clustering are used
as training data for the model. Here we compare two sit-
uations: 1) training model with the whole raw in-sample
data; 2) training model with the generated salient points.
Two kinds of models are trained in both situation: Linear
Regression (LR) and Nearest Neighbour (1NN). The cor-
responding models trained on the salient points are called
Salient 1 Nearest Neighbour (Sa1NN) and Salient Lin-
ear Regression (SaLR) respectively. We compare the pro-
posed method with a third baseline method Spectral Embed-
ded Clustering (SEC) (Nie et al. 2011). Since the data have
several views, we train and apply models on each view and
use simple voting scheme to decide the final cluster label for

each testing sample.

Table 6: Results of out-of-sample test om AWA.
Method 1NN LR SEC Sa1NN SaLR
Purity 8.13% 7.22% 7.79% 8.37% 7.31%
NMI 0.1395 0.1124 0.1252 0.1490 0.1120
Time (s) 972.53 0.97 0.99 436.45 0.94

Table 6 shows the testing performance of all the methods.
The first two rows of the table are purity and NMI, respec-
tively, while the third row shows the testing time. We can
observe that the purity of the salient-point-based models are
comparable or even better than the raw-data-based models.
The testing time of Sa1NN is much less than the 1NN model.
This is reasonable since the computational complexity of
1NN algorithm is proportional to the number of training
samples. All these results demonstrate that we can achieve
comparable performance using models trained only on the
salient points.

Conclusion
In this paper, we propose a novel large-scale multi-view
spectral clustering method based on bipartite graph, named
MVSC. Given a multi-view data set with n data points,
MVSC select m uniform salient points among all the views
to represent the manifold structures of all the features. For
each view, one sub-bipartite-graph is constructed between
the raw data points and the generated salient points. We use
local manifold fusion to generate a fused bipartite graph to
integrate information of all the sub-graph. By exploring the
structure of the bipartite graph, the clustering process can
be accelerated significantly. The computational complexity
is close to linear to the number of data points. For the clus-
tering results, we not only obtain cluster labels for the train-
ing data but also cluster labels for the salient points. The
later information has been used to handle the out-of-sample
problem in low computational cost. Extensive experiments
on five benchmark data sets demonstrate that our proposed
method is up to several orders of magnitude faster than the
state-of-the-art methods, while preserving the comparable or
even better accuracy.
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