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Abstract

We present a probabilistic framework for learning pair-
wise similarities between objects belonging to differ-
ent modalities, such as drugs and proteins, or text and
images. Our framework is based on learning a binary
code based representation for objects in each modal-
ity, and has the following key properties: (i) it can
leverage both pairwise as well as easy-to-obtain relative
preference based cross-modal constraints, (ii) the prob-
abilistic framework naturally allows querying for the
most useful/informative constraints, facilitating an ac-
tive learning setting (existing methods for cross-modal
similarity learning do not have such a mechanism), and
(iii) the binary code length is learned from the data. We
demonstrate the effectiveness of the proposed approach
on two problems that require computing pairwise sim-
ilarities between cross-modal object pairs: cross-modal
link prediction in bipartite graphs, and hashing based
cross-modal similarity search.

Introduction
Many real-world datasets are inherently multimodal and
heterogeneous in nature. For example, a web corpora may
consist of data from multiple modalities, such as text, im-
ages, video and audio; multi-lingual text corpora may con-
sist of documents from different languages; and medical
imaging data may consist of images from multiple imag-
ing modalities such as fMRI, CT, and PET. Often, we
are interested in computing the similarities between ob-
jects that belong to different modalities. This has applica-
tions in a variety of problems such as similarity search,
object-alignment, and link prediction (Bronstein et al. 2010;
Whang, Rai, and Dhillon 2013), involving cross-modal data.
This task requires feature representations that are (i) com-
pact and interpretable, and (ii) comparable across the dif-
ferent modalities.

Algorithms for learning cross-modal similarities usually
rely on some form of supervision, such as pairwise con-
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straints between objects across different modalities. These
constraints may be generated using a small amount of su-
pervised side-information about some of the cross-modal
pairs of objects (e.g., using their class labels, or some user-
definied subjective notion of similarity). These constraints
are subsequently used by the algorithm to learn a mapping of
data to a new feature space, such that the mapping respects
the cross-domain pairwise constraints (Bronstein et al. 2010;
Zhen and Yeung 2012a; 2012b). In many cases, however, ex-
plicit pairwise constraints may be difficult and/or expensive
to obtain. It is therefore desirable to (i) exploit weaker but
easier-to-obtain constraints, and/or (ii) select the constraints
based on some active sampling scheme that returns the most
useful/informative constraints.

Driven by this motivation, in this paper we present
a cross-modal similarity learning framework which ful-
fils both the aforementioned desiderarta. Our framework is
based on learning compact binary codes for objects in each
modality, which can be used to compute cross-modal simi-
larities. The key aspects of our framework are: (i) both cross-
modal pairwise and cross-modal triplet constraints (relative
preferences defined w.r.t. two cross-modal object pairs) can
be incorporated in a coherent way. In particular, to the best
of our knowledge, none of the existing methods for learn-
ing cross-modal binary codes incorporate implicit constraint
such as triplets, and (ii) An efficient active learning strategy
for querying the most useful pairwise and triplet constraints.
Moreover, the binary code size for each modality is learned
adaptively from the data, taking a nonparametric Bayesian
approach (Griffiths and Ghahramani 2011). This is particu-
larly useful for dynamically extending existing hash codes
when new objects (from any modality) or new constraints
become available (Quadrianto et al. 2013).

Learning Cross-Modal Similarities via Pairs
and Preferences

For simplicity of exposition, we focus on the bi-modal case,
for examples texts and images (our framework can be ex-
tended for more than two modalities in a straightforward
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Figure 1: Graphical model representation of CSLP

manner). Subsequently, we will refer to our framework as
CSLP (abbreviated for Cross-Modal Similarity Learning via
Pairs and Preferences). The graphical model representation
of CSLP is shown in Figure 1, where the gray circles de-
note the observed data and the white circles denote the latent
variables, which we want to infer using the observed data.
As shown in Figure 1, we are given two sets of data points
from two modalities. Let {x1, . . . ,xN} ∈ RDx be a set of
N points from modality X , and {y1, . . . ,yM} ∈ RDy be a
set of M points from modality Y . Moreover, we are given
two types of cross-modal constraints: (i) pairwise constraint
matrix S of size N ×M where Sij indicates the pairwise
constraint between xi and yj . Specifically, Sij = 1 if the
two points are similar, and Sij = 0 otherwise. (ii) Triplet
constraints T = {T(i), i = 1, . . . , N} given as a set of bi-
nary matrices encoding cross-modal relative comparisons.
T

(i)
jl = 1 indicates that a modality X object xi is more simi-

lar to modality Y object yj than yl.1 Also note that, in prac-
tice, such constraints may only be available for a very small
fraction of the cross-modal pairs and the cross-modal triplets
(or, in an active learning setting, there may be a budget on
the number of constraints that can be acquired).

For each object in modality X , we associate a latent vari-
able u ∈ HK where HK = {1,−1}K is a K-dimensional
Hamming space. Similarly, we associate a latent variable
v ∈ HL for each object in modality Y . For simplicity of
exposition, in Figure 1 and elsewhere in the text, we have
shown the case of K = L, but the code lengths in dif-
ferent modalities can be the same or different, depending
on the specific application. In either case, we will infer the
appropriate code lengths adaptively from the data, taking
a nonparametric Bayesian approach (Griffiths and Ghahra-
mani 2011).

Our framework further consists of a set of latent variables
Ω for generating the constraints, and their specific form de-
pends on the likelihood functions for the constraints that we
will introduce later. As shown in Figure 1, we assume that
the probability of bit k of u (resp., v) being 1 depends on
a regression coefficient vector fk ∈ RDx applied on the raw
features x, and a positive scalar ak (resp., on a regression co-

1Although we only consider triplets consisting of one object
fromX and two objects from Y , it is straightforward to incorporate
triplets consisting of two objects from X and one object from Y .

efficient vector gk ∈ RDy applied on the raw features y, and
a positive scalar bk). We denote by U = [u1, . . . ,uN ]T ∈
HN×K the binary codes for the N objects in modality X ,
and denote by V = [v1, . . . ,vM ]T ∈ HM×K the binary
codes for theM objects in modality Y . We group the regres-
sion coefficient vectors in a column-wise fashion and repre-
sent them using two matrices F = [f1, . . . , fK ] ∈ RDx×K
and G = [g1, . . . ,gK ] ∈ RDy×K . We use vectors a and b
to denote the sets {ak}Kk=1 and {bk}Kk=1, respectively.

Data-Dependent Priors for Binary Codes
We use a data-dependent variant of the Indian Buffet Pro-
cess (IBP) (Griffiths and Ghahramani 2011) as the prior dis-
tribution on the latent binary matrices U and V (the binary
codes). The choice of this prior accomplishes two things:
(i) inferring the approrpiate code length from the data us-
ing the IBP, and (ii) enabling us to introduce the raw fea-
tures of the objects in the IBP prior distribution (Quadrianto
et al. 2013) over the binary matrices U and V; this al-
lows predicting the binary codes for out-of-sample objects
from either modality X/Y based solely on their features
xi/yj . The data-dependent prior is defined as: p(U) =∏N
i=1

∏K
k=1 Bern(Uik | Φ0,1(fTk xi + Φ−10,1(ak))), and

p(V) =
∏M
j=1

∏K
k=1 Bern(Vjk | Φ0,1(gTk yj + Φ−10,1(bk))),

where Φ0,1(·) is the cumulative density function of uni-
variate Gaussian distribution with mean 0 and variance 1,
and Φ−10,1(·) denotes the inverse function of Φ0,1(·). The
above equations essentially define a probit-model for the bi-
nary variables in U and V, such that the probabilities of
these binary variables taking a value 1 depends on the fea-
tures x and y. Without the features, the prior reduces to
the standard stick-breaking representation of the IBP (Teh,
Görür, and Ghahramani 2007). In fact, we can think of the
random variables ak and bk as the prior probabilities of
bit k of the binary code being 1 for an object of modal-
ity X and Y , respectively, in the absence of the raw fea-
tures. We use the stick-breaking representation of the IBP
to define the priors on ak and bk that can be written as
∀k = 1, . . . ,K: ak =

∏k
t=1 µt, µt ∼ Beta(αa, 1) and

bk =
∏k
t=1 νt, νt ∼ Beta(αb, 1), and impose Gaussian

priors on F and G: p(F) =
∏K
k=1N (fk | 0, σ2

f I) and
p(G) =

∏K
k=1N (gk | 0, σ2

gI) where αa, αb, σf and σg are
hyperparameters which were set to 1 for our experiments
and it worked well in practice. Alternatively, we can put hy-
perpriors on these and learn them from data.

Modeling Pairwise and Preference Constraints
For our framework, we propose three types of likelihood
functions to model the cross-modal pairwise and cross-
modal triplet constraints.
Logistic Model Likelihood Given the binary codes ui and
uj of a cross-modal pair, the logistic model defines the prob-
ability µij of this pair to be similar as: µij = σ(uTi Wvj),
where σ(x) = 1/(1 + e−x) is the logistic sigmoid func-
tion. The K × K matrix W plays the role of a weighting
matrix. The logistic model also allows the binary code sizes
of the two modalities to be different (say, K and L) using
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a rectangular weighting matrix W of size K × L. The joint
probability of the cross-modal pairwise constraint matrix S
(assuming iid constraints) is:

p (S) =
∏N

i=1

∏M

j=1
[Bern(Sij | µij)]φij , (1)

where Bern(· | µ) denotes the Bernoulli distribution with
parameter µ, φij is an indicator variable which is equal to 1
if the constraint Sij is observed and 0 otherwise, and Ω con-
sists of the other model parameters such as W. Likewise, the
joint probability of the cross-modal triplet-based constraint
matrices T = {T(i), i = 1, . . . , N} is defined as:

p (T ) =
∏N

i=1

∏M

j=1

∏M

l=1

[
Bern(T

(i)
jl | γ

(i)
jl )
]ψijl

, (2)

where γ(i)jl = µij − µil if µij − µil > 0 and γ
(i)
jl = 0

otherwise, and ψijl is an indicator variable, which is 1 if
T

(i)
jl is observed, and 0 otherwise. It is also possible to re-

place this simple form of preference with other more so-
phisticated forms such as preference based on probit and
logit models (Bonilla, Guo, and Sanner 2010; Houlsby et al.
2012). For this model, we assume positive-valued weight-
ing matrix W, and impose a half-normal prior on W:
p(W) =

∏K
k=1

∏K
k′=kHN (Wkk′ | 0, σ2

W), whereHN (x |
0, σW) =

√
2/(πσW)e−x

2/(2σ2
W). For real-valued W, we

can instead use a Gaussian prior.
Choice Model Likelihood Our choice model likelihood
function for cross-modal constraints is inspired by the prob-
abilistic choice model (Görür, Jäkel, and Rasmussen 2006).
The basic idea is to use a weighted sum of the match-
ing bits of the binary codes of a cross-modal object pair,
and use the score of the match to define the cross-modal
pairwise probabilities. Specifically, given U,V and Ω, the
joint probability of the cross-modal pairwise constraints S
can be defined similarly as in Eqn. (1) but with different
µij = 1

C1

∑K
k=1 wkI[Uik = Vjk], where C1 =

∑K
k=1 wk is

a normalization term and I[·] returns 1 if its argument is true
and 0 otherwise. Note that Ω in this case becomes a weight-
ing vector w ∈ RK+ . Likewise, the joint probability of the
cross-modal triplets is defined as in Eqn. (2) but γ(i)jl is de-

fined as γ(i)jl = 1
C̃1

∑K
k=1 wkI[Uik = Vjk](1−I[Uik = Vlk]),

and C̃1 =
∑K
k=1 wkI[Uik = Vjk](1 − I[Uik = Vlk]) +∑K

k=1 wk(1 − I[Uik = Vjk])I[Uik = Vlk]. Intuitively, we
can interpret this likelihood function as follows: for each
triplet {i, j, l}, if the binary code of object i in modality X
shares more bits with the code of object j of modality Y
than with the code of object l of modality Y , then proba-
bility of T (i)

jl being 1 will be high. For this model, we put
a Gamma prior on each entry of the weighting vector w:
p(w) =

∏K
k=1 Gam(wk | γw, θw).

Margin based Likelihood For many applications, such as
hashing based approximate similarity search (Grauman and
Fergus 2013), semantic similarities are typically defined us-
ing pairwise Hamming distances. To reflect this aspect in
a probabilistic framework like ours, we propose a margin-

based likelihood function which directly models the rela-
tionship between Hamming distance and the associated con-
straint probabilities. Specifically, given U,V and Ω, the
joint probability of the cross-modal pairwise constraints is
defined in Eqn. (1), where µij = 1

C2
e−[‖ui−vj‖H−ρ1+1]+ ,

C2 = e−[‖ui−vj‖H−ρ1+1]+ + e−[ρ2−‖ui−vj‖H+1]+ , and Ω
consists of two random variables ρ1 and ρ2 that control the
margins. [a]+ returns a if a > 0 and 0 otherwise. The joint
probability of the cross-modal triplets constraints is defined
in Eqn. (2) where γ(i)jl = e−[ρ3+‖ui−vj‖H−‖ui−vl‖H+1]+

and Ω = {ρ3} controls the relative margins. For the margin
based likelihood functions, we simply use the uniform distri-
bution as the prior of each margin variable: ρ1 ∼ Unif[0,K],
ρ2 ∼ Unif[0,K], and ρ3 ∼ Unif[0,K], where Unif[a, b] de-
notes the Uniform distribution in [a, b].

Active Sampling for Constraints
Existing methods for learning cross-modal similari-
ties (Bronstein et al. 2010; Zhen and Yeung 2012a; 2012b)
assume that the learner has no control over the constraints
it gets to see. Since not all constraints are equally informa-
tive and, moreover, since constraints are often costly to ac-
quire, we present an active sampling scheme which allows
the learner to decide which constraints to acquire. To the best
of our knowledge, this has not been done before for cross-
modal similarity learning problems.

Our goal is to select the most informative pairwise or
triplet constraints from the pool of all potential constraints.
One common principle to select the most informative con-
straints is the uncertainty principle, i.e., the most informative
constraints should be ones that the current learner is the most
uncertain about. At the same time, we wish to have a diverse
set of constraints to avoid information redundancy.

For our CSLP framework with logistic model likelihood
for the constraints,2 we can define the informativeness of
a pairwise constraint as ε(xi,yj) = ∆x(xi) + ∆y(yj) +

Π(xi,yj). We define ∆x(x) =
∑K
k=1−pk log(pk) − (1 −

pk) log(1 − pk) where pk = Efk,ak

[
Φ(fTk x + Φ−1(ak))

]
,

∆y(y) =
∑K
k=1−qk log(qk) − (1 − qk) log(1 −

qk) where qk = Egk,bk

[
Φ(gTk y + Φ−1(bk))

]
,

and Π(x,y) = −r log(r) − (1 − r) log(1 − r)
where r = Eu,v,W

[
σ(uTWv)

]
, and u and v are

binary codes for x and y, respectively. The infor-
mativeness of a triplet constraint is similarly defined:
ε̂(x,y1,y2) = ∆x(x) + ∆y(y1) + ∆y(y2) + Π̂(x,y1,y2)

where Π̂(x,y1,y2) = −t log(t) − (1 − t) log(1 − t), and
t = Eu,v1,v2,W

[
max(0, σ(uTWv1)− σ(uTWv2))

]
.

We first describe the selection criteria for the pairwise
constraints. Given a candidate set of C pairwise constraints
C = {(xi1 ,yj1), (xi2 ,yj2), . . . , (xiC ,yjC )}, we want to
select a group of P most informative pairwise constraint,
based on the uncertainty and diversity principle:

min
µ

λ

P
µTKµ− µTε, s.t. µ ∈ {0, 1}C ,µT1 = P, (3)

2Note that definitions for other likelihood functions can be derived similarly.
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where ε ∈ RC consists of information values of the C
candidate pairs, K is a C × C matrix whose (c, c′)th ele-
ment measures the similarity between pairwise constraints
c and c′, and µ ∈ {0, 1}C is an indicator vector denot-
ing which pairwise constraints are selected. The objective
function in Problem (3) has an intuitive meaning: it pro-
motes selecting constraints that have have high information
value (via the term −µTε) and, at the same time, forces
µc and µc′ to take different values (one to be 0 and the
other to be 1) if the constraints c and c′ are deemed sim-
ilar based on Kcc′ (so encouraging only one of them to
be selected). The parameter λ controls the trade-off be-
tween informativeness and redundancy. To measure the re-
dundancy, we define the (c, c′)th element of K as Kcc′ =

e
−(ϕx(xci ,xc′i )+ϕy(yci ,yc′i ))/π

2

, and DKL(p‖q) denotes the
KL divergence between two distributions p and q. p(uci)
is the posterior distribution of uci , and each of its entry
follows a Bernoulli distribution p(ucik = 1 | Φ(fTk xci +
Φ−1(ak))),∀k = 1, . . . ,K. q(vcj ) is the posterior distri-
bution of vcj , and each of its entry follows a Bernoulli
distribution q(vcjk = 1 | Φ(gTk ycj + Φ−1(bk))),∀k =
1, . . . ,K. Specifically, we have DKL(p(uci)‖p(uc′i)) =∑K
k=1

∑
b∈{1,−1}

(
ln

p(ucik=b)

p(uc′
i
k=b)

p(ucik = b)

)
. Problem (3)

is hard to solve since it is an integer program, but we
can relax it to a QP problem and solve it approximately:
minµ

λ
P µ

TKµ− µTε, s.t. µ ∈ RC ,µT1 = P .
The selection criteria for triplets is similar: for a set of Ĉ

triplets, we choose a group of P̂ triplets by solving:

min
µ

λ̂

P̂
µT K̂µ− µT ε̂, s.t.µ ∈ {0, 1}Ĉ ,µT1 = P̂ , (4)

where K̂cc′ = e
−
(
ϕx(xc1 ,xc′1

)+ϕy(yc2 ,yc′2
)+ϕy(yc3 ,yc′3

)
)
/π̂2

,
ε̂ ∈ RĈ consists of the information values of all candidate
triplets, K̂ ∈ RĈ×Ĉ measures the similarity between the
triplets, and λ̂ is a user provided parameter controlling the
trade-off between informativeness and redundancy. A relax-
ation similar to the one used for the pairwise constraints case
is used to solve this problem.

Inference
As exact inference is computationally intractable, we use
Markov Chain Monte Carlo (MCMC), combined with slice
sampling, to draw samples from posterior distribution (5).

p(U,V,F,G,a,b,Ω | S, T ,Σ)

∝ p(S)p(T )p(U)p(V)p(Ω)p(F)p(G), (5)

where we use Σ to denote all the hyperparameters.
Inferring the Code Length Since both U and V are

given the data-dependent IBP priors, the code length of
each modality can be automatically inferred from data. Bor-
rowing the basic idea of stick-breaking representation of
IBP (Teh, Görür, and Ghahramani 2007), we assume that
the sequence {ak} (resp., {bk}) is decreasing where k =
1, . . . ,K, and U (resp., V) only contains active columns
(i.e., columns that have at least a single bit equal to 1).

We first sample a slice variable s from s ∼ Unif(0, a∗),
where a∗ = min{1,mink:∃i,Uik=1 ak} is the minimal
value among the active features. Then, we sample â us-
ing slice sampling from the following distribution: p(â) ∝
eαa

∑N
i=1

1
i (1−â)

i

âαa−1(1− â)N I[0 ≤ â ≤ aK ]. If â >= s,
we add a new +1 bit for the data point being processed (by
adding a new column) to U and set the value of this bit to
-1 for all other points. Besides, we sample corresponding
variables for this new bit. Specifically, let K = K + 1, we
sample fK ,gK , and Ω from their prior distributions, respec-
tively. We continue above procedure until â < s. Also note
that in the cases when we require the binary codes to be the
same in both modalities, the code length is determined by
the IBP for the modality that has richer information and the
other modality uses the same code length (the IBP sampler
for this modality simply uses a truncation level equal to the
code length of the first modality).

Sampling U and V: We sample each element of U ac-
cording to its posterior distribution. Specifically, for the ith
point and kth bit, we sampleUik from the following distribu-
tion: Pr(Uik = 1 | rest) ∝ Pr(Uik = 1 | xi, fk, ak)× p(S |
U−ik, Uik = 1,V,Ω) × p(T | U−ik, Uik = 1,V,Ω),
where Pr(Uik = 1 | xi, fk, ak) = Φ0,1(fTk xi + Φ−10,1(ak))
and U−ik denotes all the elements in U except Uik. The
matrix V is sampled in an analogous way.

Sampling F and G: We sample fk, k = 1, . . . ,K, se-
quentially using elliptical slice sampling (Murray, Adams,
and MacKay 2010) from the following distribution: p(fk |

rest) ∝ 1
σf

e
− fTk fk

2σ2
f

N∏
i=1

Bern(Uik | Φ0,1(fTk xi + Φ−10,1(ak))).

The matrix G is sampled in an analogous way.
Sampling a and b: Let the k̂th bit be an active bit in U,

in other words, k̂ ≤ K and ∃i=1,...,N Uik̂ > 0. We sam-
ple ak̂ from the following conditional distribution: p(ak̂ |
rest) ∝ a

nk̂−1
k̂

(1 − ak̂)N−nk̂I[ak̂+1 ≤ ak̂ ≤ ak̂−1], where

nk̂ =
∑N
i=1 I[Uik̂ > 0] is the number of points with bit k̂

active. In the other hand, let the k̃th bit be an inactive bit and
we draw ak̃ from the following distribution: p(ak̃ | rest) ∝
eαa

∑N
i=1

1
i (1−ak̃)

i

aαa−1
k̃

(1 − ak̃)N I[0 ≤ ak̃ ≤ ak̃−1]. The
variables in b are sampled in an analogous way.

Sampling Ω: For the logistic model likelihood, we sam-
ple each element of W using slice sampling from the fol-
lowing distribution: p(W | rest) ∝

∏K
k=1

∏K
k′=kN (Wkk′ |

0, σ2
W)p(S)p(T ). For choice model based likelihood func-

tions, we sample each element of w via slice sampling from:
p(w | rest) ∝

∏K
k=1 Gam(wk | γw, θw)p(S)p(T ). For mar-

gin based likelihood functions, ρ1, ρ2 and ρ3 can be sampled
sequentially through slice sampling from: p(ρ1 | rest) ∝

1
K+1p(S), p(ρ2 | rest) ∝ 1

K+1p(S), and p(ρ3 | rest) ∝
1

K+1p(T ).
Out-of-sample Prediction: For new points x† ∈ X and

y† ∈ Y which do not appear in model training, the binary
codes can be obtained from the following conditional distri-
butions: Pr(u†k = 1 | fk, bk,x†) = Φ0,1(fTk x

† + Φ−10,1(ak))

and Pr(v†k = 1 | gk, bk,y†) = Φ0,1(gTk y
† + Φ−10,1(bk)).
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Related Work

The problem of learning multimodal similarities (also some-
times referred to multimodal metric learning and multi-
modal hashing in some other works) has received a signif-
icant amount of interest recently (Jia, Salzmann, and Dar-
rell 2011; Bronstein et al. 2010; Kumar and Udupa 2011;
Ou et al. 2013; Zhen and Yeung 2012a; Masci et al. 2013;
Zhai et al. 2013; Zhen and Yeung 2012b). Of these, the clos-
est in spirit are methods based on multimodal hashing or bi-
nary coding (Bronstein et al. 2010; Kumar and Udupa 2011;
Ou et al. 2013; Zhen and Yeung 2012a; Masci et al. 2013;
Zhai et al. 2013; Zhen and Yeung 2012b; Rastegari et al.
2013) where the goal is to learn binary code for objects
in each modality and use the binary codes to compare ob-
jects across modalities. However, most of these methods
work assume one-to-one correspondence or fully-paired ob-
jects (Kumar and Udupa 2011; Rastegari et al. 2013) across
different modalities, or can only leverage pairwise relation-
ships, and cannot incorporate weaker forms of supervision
such as relative preferences based on triplet constraints. An-
other limitation is that the constraints are provided in a pas-
sive manner, i.e., the learner has no control over which con-
straints it gets to see. Moreover, most of these method are
non-probabilistic without a explicit generative model of the
data and therefore cannot be used for tasks such as cross-
modal link-prediction.

Probabilistic approaches to learning multimodal similar-
ities are relatively few. The only work we are aware of in-
clude the Cross-Modal Similarity Learning (Jia, Salzmann,
and Darrell 2011) which is however limited to modeling
multinomial data (e.g., text, or images represented as bag
of visual words), and the Multimodal Latent Binary Em-
bedding (MLBE) model (Zhen and Yeung 2012b) which
can only leverage intra-modal pairwise similarities and
partially-known cross-modal pairwise constraints. More-
over, unlike our proposed framework, these models do not
learn explicit hash functions and therefore predicting the
hash codes for out-of-sample data is computationally expen-
sive (Zhai et al. 2013). Also, MLBE and all the other meth-
ods discussed above require pre-specifying the binary code
length (which is typically chosen via cross-validation). The
only hashing method which allows learning the code length
adaptively from the data was proposed recently (Quadrianto
et al. 2013), but it is limited to the unimodal setting.

Some recent works (Wang et al. 2013b; 2013a; Li et al.
2013; Quadrianto et al. 2013) have begun looking at incor-
porating triplets or other implicit forms of constraints for
learning binary codes, but only in unimodal settings. The
only other works we are aware of that includes triplet based
supervision in cross-modal settings include (Mignon, Jurie,
and others 2012; Kuang and Wong 2013). These are how-
ever based on learning real-valued low-dimensional projec-
tions, requires the length of the projection matrix to be spec-
ified, lacks a probabilistic formulation, and is limited to only
learning a projection of the data without any explicit model
for the pairwise relations between the objects (and therefore
cannot be used for cross-modal link-prediction).

Experiments
We perform experiments using the CSLP framework on two
tasks: (i) cross-modal link prediction, and (ii) cross-modal
hashing based image vs. text retrieval. We then show experi-
ments using the active sampling based variant of CSLP com-
paring with passive CSLP. For the link prediction task, we
use the AUC measure (Cortes and Mohri 2003) to evaluate
the model performance; for the cross-modal retrieval task,
we use Mean Average Precision (mAP) (Yue et al. 2007) as
the evaluation measure.

As a sanity check for our model CSLP, we conduct
an experiment on a two-modality synthetic dataset with
20 points from each modality generated using a linear
Gaussian model (Griffiths and Ghahramani 2011): xi =
Wxzi + ε and yj = Wyzj + ε, where the binary codes
zi and zj are assumed to have one of the 4 possible val-
ues z1 = [1,−1,−1,−1]T , z2 = [−1, 1,−1, 1]T , z3 =
[−1,−1, 1,−1]T , z4 = [1, 1, 1,−1]T , denoting the 4 un-
derlying classes. Using the class information, we generate
50 pairwise constraints using half of X and the whole Y;
and 100 triplet constraints using the other half of X and the
whole Y (to ensure no redundancy between pairwise and
triplet constraints). As Figure 2 shows, our model can infer
the cross-modal link probabilities accurately. On this data,
our models also recovered the correct binary code size (4).
We also provide a quantitative comparison, in terms of AUC
on link prediction, in Table 1.

(a) Ground Truth (b) Inferred

Figure 2: Similarity on Synthetic Data

Real-world Datasets In the experiments, we use three real-
world data sets, namely, Drug3, Wiki4 and Flickr5: (i) Drug
is a drug-protein interaction network representing interac-
tions between 200 drug molecules and 150 target proteins.
In addition, we also have access to features of the drugs
and the proteins. (ii) Wiki is generated from Wikipedia fea-
tured articles and consists of 2,866 image-text pairs. In each
pair, the text is an article describing some events or people
and the image is closely related to the content of the arti-
cle. (iii) Flickr consists of 186,577 image-tag pairs pruned
from the NUS data set by keeping the pairs from the largest
10 classes.
Baselines We denote by CSLP–L, CSLP–C, and CSLP–M
the three variants of our framework CLSP (without ac-
tive sampling), namely the logistic model likelihood, choice

3http://www.genome.jp/tools/dinies/help.html
4http://www.svcl.ucsd.edu/projects/cross-modal/
5http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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Table 1: AUC Comparison on Cross–Modal Link Prediction

Method Synthetic Drug Wiki Flickr
MLBE 0.5184±0.0992 0.4566± 0.1379 0.5019± 0.0130 0.4870± 0.0138

B–LFRM 0.5512± 0.0531 0.7212± 0.0306 0.5342± 0.0422 0.5964± 0.0354

Sim–B–LFRM 0.7354± 0.0250 0.7432± 0.0238 0.5512± 0.0322 0.5506± 0.0364

CSLP–L 0.8173±0.0317 0.9232± 0.0216 0.7697± 0.0068 0.7104± 0.0154

CSLP–C 0.7884±0.0294 0.9045± 0.0343 0.6218± 0.0174 0.6981± 0.0316

CSLP–M 0.7983±0.0322 0.8744± 0.0311 0.7414± 0.0197 0.6729± 0.0169

Table 2: mAP Comparison on Cross–Modal Retrieval

Methods
Wiki (Query vs. Database ) Flickr (Query vs. Database )

Image vs. Text Text vs. Image Image vs. Text Text vs. Image
CSLP–L 0.2187± 0.0141 0.2005± 0.0150 0.3887± 0.0117 0.3947± 0.0091

CSLP–C 0.2240± 0.0227 0.2590± 0.0342 0.4065± 0.0097 0.4099± 0.0090

CSLP–M 0.2257± 0.0142 0.2537± 0.0288 0.4062± 0.0071 0.4082± 0.0073

MLBE 0.1766± 0.0139 0.1634± 0.0011 0.3833± 0.0087 0.3883± 0.0051

CVH 0.2034± 0.0103 0.2063± 0.0138 0.3843± 0.0079 0.3826± 0.0027

model likelihood, and margin based likelihood, respectively.
We compare these with the several state-of-the-art cross-
modal link prediction and cross-modal hashing methods:
(i) MLBE: Multimodal latent binary embedding (Zhen and
Yeung 2012b) for cross-modal link prediction and cross-
modal retrieval; (ii) Sim–B–LFRM: Intra-modal similarity
informed bipartite latent feature relational model (Whang,
Rai, and Dhillon 2013) for the cross-modal link prediction;
(iii) CVH: Cross-view hashing (Kumar and Udupa 2011)
for the cross-modal retrieval.
Cross–Modal Link Prediction In this subsection, we con-
sider the task of cross-modal link prediction to identify if
two objects from different modalities (e.g. image and text)
should have a link between them. This is essentially a bi-
partite graph matching problem. For this task, we run the
experiments on the synthetic data (described above), drug-
protein data (to predict matching drug and protein pairs),
and Wiki and Flickr data (to predict text to image associ-
ations). Note that the baselines are not able to exploit the
triplet constraints.

In Table 1, we observe that all three variants of CSLP
achieve higher AUC values than the baselines, indicating the
advantages of using both pairwise and triplet cross-modal
constraints (in addition to the raw features of objects in each
modality) for model learning. Moreover, we observe that
CSLP–L performs better than the other two variants, i.e.,
CSLP–C and CSLP–M. The reason can be attributed to the
additional flexibility of CSLP–L in modeling the links by
using a dense weighting matrix W which can model inter-
actions between all pairs of bits in the binary codes of the
two modalities.
Cross–Modal Retrieval We next compare CSLP with a
probabilistic multi-modal hashing method, MLBE, and a
non-probabilistic multi-modal hashing method, CVH, on a
cross-modal retrieval task. Given an image (text) as a query,
the task is to find the nearest neighbors from a text (im-
age) database. To generate the observations, we randomly
select 5000 pairs and 5000 triplets on Wiki, and 1000 pairs

and 6000 triplets on Flickr. For Wiki, we use 20% data as
the query set and 80% the database set; for Flickr, 1% data
are chosen to form the query set and the remaining 99% the
database set. All the methods are trained on the same 5 ran-
dom training sets, and then applied to the same query and
database sets. For fair comparison, we train all the methods
using random initialization and report the results averaged
over 5 repeats.

In Table 2, we note that CSLP in general performs signif-
icantly better than the baselines and CSLP–C achieves the
highest mAP, on both datasets. CVH performs better than
MLBE, as is reasonable because CVH uses aligned data
whereas MLBE only uses an extremely small fraction of
pairwise constraints. The improved performance achieved
by CSLP clearly validates the advantages of taking both
pairwise and triplet constraints into account simultaneously.
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Figure 3: Comparison of active vs random selection

Active Sampling for Constraints We finally experiment
with our active sampling scheme for the informed selec-
tion of pairwise and triplet constraints. For this experiment,
we compare our active supervision selection strategy with
randomly selected constraints on the Drug dataset. Figure 3
shows the performance curves of the two strategies (both
using the logistic variant of CLSP) with increasing number
of constraint sampling iterations. Each method was initially
given 100 pairwise and 100 triplet constraints, and at each
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constraint sampling iteration, 50 pairs and 50 triplets se-
lected by each method (active and random) were added into
the training set and the models were retrained and evaluated.
As the figure shows, active sampling performs significantly
better than random sampling, validating the effectiveness of
our constraint selection mechanism.

Conclusion
We have presented a flexible probabilistic, nonparamet-
ric Bayesian framework for learning cross-modal similari-
ties using weak forms of supervision (relative preferences
and pairwise constraints) and proposed an extension of this
framework which allows active sampling to select the most
informative constraints (existing methods for cross-modal
similarity learning do not have such a mechanism). Our
framework based on learning binary codes for multimodal
data is applicable to a wide-range of applications that require
computing pairwise similarities between objects belonging
to different modalities, such as cross-modal object match-
ing, cross-modal link prediction, and cross-modal hashing
based similarity search and retrieval.
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