
Unsupervised Feature Learning
Through Divergent Discriminative Feature Accumulation

Paul A. Szerlip and Gregory Morse and Justin K. Pugh and Kenneth O. Stanley
Department of EECS (Computer Science Division)

University of Central Florida
Orlando, FL 32816

{pszerlip,jpugh,kstanley}@eecs.ucf.edu, gregorymorse07@gmail.com

Abstract

Unlike unsupervised approaches such as autoencoders that
learn to reconstruct their inputs, this paper introduces an al-
ternative approach to unsupervised feature learning called di-
vergent discriminative feature accumulation (DDFA) that in-
stead continually accumulates features that make novel dis-
criminations among the training set. Thus DDFA features are
inherently discriminative from the start even though they are
trained without knowledge of the ultimate classification prob-
lem. Interestingly, DDFA also continues to add new features
indefinitely (so it does not depend on a hidden layer size), is
not based on minimizing error, and is inherently divergent in-
stead of convergent, thereby providing a unique direction of
research for unsupervised feature learning. In this paper the
quality of its learned features is demonstrated on the MNIST
dataset, where its performance confirms that indeed DDFA is
a viable technique for learning useful features.

Introduction
The increasing realization in recent years that artificial
neural networks (ANNs) can learn many layers of fea-
tures (Bengio et al. 2007; Hinton, Osindero, and Teh 2006;
Marc’Aurelio, Boureau, and LeCun 2007; Cireşan et al.
2010) has reinvigorated the study of representation learn-
ing in ANNs (Bengio, Courville, and Vincent 2013). While
the beginning of this renaissance focused on the sequential
unsupervised training of individual layers one upon another
(Bengio et al. 2007; Hinton, Osindero, and Teh 2006), the
number of approaches and variations that have proven ef-
fective at training in such deep learning has since exploded
(Schmidhuber et al. 2011; Bengio, Courville, and Vincent
2013). This explosion has in turn raised the question of
what makes a good representation, and how it is best learned
(Bengio, Courville, and Vincent 2013). The main contribu-
tion of this paper is to advance our understanding of good
representation learning by suggesting a new principle for
obtaining useful representations that is accompanied by a
practical algorithm embodying the principle.

The feature representation obtained through learning al-
gorithms is often impacted by the nature of the training. For
example, supervised approaches such as stochastic gradient
descent (Cireşan et al. 2010) that aim to minimize the error
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in a classification problem in effect encourage the exclusive
discovery of features that help to discriminate among the
target classifications. In contrast, unsupervised approaches,
which include both generative representations such as re-
stricted Boltzmann machines (RBMs) (Hinton, Osindero,
and Teh 2006) and autoencoders that are trained to repro-
duce their inputs (Bengio et al. 2007), yield a more gen-
eral feature set that captures dimensions of variation that
may or may not be essential to the classification objec-
tive. The hope of course is that such a set would neverthe-
less be useful for classification in any case, and the pros
and cons of e.g. generative versus discriminative features
have proven both subtle and complex (Ng and Jordan 2002;
Jaakkola, Haussler, and others 1999). Nevertheless, one ben-
efit of unsupervised training is that it does not require la-
beled data to gain traction.

An important insight in this paper is that there is an un-
recognized option outside this usual unsupervised versus su-
pervised (or generative versus discriminative) dichotomy.
In particular, there is an alternative kind of discriminative
learning that is unsupervised rather than supervised. In this
proposed alternative approach, called divergent discrimina-
tive feature accumulation (DDFA), instead of searching for
features constrained by the objective of solving the discrim-
inative classification problem, a learning algorithm can in-
stead attempt to collect as many features that discriminate
strongly among training examples as possible, without re-
gard to any particular classification problem.

The approach in such unsupervised discriminative learn-
ing is thus to search continually for novel features that dis-
criminate among training examples in new ways. Interest-
ingly, unlike conventional algorithms in deep learning, such
a search is explicitly divergent (i.e. intentionally spreading
out in the space rather than aiming for a specific point or
area1) by design and therefore continues to accumulate new
features without converging. In effect, a high-scoring fea-
ture is therefore relevant to discriminating among the ex-
amples, even though the ultimate discrimination problem
is not known. A comprehensive set of such features that
discriminate among the training set in fundamental ways
is thereby suitable in principle for later supervised training

1This sense of divergence should not be confused with e.g. con-
trastive divergence (Hinton, Osindero, and Teh 2006).
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from those collected features for any particular discrimina-
tion task. This idea is intuitive in the sense that even for hu-
mans, distinctions among experiences can be learned before
we know how we will apply such distinctions.

In fact, this perspective on feature learning has the ad-
vantage over more conventional approaches in deep learn-
ing that learning does not depend on a fixed a priori number
of features. Rather, it simply continues to accumulate new
features as long as the algorithm is run. Furthermore, unlike
in other unsupervised approaches, the accumulated features
are known explicitly to be discriminative, suiting them well
to later discriminative learning. Another potentially advan-
tageous property of such a feature accumulator is its lack of
convergence (thereby avoiding the problem of local optima),
which stems from the fact that it is inherently divergent be-
cause it is not based on minimizing an error. In these ways
DDFA is uniquely flexible and autonomous.

The driving force behind the feature accumulator is the
imperative of finding novel features. Thus a well-suited al-
gorithm for implementing this idea in practice is the recent
novelty search algorithm (Lehman and Stanley 2011), which
is a divergent evolutionary algorithm that is rewarded for
moving away in the search space of candidate behaviors
(such as discriminations) from where it has already visited
to where it has not. By accumulating features that are them-
selves ANNs, novelty search in this paper enables DDFA. As
with other unsupervised pretraining approaches such as au-
toencoders, once DDFA determines that sufficient features
are collected, a classifier is trained above them for the clas-
sification task (through backpropagation in this paper). To
demonstrate the potential of DDFA to collect useful features,
it is tested in this paper by collecting single-layer features
for the MNIST digital handwriting recognition benchmark
(LeCun and Cortes 1998). Even with the consequent two-
layer shallow classifier network, its testing performance ri-
vals more conventional training techniques.

This initial proof of concept establishes the efficacy of ac-
cumulating features as a basis for representation learning.
While the one-layer discriminative features from DDFA per-
form well, DDFA can conceivably improve further through
layering (e.g. accumulating multilayer features or searching
for novel features that are built above already-discovered
features) and convolution (LeCun and Bengio 1995), just
like other deep learning algorithms. Most importantly, based
on the novel representational principle that discrimina-
tors make good features for classification problems, DDFA
opens up a new class of learning approaches.

Background
This section reviews the two algorithms, novelty search and
HyperNEAT, that underpin the DDFA approach.

Novelty Search
In just the last year, the idea that an evolutionary approach
can help to collect a set of useful features has begun to at-
tract significant interest. Researchers have proposed both to
evolve a feature set all at once that is rewarded in aggregate
for its diversity (Koutnı́k, Schmidhuber, and Gomez 2014)

and to evolve individual features that are collected for their
contribution to ultimate classification performance (Auer-
bach, Fernando, and Floreano 2014; Knittel and Blair 2014).
The novel direction in this paper is to collect individual fea-
tures that are retained for their diversity rather than for their
contribution to performance at a given problem, which also
makes the proposed approach unsupervised.

The problem of collecting novel instances of a class is
different from the more familiar problem of minimizing er-
ror. While error minimization aims at converging towards
minima in the search space, collecting novelty requires di-
verging away from past discoveries that continue to ac-
cumulate. This divergent process is thus well-suited to a
population-based approach that accumulates and remembers
novel discoveries to help push the search continually to even
more novelty as it progresses. The novelty search algorithm
(Lehman and Stanley 2011) implements such a process in
practice through an evolutionary approach.

The idea in novelty search is to reward candidates (by in-
creasing their probability of reproduction) who are behav-
iorally novel. If the candidates are ANNs as in the present
study, then the word “behaviorally” becomes critical be-
cause it refers to what the discovered ANNs actually do (e.g.
how they discriminate) as opposed to just their underlying
genetic representations (i.e. genomes), which may or may
not do anything interesting. Thus discovering novel behav-
iors requires search (as opposed to just enumerating random
sets of genes), thereby instantiating a nontrivial alternative
to the traditional objective gradient.

This point is particularly important in the context of deep
learning, where researchers have commented on the poten-
tial long-term limitations of optimization gradients and the
need for a broader and less convergent approaches for learn-
ing representations. For example, when discussing the future
of representation learning, Bengio (2013) notes:

The basic idea is that humans (and current learn-
ing algorithms) are limited to “local descent” optimiza-
tion methods, that make small changes in the parame-
ter values with the effect of reducing the expected loss
in average. This is clearly prone to the presence of lo-
cal minima, while a more global search (in the spirit of
both genetic and cultural evolution) could potentially
reduce this difficulty.

Novelty search (Lehman and Stanley 2011) can be viewed
as an embodiment of such a “genetic evolution” that is suited
to accumulating discoveries free from the pitfalls of “local
descent.” In fact, while novelty search was originally shown
sometimes to find the objective of an optimization problem
more effectively than objective-based optimization (Lehman
and Stanley 2011), Cully and Mouret (2013) recently raised
the intriguing notion of novelty search as a repertoire col-
lector. That is, instead of searching for a solution to a prob-
lem, novelty search can collect a set of novel skills (each
a point in the search space) intended for later aggregation
by a higher-level mechanism. This repertoire-collecting idea
aligns elegantly with the problem of accumulating features
for deep learning, wherein each feature detector is like a
“skill” within the repertoire of a classifier.
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In practice, novelty search maintains an archive of pre-
viously novel discoveries as part of the algorithm. Future
candidates are then compared to the archive to determine
whether they too are novel. A random sampling of candi-
dates is entered into the archive, which implies that more
frequently-visited areas will be more densely covered. Intu-
itively, if the average distance to the nearest neighbors of a
given behavior b is large then it is in a sparse area; it is in a
dense region if the average distance is small. The sparseness
ρ at point b is given by

ρ(x) =
1

k

k∑
i=0

dist(b, µi), (1)

where µi is the ith-nearest neighbor of b with respect to
the distance metric dist, which is a domain-dependent mea-
sure of behavioral difference between two individuals in the
search space. The nearest neighbors calculation must take
into consideration individuals from the current population
and from the permanent archive of novel individuals. Can-
didates from more sparse regions of this behavioral search
space then receive higher novelty scores, which lead to a
higher chance of reproduction. Note that it is not known
a priori how to enter areas of low density just as it is not
known a priori how to construct a solution close to the ob-
jective. Thus, moving through the space of novel behaviors
requires exploration.

Novelty search in effect runs as a regular evolutionary al-
gorithm wherein novelty replaces fitness as the criterion for
selection, and an expanding archive of past novel discover-
ies is maintained. This simple idea will empower DDFA in
this paper to accumulate a collection of novel features.

HyperNEAT
The term for an evolutionary search for ANNs is neuroevo-
lution (Stanley and Miikkulainen 2002; Floreano, Dürr, and
Mattiussi 2008). This section is designed to introduce the
particular neuroevolution algorithm (called HyperNEAT)
that is combined with novelty search to search for features
in this paper. Because neuroevolution is an independent field
that may be unfamiliar to many in deep learning, this sec-
tion is written to emphasize the main ideas that make it
appealing for the purpose of feature learning, without in-
cluding details that are unnecessary to understand the opera-
tion of the proposed DDFA algorithm. The complete details
of HyperNEAT can be found in its primary sources (Stan-
ley, D’Ambrosio, and Gauci 2009; Gauci and Stanley 2010;
2008; Verbancsics and Stanley 2010).

In a domain like visual recognition, the pattern of weights
in useful features can be expected to exhibit a degree of con-
tiguity and perhaps regularity. For example, it is unlikely
that an entirely random pattern of largely unconnected pixels
corresponds to a useful or interesting feature. It has accord-
ingly long been recognized in neuroevolution that entirely
random perturbations of weight patterns, which are likely
to emerge for example from random mutations, are unlikely
to maintain contiguity or regularity. While stochastic gra-
dient descent (SGD) algorithms at least justify their trajec-
tory through the search space through descent, a completely

(a) Original Weight
Pattern

(b) HyperNEAT
Mutation

(c) Uniform
Mutation

Figure 1: Systematic Deformation in HyperNEAT-style
Mutation. Each image depicts the pattern of weights pro-
jecting from a single 28 × 28 input field to a single output
node. The weight of a hypothetical feature (a) exhibits con-
tiguity and some symmetry. The HyperNEAT style of muta-
tion (b) perturbs the pattern of weights while still preserving
the geometric regularities of the original feature. In contrast,
simply randomly mutating weights with uniform probability
(c) leads to an incoherent corruption of the original feature.

random perturbation of weights is arguably less principled
and therefore perhaps less effective. Nevertheless, SGD still
suffers to some extent from the same problem that even a
step that reduces error may not maintain contiguity or reg-
ularity in the feature geometry. Neuroevolution algorithms
have responded to this concern with a class of representa-
tions called indirect encodings (Stanley and Miikkulainen
2003), wherein the weight pattern is generated by an evolv-
ing genetic encoding that is biased towards contiguity and
regularity by design. That way, when a mutation is applied
to a feature, the feature deforms in a systematic though still
randomized fashion (figure 1).

HyperNEAT, which stands for Hypercube-based Neuro-
Evolution of Augmenting Topologies (Stanley, D’Ambrosio,
and Gauci 2009; Gauci and Stanley 2010; 2008; Verbanc-
sics and Stanley 2010) is a contemporary neuroevolution al-
gorithm based on such an indirect encoding. In short, Hy-
perNEAT evolves an encoding network called a compo-
sitional pattern producing network (CPPN; Stanley 2007)
that describes the pattern of connectivity within the ANN
it encodes. Therefore, mutations in HyperNEAT happen to
the CPPN, which then transfers their effects to the en-
coded ANN. In this way the CPPN is like DNA, which
transfers the effects of its own mutations to the structures
it encodes, such as the brain. Because the CPPN encod-
ing is designed to describe patterns of weights across the
geometry of the encoded network, the weights in Hyper-
NEAT ANNs tend to deform in contiguity-preserving and
regularity-preserving ways (as seen in figure 1), thereby pro-
viding a useful bias (Stanley, D’Ambrosio, and Gauci 2009;
Gauci and Stanley 2010). Furthermore, CPPNs in Hyper-
NEAT grow over evolution (i.e. their structure is augmented
over learning), which means that the pattern of weights in
the ANN they describe (which is fixed in size) can become
more intricate and complex over time.

An important observation is that HyperNEAT’s tendency
to preserve geometric properties in its weights means that
it is not invariant to permutations in the input vector. In ef-
fect (in e.g. the case of MNIST) it is exploiting the known
two-dimensional geometry of the problem. However, at the
same time, while it does exploit geometry, its use in this pa-
per is not convolutional either: its input field is never bro-
ken into receptive fields and is rather projected in whole di-
rectly (without intervening layers) to a single-feature output
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node. Thus the powerful advantage of convolution for visual
problems is not available in this investigation, making the
problem more challenging. As a consequence, the DDFA
implementation in this paper does not fit neatly into the
permutation-invariant-or-not dichotomy, and may be consid-
ered somewhere closer to typical permutation-invariant sce-
narios. Nevertheless, while not investigated in this study, it
may be interesting in the future to compare the performance
of DDFA with and without HyperNEAT to further isolate the
advantage provided by indirect encoding.

This overview of HyperNEAT is left brief because its
other details (which are widely disseminated in the venues
above) are not essential to the main idea in this paper, which
is to accumulate feature detectors through novelty search.

Approach: DDFA
Unsupervised pretraining in deep learning has historically
focused on approaches such as autoencoders and RBMs
(Bengio et al. 2007; Hinton, Osindero, and Teh 2006) that
attempt to reconstruct training examples by first translating
them into a basis of features different from the inputs, and
then from those features regenerating the inputs. Of course,
one potential problem with this approach is that there is
no assurance that the learned features actually align with
any particular classification or discrimination problem for
which they might be used in the future. Yet this conventional
approach to learning features also raises some interesting
deeper questions. For example, is there any other way to ex-
tract meaningful features and thereby learn representations
from a set of examples without explicit supervision?

There are some well-known simple alternatives, though
they are not usually characterized as feature-learning algo-
rithms. For example clustering algorithms such as k-means
or Gaussian mixture models in effect extract structure from
data that can then assist in classification; in fact at least one
study has shown that such clustering algorithms can yield
features as effective or more so for classification than au-
toencoders or RBMs (Coates, Ng, and Lee 2011). This re-
sult highlights that reconstruction is not the only effective
incentive for extracting useful structure from the world.

The approach introduced here goes beyond simple clus-
tering by emphasizing the general ability to learn diverse
distinctions. That is, while one can learn how to describe the
world, one can also learn how different aspects of the world
relate to each other. Importantly, there is no single “correct”
view of such relations. Rather, a rich set of learned relation-
ships can support drawing important distinctions later. For
example, in one view palm trees and “regular” trees share
properties that distinguish them from other plants. However,
in another view, palm trees are in fact distinct from regu-
lar trees. Both such views can be useful in understanding
nature, and one can hold both simultaneously with no con-
tradiction. When an appropriate question comes up, such as
which plants are tall and decorative, the feature tall becomes
available because it was learned to help make such general
distinctions about the world in the past.

The idea in DDFA is to continually accumulate such
distinctions systematically through novelty search, thereby
building an increasingly rich repertoire of features that help

divide and relate observations of the world. Why should
accumulating a diverse set of features provide an advan-
tage over optimization-based approaches? One reason is that
searching for diversity is not susceptible in the same way
to local optima: while e.g. an autoencoder or direct opti-
mization on a classifier can converge to a local optimum, in
contrast DDFA features are independently rewarded for di-
verging from other features, preventing such premature con-
vergence. In addition, in principle, to discriminate one class
from another a classifier must possess knowledge of every
feature that might distinguish the two classes; DDFA is ex-
plicitly seeking all such possible distinctions while the ob-
jective of learning features that reconstruct the input in e.g.
an autoencoder is not. Intuitively, DDFA can be interpreted
as a formalization of divergent thinking, wherein the thinker
achieves a novel insight by exploring many perspectives si-
multaneously and without prejudice.

More formally, suppose there are n training examples
{x(1), ..., x(n)}; whether or not they are labeled will not mat-
ter because feature learning will be unsupervised. Suppose
also that any single feature detector hi (i.e. a single hidden
node that detects a particular feature) outputs a real number
whose intensity represents the degree to which that feature is
present in the input. It follows that hi will assign a real num-
ber h(t)i to every example x(t) depending on the degree to
which x(t) contains the feature of interest for hi. The output
of hi for all features x(t) where t = 1, . . . , n thereby forms
a vector {h(1)i , . . . , h

(n)
i } that can be interpreted as the sig-

nature of feature detector hi across the entire training set. In
effect the aim is to continually discover new such signatures.

This problem of continually discovering novel signatures
is naturally captured by novelty search, which can be set up
explicitly to evolve feature detectors hi, each of which takes
a training example as input and returns a single output. The
signature {h(1)i , ..., h

(n)
i } of hi over all training examples is

then its behavior characterization for novelty search. The
novelty of the signature is then measured by comparing it
to the k-nearest signatures in the novelty archive, follow-
ing equation 1. Novelty search then dictates that more novel
features are more likely to reproduce, which means that gra-
dients of novel signatures will be followed in parallel by the
evolving population. Those features whose sparseness ρ (i.e.
novelty) exceeds a minimum threshold ρmin are stored in the
growing novel feature collection for later classifier training.
In summary, DDFA continually collects features that clas-
sify the examples in the training set differently from features
that came before, thereby accumulating increasingly diverse
means for distinguishing training examples from each other.

A likely source of confusion is the question of whether
DDFA is a kind of exhaustive search over signatures, which
would not tend to discover useful features in a reasonable
runtime. After all, the number of theoretically possible dis-
tinctions is exponential in the number of training examples.
However, a critical facet of novelty-based searches that are
combined with HyperNEAT-based neuroevolution is that the
complexity of features (and hence distinctions) tends to in-
crease over the run (Lehman and Stanley 2011). As a result,
the initial features discovered encompass simple principles

2982



(e.g. is the left side of the image dark?) that gradually in-
crease in complexity. For this reason, the most arbitrary and
incoherent features (e.g. are there 17 particular dots at spe-
cific non-contiguous coordinates in the image?) are possible
to discover only late in the search. Furthermore, because the
novelty signature is measured over the training set, features
that make broad separations relevant to the training set it-
self are more likely to be discovered early. In effect, over
the course of DDFA, the feature discoveries increasingly
shift from simple principles to intricate minutia. Somewhere
along this road are likely diminishing returns, well before
all possible signatures are discovered. Empirical results re-
ported here support this point.

Interestingly, because DDFA does not depend on the min-
imization of error, in principle it can continue to collect fea-
tures virtually indefinitely, but in practice at some point its
features are fed into a classifier that is trained from the col-
lected discriminative features.

Experiment
The key question addressed in this paper is whether a di-
vergent discriminative feature accumulator can learn useful
features, which means they should aid in effective gener-
alization on the test set. If that is possible, the implication
is that DDFA is a viable alternative to other kinds of unsu-
pervised pretraining. To investigate this question DDFA is
trained and tested on the MNIST handwritten digit recog-
nition dataset (LeCun and Cortes 1998), which consists of
60,000 training images and 10,000 test images. Therefore,
the signature of each candidate feature discovered by DDFA
during training is a vector of 60,000 real values.

Because the structure of networks produced by Hyper-
NEAT can include as many hidden layers as the user
chooses, the question arises how many hidden layers should
be allowed in individual features hi learned by Hyper-
NEAT. This consideration is substantive because in princi-
ple DDFA can learn arbitrarily-deep individual features all
at once, which is unlike e.g. the layer-by-layer training of
a deep stack of autoencoders. However, the explicit choice
was made in this introductory experiment to limit DDFA to
single-layer features (i.e. without hidden nodes) to disentan-
gle the key question of whether the DDFA process repre-
sents a useful principle from other questions of represen-
tation such as the implications of greater depth. Therefore,
feature quality is addressed straightforwardly in this study
by observing the quality of classifier produced based only
on single-layer DDFA features. As a result, the final classi-
fier ANN has just two layers: the layer of collected features
and the ten-unit output layer for classifying MNIST digits.

The single-layer DDFA approach with novelty search and
HyperNEAT is difficult to align directly with common deep
learning approaches in part because of its lack of permu-
tation invariance even though it is not convolutional in any
sense (thereby lacking the representational power of such
networks), and its lack of depth in this initial test. Thus to
get a fair sense of whether DDFA learns useful features it is
most illuminating to contrast it with the leading result on an
equivalently shallow two-layer architecture (which are rare
in recent years) that similarly avoided special preprocessing

like elastic distortions or deskewing. In particular, Simard,
Steinkraus, and Platt (2003) obtained one of the best such
results of 1.6% test error performance. Thus a significant
improvement on that result would suggest that DDFA gener-
ates useful features that help to stretch the capacity of such
a shallow network to generalize. DDFA’s further ability to
approach the performance of conventional vanilla deep net-
works, such as the original 1.2% result from Hinton, Osin-
dero, and Teh (2006) on a four-layer network pretrained by
a RBM, would hint at DDFA’s potential utility in the future
for pretraining deeper networks.

During the course of evolution, features are selected
for reproduction based on their signature’s novelty score
(sparseness ρ) calculated as the sum of the distances to the k-
nearest neighbors (k = 20), where neighbors include other
members of the population as well as the historical novelty
archive. At the end of each generation, each individual in the
population (size = 100) has a 1% chance of being added to
the novelty archive, resulting in an average of 1 individual
added to the novelty archive on each generation. Separately,
a list of individuals called the feature list is maintained. At
the end of each generation, each member of the population is
scored against the current feature list by finding the distance
to the nearest neighbor (k = 1), where neighbors are mem-
bers of the feature list. Those individuals that score above
a threshold ρmin = 2,000 are added to the feature list. In
effect, the feature list is constructed in such a way that all
collected features have signatures that differ by at least ρmin
from all others in the collection. This threshold-based collec-
tion process protects against collecting redundant features.
A simple variant of HyperNEAT called HyperNEAT-LEO
(Verbancsics and Stanley 2011) (which leads to less con-
nectivity) was the main neuroevolution engine. The Hyper-
NEAT setup and parameters can be easily reproduced in full
because they are simply the default parameters of the Sharp-
NEAT 2.0 publicly-available package (Green 2003–2014).

To observe the effect of collecting different numbers of
features, DDFA was run separately until both 1,500 and
3,000 features were collected. After collection concludes, a
set of ten classification nodes is added on top of the collected
features, and simple backpropagation training commences.
The training and validation procedure mirrors that followed
by Hinton, Osindero, and Teh (2006): first training is run on
50,000 examples for 50 epochs to find the network that per-
forms best on a 10,000-example validation set. Then train-
ing shifts to the full 60,000-example set, which is trained
until it reaches the same training error as in the best vali-
dation epoch. The resulting network is finally tested on the
full 10,000-example test set. This whole procedure is similar
to how autoencoders are trained before gradient descent in
deep learning (Bengio et al. 2007).

Results
The main results are shown in Table 1. DDFA was able to
achieve test errors of 1.42% and 1.25% from collections
of 1,500 and 3,000 features, respectively, which are both
well below the 1.6% error of the similar shallow network
trained without preprocessing from Simard, Steinkraus, and
Platt (2003). In fact, the result for the 3,000-feature network
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Features DDFA Test Error Random CPPNs Control Random Weights Control
1,500 1.42% 1.63% 2.20%
3,000 1.25% 1.61% 2.00%

Table 1: MNIST Testing Error Rates of DDFA and Controls.

Figure 2: Example Collected Features. Each square is a
weight pattern for an actual feature discovered by DDFA
in which white is negative and black is positive. As these
examples show, features range from simple line orientation
detectors reminiscent of those found in the lower levels of
conventional deep networks (towards left) to more complex
shapes (towards right).

even approaches the 1.2% error of the significantly deeper
network of Hinton, Osindero, and Teh (2006), showing that
shallow networks can generalize surprisingly well by finding
sufficiently high-quality feature sets, even despite a lack of
exposure to distortions during training. It also appears that
more collected features lead to better generalization, at least
at these sizes. It took 338 and 676 generations of feature col-
lection to obtain the 1,500 and 3,000 features, respectively.
Collecting 3,000 features took about 36 hours of computa-
tion on 12 3.0 GHz cores.

Figure 2 shows a typical set of features collected by
DDFA. Interestingly, unlike the bottom layer of deep learn-
ing networks that typically exhibit various line-orientation
detectors, DDFA also collects more complex features be-
cause newer features of increasing complexity evolve from
older features.

To rule out the possibility that the reason for the testing
performance is simply the HyperNEAT-based encoding of
features, a random CPPNs control was also run. It fol-
lows an identical procedure for training and testing, except
that novelty scores and adding to the feature list during the
feature accumulation phase are decided randomly, which
means the final collection in effect contained random fea-
tures with a range of CPPN complexity similar to the nor-
mal run. To further investigate the value of the HyperNEAT
representation, an additional random weights control was
tested whose weights were assigned from a uniform random
distribution, bypassing HyperNEAT entirely. As the results
in Table 1 show, the CPPN encoding in HyperNEAT pro-
vides a surprisingly good basis for training even when the
features are entirely randomly-generated. However, they are
still inferior to the features collected by normal DDFA. As
shown in the last column, without HyperNEAT, testing per-
formance with a collection of random features is unsurpris-
ingly poor. In sum these controls show that the pretraining in
DDFA is essential to priming the later classifier for the best
possible performance.

Discussion and Future Work
The results suggest that DDFA can indeed collect useful fea-
tures and thereby serve as an alternative unsupervised fea-

ture learner. While it may ultimately lead to better training
performance in some cutting-edge problems, future work
with more layers and on larger problems is clearly necessary
to investigate its full potential for exceeding top results.

However, it is important to recognize that significantly
more than performance is at stake in the dissemination of
alternative unsupervised training techniques based on new
principles. Deep learning faces several fundamental chal-
lenges that are not only about testing performance. For ex-
ample, recent surprising results from Szegedy et al. (2013)
show that very small yet anomalous perturbations of training
images that are imperceptible to the human eye can fool sev-
eral different kinds of deep networks that nevertheless omi-
nously score well on the test set. The implications of these
anomalies are not yet understood. At the same time, as Ben-
gio (2013) points out, local descent on its own will not ulti-
mately be enough to tackle the most challenging problems,
suggesting the need for radical new kinds of optimization
that are more global. These kinds of considerations suggest
that simply scoring well on a test set in the short run may
not necessarily foreshadow continuing success for the field
in the long run, highlighting the need for new approaches.

By showing that unsupervised discriminative learning can
be effective, DDFA brings several intriguing corollaries.
Among those, it is possible to conceive training methods
that act as continual feature accumulators that do not re-
quire a fixed “hidden layer size.” Furthermore, it is possi-
ble to learn useful features without any kind of error mini-
mization (which is even used in conventional unsupervised
techniques). Relatedly, an interesting question is whether
anomalous results are sometimes a side effect of the very
idea that all useful knowledge ultimately must come from
minimizing error. The divergent dynamics of novelty search
also mean that the search is inherently more global than lo-
cal descent for the very reason that it is continually diverg-
ing, thereby offering a hint of how more expansive feature
sets can be collected. Thus, in addition to the many possi-
bilities for training multilayer deep features in DDFA, an-
other important path for future work is to investigate the
long-term implications of these more subtle differences from
conventional techniques, and to determine whether similar
such unique properties can be introduced to deep learning
through non-evolutionary techniques that also follow gradi-
ents of novelty instead of error.
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Schmidhuber, J.; Cireşan, D.; Meier, U.; Masci, J.; and
Graves, A. 2011. On fast deep nets for agi vision. In The
Fourth Conference on Artificial General Intelligence (AGI),
243–246. New York, NY: Springer.
Simard, P.; Steinkraus, D.; and Platt, J. C. 2003. Best
practices for convolutional neural networks applied to visual
document analysis. In International Conference on Doc-
ument Analysis and Recogntion (ICDAR), volume 3, 958–
962.
Stanley, K. O., and Miikkulainen, R. 2002. Evolving neu-
ral networks through augmenting topologies. Evolutionary
Computation 10:99–127.
Stanley, K. O., and Miikkulainen, R. 2003. A taxonomy for
artificial embryogeny. Artificial Life 9(2):93–130.
Stanley, K. O.; D’Ambrosio, D. B.; and Gauci, J. 2009. A
hypercube-based indirect encoding for evolving large-scale
neural networks. Artificial Life 15(2):185–212.
Stanley, K. O. 2007. Compositional pattern producing net-
works: A novel abstraction of development. Genetic Pro-
gramming and Evolvable Machines Special Issue on Devel-
opmental Systems 8(2):131–162.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I. J.; and Fergus, R. 2013. Intriguing prop-
erties of neural networks. CoRR abs/1312.6199.
Verbancsics, P., and Stanley, K. O. 2010. Evolving static
representations for task transfer. Journal of Machine Learn-
ing Research (JMLR) 11:1737–1769.
Verbancsics, P., and Stanley, K. O. 2011. Constraining
connectivity to encourage modularity in HyperNEAT. In
GECCO ’11: Proceedings of the 13th annual conference on
Genetic and evolutionary computation, 1483–1490. Dublin,
Ireland: ACM.

2985




