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Abstract

Current algorithms for the standard multi-armed bandit prob-
lem have good empirical performance and optimal regret
bounds. However, real-world problems often differ from the
standard formulation in several ways. First, feedback may
be delayed instead of arriving immediately. Second, the
real world often contains structure which suggests heuris-
tics, which we wish to incorporate while retaining strong
theoretical guarantees. Third, we may wish to make use of
an arbitrary prior dataset without negatively impacting per-
formance. Fourth, we may wish to efficiently evaluate al-
gorithms using a previously collected dataset. Surprisingly,
these seemingly-disparate problems can be addressed using
algorithms inspired by a recently-developed queueing tech-
nique. We present the Stochastic Delayed Bandits (SDB)
algorithm as a solution to these four problems, which takes
black-box bandit algorithms (including heuristic approaches)
as input while achieving good theoretical guarantees. We
present empirical results from both synthetic simulations and
real-world data drawn from an educational game. Our re-
sults show that SDB outperforms state-of-the-art approaches
to handling delay, heuristics, prior data, and evaluation.

Introduction
A key part of AI systems is the ability to make decisions
under uncertainty. Multi-armed bandits (Thompson 1933)
are a common framework for deciding between a discrete
number of choices with uncertain payoffs. For example, we
might wish to select the best ad to show on a webpage to
maximize revenue, or we may have several different edu-
cational strategies and we want to select the one that max-
imizes learning. However, we do not want to decouple ex-
ploration and exploitation: we want to use the feedback we
get from pulling one arm to inform the next pull.

The standard bandit problem has been well studied, re-
sulting in algorithms with near-optimal performance both in
theory (Auer, Cesa-Bianchi, and Fischer 2002) and empiri-
cally (Vermorel and Mohri 2005). However, most real-world
problems do not match the bandit framework exactly. One
difference is delay: if we present a problem to a student,
other students who we need to interact with may arrive be-
fore the original student has finished. Also, when we have
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distributed systems with thousands of incoming users, real-
time policy updates may be infeasible; instead, one typically
launches a fixed (possibly stochastic) policy for a batch of
users, updating it only after a period of time. These related
problems, delayed feedback and batch updating, pose chal-
lenges for typical bandit algorithms theoretically (Desautels,
Krause, and Burdick 2012) and empirically (Chapelle and Li
2011). Although stochastic algorithms perform best empiri-
cally in the face of delay (Chapelle and Li 2011), determinis-
tic algorithms have the best theoretical guarantees (Joulani,
Gyorgy, and Szepesvari 2013).

Second, we may know heuristic algorithms that do not
possess good theoretical guarantees, but tend to perform
well. For example, encouraging an algorithm to be more
exploitative often results in good short-term performance
(Chapelle and Li 2011), but may cause it to eventually settle
on a sub-optimal arm. Or, we can make a structural assump-
tion that similar arms share information which enables good
performance if this assumption is true (Scott 2010), but if
false results in poor performance. Ideally, we could incorpo-
rate a heuristic to help improve performance while retaining
strong theoretical guarantees.

Third, we may have a prior data set consisting of informa-
tion from a subset of arms, such as a website which decides
to add new ads to help improve revenue. We want to make
use of the old ad data without being overly biased by it, since
the data can be drawn from an arbitrary arm distribution and
thus possibly hurt performance. Ideally, we want a method
that guarantees good black-box algorithms will perform well
(or even better) when leveraging a prior dataset.

Finally, if we want to compare different bandit algorithms
(and associated parameter settings) on a real application,
running them online is often prohibitively expensive, espe-
cially when running an algorithm requires interacting with
people. One could build a simulator, possibly using col-
lected data, but simulators will often lack strong guarantees
on their estimation quality. A preferred approach is data-
driven offline evaluation, especially if it has strong theoreti-
cal guarantees such as unbiasedness. However, previously-
proposed unbiased estimators need to know the original
sampling policy (Li et al. 2011; Dudı́k et al. 2012) and tend
to be sample-inefficient. We would prefer a more efficient,
theoretically sound estimator that does not need to know the
original sampling distribution.
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In this paper, we present solutions to these four problems,
all of which are based on the queue method. The queue
method was inspired by the recent work of Joulani et al.
2013, and is conceptually simple: instead of allowing our
black-box bandit algorithm to actually pull from arm i in
the true environment, we draw a reward from a queue as-
sociated with i. This allows us to place arbitrary samples
in the queues while ensuring that the black-box algorithm
behaves as it would if it was actually pulling from the true
environment. In this work, we show how this method can
be used to produce good solutions to four problems. First,
we present Stochastic Delayed Bandits (SDB), an algorithm
that improves over QPM-D by taking better advantage of
stochastic algorithms in the face of delay. Next, we show
how one can use SDB to take advantage of heuristics while
retaining strong theoretical guarantees. We also show how
SDB can be robust to prior data. Last, we present a con-
ditionally unbiased queue-based estimator. Our estimator
does not require any knowledge of data collection policy,
and allows us to evaluate algorithms for many more pulls
compared to previously-proposed unbiased estimators. In
addition to theoretical analysis, we demonstrate good em-
pirical performance on both synthetic simulations and real
world data drawn from thousands of students playing an ed-
ucational game.

Background

We consider stochastic multi-armed bandit problems, in
which there are a set of N arms labeled as integers i ∈
{1, . . . , N}, each of which has an unknown reward distribu-
tion with mean µi. In the standard online (i.e. non-delayed)
problem formulation, at each timestep t ∈ {1, . . . , T} the
agent pulls arm i ∈ {1, . . . , N} and receives a reward rt
drawn iid from arm i’s reward distribution. The goal of
the agent is to maximize its expected reward, or equiva-
lently minimize its expected cumulative regret E [R(T )] =∑N

i=1 ∆iLi,T , where ∆i = (maxj µj)− µi and Li,T is the
number of times the algorithm has played arm i at time T .

We additionally consider versions of the problem with
some delay: the reward for a pull at time t becomes available
to the algorithm only at some time t′ > t. We assume there
is some unknown, arbitrary process which generates delay
times, but similar to Joulani et al. 2013 we assume the delay
is bounded by some unknown maximum τmax.

We want to draw a distinction between online updating
and batch updating in the presence of delay. In the online
updating case, the algorithm can explicitly control which
arm it pulls at every time t, even if it receives no feedback
at time t. In the batch updating case, the algorithm must
specify a single distribution over arm pulls to be run for an
entire batch of pulls, and can only update it once the batch is
complete. Batch updating makes more sense for distributed
systems where deploying new policies is challenging to per-
form online (but can be done every hour or night). To sim-
plify the analysis we assume that we observe the rewards of
all arms pulled during the batch once the batch completes;
thus the maximum delay, τmax, is equal to the maximum

batch size1. We again assume this quantity is unknown.

Stochastic Delayed Bandits
One central question underlies our four problems: how can
we give arbitrary data to an arbitrary bandit algorithm BASE
such that BASE behaves exactly as it would if it were run
online? Such a procedure would allow us to feed delayed
samples, prior datasets, and samples collected by a heuristic
to BASE without impacting its behavior, thus retaining the-
oretical guarantees. To solve this problem efficiently, we
must heavily rely on the stochastic assumption: each re-
ward from arm i is drawn iid. As observed by Joulani et
al. 2013, this assumption allows us to put collected rewards
into queues for each arm. When BASE selects an arm I we
simply draw an item from the queue I , allowing BASE to
behave as it would if it pulled arm I in the true environment.
This method defines approaches we call queue-based bandit
algorithms (see Algorithm 1).

However, the more challenging question is how to sample
to put items in the queues. If we want to guarantee good re-
gret with respect to the BASE algorithm, this sampling can-
not be truly arbitrary; instead, the behavior of BASE must
influence the sampling distribution. In the online case, the
obvious solution is to add a sample to a queue as soon as
BASE wishes to pull an arm with an empty queue, but it
is more challenging to determine what to do when rewards
are returned with some delay. Joulani et al. 2013 addressed
this problem with their QPM-D meta-algorithm, which con-
tinues to put items in the requested empty queue until they
receive at least one reward for that arm (namely Algorithm
1 with GETSAMPLINGDIST being qI = 1; qi6=I = 0).
They proved that QPM-D achieves the best-known bound
on stochastic bandit regret under delay.

Although QPM-D has a good regret bound, as we will see
in our experiments, its empirical performance is somewhat
limited. This is mostly due to the fact that it is a determin-
istic algorithm, while algorithms producing stochastic arm
policies have been shown to perform much better in practice
when delay is present (Chapelle and Li 2011), since they
make better use of the time between observations. For ex-
ample, consider a batch update setting with a very long ini-
tial batch: a stochastic policy can get information about all
arms, while a deterministic policy uses the entire batch to
learn about just one arm. And, since the sampling procedure
is to some extent decoupled from the behavior of BASE, one
would like to incorporate heuristics to better guide the sam-
pling procedure while retaining a strong regret bound.

We present a novel meta-algorithm, Stochastic Delayed
Bandits (SDB) (Algorithm 2), which takes better advantage
of stochasticity and heuristics to improve performance in the
presence of delay. The basic idea is that in addition to a
(possibly stochastic) bandit algorithm BASE, we also take as
input an arbitrary (possibly stochastic) algorithm HEURIS-
TIC. SDB tries to follow the probability distribution speci-
fied by the heuristic algorithm, but with the constraint that

1Lemma 1 in the appendix (available at
http://grail.cs.washington.edu/projects/bandit) addresses the
case where this assumption is relaxed.
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the queues do not get too large. Specifically, we keep an es-
timate B of τmax, and try to prevent any queue from being
larger than B. If a queue for arm i approaches size B, we
only allow the algorithm to assign a small amount of prob-
ability to arm i, and assign zero probability if it is over B.
However, if all queues are small compared to B we allow
HEURISTIC to control the sampling distribution. Intuitively,
this approach keeps the queues small; this is desirable be-
cause if the queues grow too large there could be a large
gap between our current performance and that of BASE run
online. We prove a regret bound on SDB within a constant
factor of that of QPM-D, and in our experiments we will see
that it performs much better in practice.

Algorithm 1 General Queue-Based Bandit Algorithm

1: Let α ∈ (0, 1] be a user-defined mixing weight
2: Create an empty FIFO queue Q[i] for i ∈ {1, . . . , N}
3: Initialize queue size counters Si = 0 for i ∈ {1, . . . , N}
4: Initialize B = 1; Initialize list L as an empty list
5: Let p be BASE’s first arm-pull prob. distribution
6: Let h be HEURISTIC’s first arm-pull prob. distribution
7: Draw I ∼ p
8: for t = 1 to∞ do
9: while Q[I] is not empty do

10: Remove reward r from Q[I], decrement SI

11: Update BASE with r and I
12: Get BASE arm distribution p; Draw I ∼ p
13: q = GETSAMPLINGDIST(. . . )
14: Sample from environment with distribution q
15: (once if online updates or else for one batch)
16: Increment Si by the # of times arm i was sampled
17: for each sample that has arrived do
18: Observe reward ri and add to Q[i].
19: Add the delay (number of timesteps since
20: selected) of this sample to L
21: Update HEURISTIC with reward ri
22: Get next HEURISTIC arm distribution h
23: Set B to the maximum delay in L.

Theorem 1. For algorithm 1 with any choice of proce-
dure GETSAMPLINGDIST and any online bandit algorithm
BASE, E [RT ] ≤ E

[
RBASE

T

]
+
∑N

i=1 ∆i E [Si,T ] where Si,T

is the number of elements pulled for arm i by time T , but not
yet shown to BASE.

The proof of Theorem 1 is provided in the appendix
(available at http://grail.cs.washington.edu/projects/bandit).
The proof sketch is that for each item, it has either been as-
signed to queue or it has been consumed by BASE. We know
the regret of BASE on the samples it pulls from the queues
is upper bounded by E

[
RBASE

T

]
, so combining that with the

regret of the items in each queue gives us the stated regret.

Theorem 2. For SDB, E [RT ] ≤ E
[
RBASE

T

]
+Nτmax in the

online updating setting, and E [RT ] ≤ E
[
RBASE

T

]
+2Nτmax

in the batch updating setting.

The proof of Theorem 2 is in the appendix (available
at http://grail.cs.washington.edu/projects/bandit). The proof

Algorithm 2 Stochastic Delayed Bandits (SDB)
uses GETSAMPLINGDISTSDB in line 13 of Algorithm 1

1: procedure GETSAMPLINGDISTSDB(h, p, I, S, B, α)
2: A = {1, . . . , N} − I . A are the arms we’re willing to

alter
3: q = h . q will be a modification of h that avoids

sampling from full queues.
4: q = (1− α)q + αp . We start by mixing in a small

amount of p to so that if the queues h wants to sample are full
we are close to p.

5: for all i do
6: ui = max(B−Si

B , 0) . ui is the maximum
allowable probability for qi

7: while ∃i ∈ A such that qi > ui do
8: d = qi − ui . d is the probability mass to

redistribute to other arms
9: qi = ui;A = A− i . Set qi to ui and do not allow
qi to change further

10: sum =
∑

j∈A qj
11: for all j ∈ A do
12: qj = qj × sum+d

sum . Redistribution of
probability lost to unmodified arms

13: return q
14: end procedure

proceeds by showing that the size of any queue cannot ex-
ceed τmax given online updating, and 2τmax given batch up-
dating . In the online update case the proof is simple because
we always assign 0 probability to arms with more thanB el-
ements, and B ≤ τmax always. In the batch update case the
proof proceeds similarly, except it can take up to one batch
to notice that the queue has gotten too large and zero out the
probabilities, so we incur an extra additive term of τmax.

Heuristics When choosing a sampling distribution, SDB
starts with a weighted combination of the distribution pro-
duced by the HEURISTIC and BASE algorithms, where α ∈
(0, 1] of the probability mass is put on BASE.2 It is important
to observe that SDB’s regret bound (Theorem 2) depends on
neither α’s value nor HEURISTIC’s behavior.3 This allows
us to set α very low, thereby primarily trusting an arbitrary
heuristic algorithm (at least initially), while achieving the
best known theoretical guarantees in the online updating de-
lay case, and within a constant factor in the batch updat-
ing case. So in the presence of delay, SDB allows arbitrary
heuristics to help bandit algorithms get better reward in fa-
vorable cases, while avoiding poor worst-case behavior, as
we shall see in the empirical results.

Incorporating Prior Data SDB can be used to handle
access to prior data by initially placing the prior dataset in
the queues and setting B to M , the maximum size of any
queue. SDB ensures that the algorithm does not perform

2α cannot be 0, since empty queue Q[I] might have zero prob-
ability, resulting in a division by 0 on line 12 of algorithm 2.

3This is because a bad heuristic will quickly fill up the queues
for the bad arms, causing us to ignore it and instead follow the arms
selected by BASE.
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poorly when handed a (possibly adversarially) skewed dis-
tribution of arms, instead making sure that it remains close
to its online performance. This is because if τmax is taken
to be the max of the true maximum delay and M , the same
guarantees apply, since initially Si < τmax and B < τmax,
therefore the induction in the proof of Theorem 2 holds. In
the experiments we will see that certain popular bandit algo-
rithms can perform poorly when handed all prior data, mo-
tivating our approach.

Efficient Unbiased Bandit Evaluation
Deploying a good bandit algorithm typically involves some
degree of parameter tuning and comparisons between dif-
ferent approaches (e.g. index-based vs Bayesian) (Vermorel
and Mohri 2005; Chapelle and Li 2011). Deployment in
the real world can be too expensive, and building accurate
simulators is challenging, especially when interacting with
people. A preferable approach is unbiased offline evaluation
using a previous dataset. The state-of-the-art in unbiased of-
fline evaluation of nonstationary bandit algorithms is the re-
jection sampling based replayer of Li et al. 2011 developed
for the more challenging case of contextual bandits.

However, our queue method allows us to be much more
data efficient in the special case of context-free bandits: Li’s
replayer will “reject” many samples, but our approach stores
them in queues for later use. Furthermore, we will show that
our method has an unbiasedness guarantee and does not re-
quire knowledge of the distribution from which the data was
collected. Our evaluator proceeds similarly to Algorithm 1,
but all queues are initialized with samples from a past dataset
D. When the algorithm samples an empty queue after T up-
dates (line 13), we terminate and return an estimate of the
algorithm’s performance at every timestep up to time T .

Traditional unbiasedness can be defined as, for all t:

E [r̂t] =
∑

s′={i,...,j}∈St

p(s′|θ)µj , (1)

where r̂t is the estimate of reward at time t, St is the list of all
possible arm sequences (i.e. possible histories of arm pulls
up to time t), p(s′|θ) is the probability that given the true
environment our algorithm will select sequence s′ at time t,
and µj is the true mean of arm j (the last arm in sequence
s′). Both our and Li’s algorithm satisfy this unbiasedness
property, given an infinite dataset. In practice, however, we
will only have a finite dataset; for some sequences neither
algorithm will be able to output an estimate for time t due to
lack of data, so that neither estimator satisfies (1).

For our queue replay estimator, however, we can claim a
slightly weaker conditional unbiasedness property for the set
of sequences Ut ⊆ St for which we can return an estimate
before hitting the end of a queue. Specifically, we can claim
that E [rt|s ∈ Ut] =

∑
s′={i,...,j}∈Ut

p(s′|s′ ∈ Ut, θ)µj .

Theorem 3. Queue Replay Evaluation estimates are unbi-
ased conditioned on the fact that the bandit algorithm pro-
duces a sequence of actions for which we issue an estimate.
Specifically, E [rt|s ∈ Ut] =

∑
s′={i,...,j}∈Ut

p(s′|s′ ∈
Ut, θ)µj .

The proof can be found in the appendix (available
at http://grail.cs.washington.edu/projects/bandit) and builds
upon Lemma 4 from Joulani et al. 2013.

The obvious issue this raises is that if our algorithm puts
considerable probability mass on sequences not in Ut, hav-
ing the correct expectation for sequences in Ut is meaning-
less. However, after one run of our algorithm, we can ob-
serve when we hit the end of a queue and only report esti-
mates for earlier timesteps. If we want to estimate the reward
over multiple randomizations of our algorithm up to some
time T , if our evaluation frequently terminates earlier than
T steps we can reduce T such that the probability of being
over T is sufficiently high (perhaps over a certain threshold,
such as 95% or 99%). This will give us a degree of confi-
dence in the reported estimates since rewards are bounded
in [0, 1], so a very small percentage of episodes cannot have
a large effect on the average reward. Furthermore, note that
the order in which we draw items from the queue does not
impact the theoretical properties since each item is iid, so
we can re-randomize between runs of the algorithm to get a
better estimate of general performance.

Simulations
In this section we compare the simulated performance of our
algorithms. To give a better picture of performance, simula-
tions are averaged over many randomly-chosen but similar
environments. The environments in Figures 1a, 1b, 1d, and
1e consist of 10 Gaussian arms with means picked uniformly
at random in the interval [0.475, 0.525] and variances picked
in the interval [0, 0.05]. The environment in Figure 1f is also
10 Gaussian arms with means picked in the interval [0.9,
1.0] and variances in [0, 0.05]. In both cases the Gaussians
were clamped to [0, 1] to make them fit the standard ban-
dit formulation. Finally, Figure 1c has two Bernoulli arms,
with means picked uniformly from [0.475, 0.525]. These
environments were kept the same between candidate algo-
rithms to reduce the variance. For each simulation, each
candidate algorithm was run once on 1000 different envi-
ronments, and subtracted from a uniform policy (to ensure
an accurate baseline, the uniform policy was run 10 times in
each of those 1000 environments).

Since SDB takes black-box algorithms as input, we have
complete freedom in choosing bandit algorithms from the
literature. We focus on Thompson Sampling (Thompson
1933), a Bayesian method that has gained enormous inter-
est in the bandit community recently, since it typically out-
performs most other algorithms in practice (Chapelle and Li
2011) while possessing optimal regret bounds (Agrawal and
Goyal 2013) in the online case. Our rewards are non-binary
and so we use the Gaussian-Gaussian variant presented in
Agrawal et al. 20134. The distribution over arms is easy
to sample from but challenging to compute exactly; thus we
sample 100 times to construct an approximate distribution
from which to sample. We also present some results us-
ing UCB (Auer, Cesa-Bianchi, and Fischer 2002), a popular

4Note that this does not mean we assume the arm reward distri-
butions are Gaussian, Agrawal’s method has optimal bounds given
any distribution.
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(a) Comparing to QPM-D with Thompson
Sampling as the black-box algorithm.
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(b) Comparing to heuristics with Thomp-
son Sampling as the black-box algorithm.
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(c) An example where the heuristic
Thompson-Batch-0.01 performs worse.

0 1000 2000 3000 4000 5000
Samples (in batches of size 100)

0

2

4

6

8

10

C
u
m

u
la

ti
v
e
 R

e
w

a
rd

 (
D

if
fe

re
n
ce

 f
ro

m
 U

n
if
o
rm

)

SDB-ucb-1.0
SDB-ucb-0.01
QPM-D-ucb

(d) Comparing to QPM-D using UCB as
the black-box algorithm.
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(e) Two example algorithms that perform
poorly when handed all samples but well
inside SDB.
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(f) An example of a case where hand-
ing a prior dataset from a poor arm hurts
Thompson-Batch but not SDB.

Figure 1: Simulation Results. SDB-thom-X refers to running SDB with Thompson-1.0 as the BASE algorithm and Thompson-X
as the HEURISTIC algorithm, and likewise for UCB.

bandit algorithm that also has optimal guarantees in the on-
line case. The SDB parameter α which controls the weight-
ing between HEURISTIC and BASE is always set to 0.01 in
our simulations and experiments.

Here we focus on the batch updating model of de-
lay with batches of various sizes. For results in the on-
line updating case (in which case our regret-bound exactly
matches the best-known), see the appendix (available at
http://grail.cs.washington.edu/projects/bandit).

Figure 1a shows a comparison of SDB to QPM-D us-
ing Thompson Sampling algorithms, in environments with
batches of size 100. The parameter in all of our graphs refers
to variance scaling: 1.0 provides optimal online theoretical
guarantees, while lower values cause Thompson Sampling
to overexploit in the worst case. For SDB-thom-X, the BASE
algorithm is always Thompson-1.0 to provide guarantees,
while the HEURISTIC algorithm is Thompson-X. QPM-D
also uses Thompson-1.0 as BASE. The results show that
QPM-D does poorly initially, being equivalent to uniform
for the first 1000 samples (since it devotes one batch to each
of the 10 arms), and also performs poorly long-term. The
strange shape of QPM-D is due to its determinism: when
it samples a bad arm it must devote an entire batch to it,
resulting in periods of poor performance. With an added
heuristic, SDB uses it to substantially improve performance,

especially early on, while retaining theoretical guarantees.
Figure 1b shows a comparison of SDB to heuristic ap-

proaches. Thompson-Batch-X refers to an algorithm which
hands Thompson-X all samples after each batch instead of
using queues (good regret bounds are not known for this ap-
proach). SDB-thom-1.0 and Thompson-Batch-1.0 perform
similarly, which is encouraging since SDB has been shown
to have strong theoretical guarantees while Thompson-Batch
has not. SDB does look worse than Thompson-Batch-0.01
since it explores more to retain theoretical guarantees.

However, ignoring theoretical guarantees, why not just
use a heuristic like the Thompson-Batch-0.01 algorithm,
since it performs much better than the other algorithms in
Figure 1b? To explain why, see Figure 1c. In this envi-
ronment we see that Thompson-Batch-0.01 performs very
poorly compared to Thompson-Batch-1.0, since the arm
means are so hard to distinguish that it tends to exploit bad
arms. However, SDB-0.01 performs as good or even a lit-
tle better than Thompson-Batch-1.0, showing that it avoids
being misled in environments where the heuristic is bad.

Figure 1d is similar to Figure 1a except we have used
UCB instead of Thompson. Here we don’t see a differ-
ence between SDB-ucb-1.0 and QPM-D, since there is no
stochasticity in the black-box algorithms for SDB to exploit.
However, SDB still sees improvement when heuristics are
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added, while retaining the theoretical guarantees.
Of course, UCB and Thompson are not the only reason-

able bandit algorithms. In Figure 1e we have illustrated the
benefit of SDB with two examples of bandit algorithms that
perform very poorly if they are run with delay, but perform
well under SDB. UCB-Strict acts similarly to UCB, but de-
faults to random performance if it observes a reward from an
arm that does not have the highest upper confidence interval.
UCB-Discard is also based on UCB but discards rewards it
observes from arms that do not have the highest confidence
interval (an alternative approach to ensuring batch and on-
line performance are similar). As expected, handing all sam-
ples from a batch to these algorithms hurts performance, but
running them inside SDB preserves good performance. Al-
though many bandit algorithms do not exhibit this extreme
behavior, these examples show that queues are needed to
guarantee good performance for black-box algorithms.

Figure 1f shows an example of Thompson-Batch perform-
ing badly given prior data. In this case we supplied one batch
(1000 samples) of prior data from the worst arm. Thompson-
Batch puts slightly more weight on that arm initially, result-
ing in poor initial performance. The effect is exacerbated
when decreasing the tuning parameter, as Thompson-Batch-
0.01 focuses entirely on exploiting the poor arm, causing
very poor performance. SDB, however, chooses not to sam-
ple that arm at all for the first batch since it already has
enough data, resulting in better performance in this case.
It also makes use of the heuristic to improve performance,
avoiding the poor performance of the heuristic used alone.5

Experiments
Experiment Setup Treefrog Treasure (Figure 2a) is an ed-
ucational fractions game developed by the Center for Game
Science. Players control a frog and jump off walls, occasion-
ally needing to jump through correct point on a numberline.
We want to select optimal settings for numberlines to pro-
mote student learning and engagement, which we model as
a standard bandit problem. Our experiment has 9 number-
line parameters, e.g. whether or not ticks are shown to help
guide the player. Given a fixed first set of lines, we want
to either increase the difficulty level of one parameter (e.g.
removing tick marks) or stay at the same difficulty, corre-
sponding to 9 + 1 = 10 bandit arms. Since the game ran-
domly increases the difficulty of each parameter as time goes
on, the choice of arm affects not only the immediate next
line but also future lines. The data collection procedure as-
signed each player to an arm using a fixed (almost uniform)
distribution. Our dataset was collected from BrainPOP.com,
an educational website focused on school-aged children. It
consisted of 4,396 students, each of whom formed a single
(arm, reward) pair.

Our reward is a mix of engagement and learning. At
the beginning of the game we assign a randomized in-game
pretest with 4 numberlines, and include only those play-

5Although SDB robustly handles a single batch of prior data,
a very large prior dataset consisting of many batches might neg-
atively impact both theoretical guarantees and performance. Ad-
dressing this issue is left for future work.

ers in the experiment who score at most 2 out of 4. Then,
we randomly pick a number of numberlines the player must
complete before we give a 4-question in-game posttest. The
posttest questions are randomly drawn from the same dis-
tribution as the pretest, which allows us to define a noisy
metric of learning ranging from -2 to 4 based on the differ-
ence between pretest and posttest scores. The reward cannot
be less than -2 since students must have gotten at least two
lines incorrect on the pretest to be included. Finally, if the
player quits before the posttest they are given -0.98 reward.
We transform rewards to [0,1] before running our algorithms
to satisfy their assumptions.

Experiment Results First, given real data and various
bandit algorithms, how does our replayer compare to Li’s
rejection sampling estimator (Li et al. 2011)? If the data
collection policy were unknown, it is unclear how to apply
Li’s approach since it requires knowing the distribution from
which the data was drawn. However in our case we do know
this distribution, so both approaches produce unbiased se-
quences of interactions with the environment. Hence the key
criteria is how many pulls each approach can generate esti-
mates for: longer sequences give us a better sense of the
long-term performance of our algorithms.

Figure 2b compares data efficiency between our queue-
based estimator and the rejection sampling based replayer
of (Li et al. 2011) on our 4,396 person dataset when run-
ning various algorithms without delay. We see that our per-
formance is only slightly better given a stochastic policy
(Thompson), since rejection sampling leverages the revealed
randomness to accept many samples. However, with deter-
ministic policies such as UCB, our queue-based estimator
can evaluate policies for much longer. This limitation of re-
jection sampling-based replayers was noted in (Dudı́k et al.
2012) as an open problem, although it is unclear whether our
estimator can be adapted to the contextual bandits setting.

To generate the cumulative reward graph we average each
algorithm over 1000 samples from our SDB-based replayer
(as in the simulations, Uniform received 10,000 samples).
To ensure reliability, all results had at least 99.5% of tra-
jectories reach the graphed length before hitting an empty
queue. We plot rewards in the original range, where 1 unit
corresponds to 1 number line improvement on the posttest.

Figure 2c shows results on our data with batch size 100.
We see that SDB exploits the heuristic to perform much
better than simply using Thompson-1.0. The other algo-
rithm which maintains strong theoretical guarantees, QPM-
D, does much worse empirically. We are encouraged at the
good early performance of SDB, which is critical in settings
such as educational games where experiments may be ter-
minated or players may leave if early performance is poor.

Related Work
Bandits with delay In this work we build off of
Joulani’s 2013 approach to dealing with delay in stochastic
multi-armed bandits, specifically their QPM-D algorithm.
We improve over this work by (a) better exploiting stochas-
tic algorithms to improve performance, as we show in our
experiments, (b) explicitly considering the batch update set-
ting, (c) incorporating an arbitrary heuristic to improve per-
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(a) Treefrog Treasure: players guide
a frog through a physics-based world,
solving number line problems.

Thompson-0.1 Thompson-1.0 UCB QPM-D
0

500

1000

1500

2000

2500

3000

A
v
e
ra

g
e
 e

p
is

o
d
e
 l
e
n
g
th

Rejection Sampling
SDB-Eval

(b) The queue-based estimator outper-
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(c) Results (using our queue-based esti-
mator) on educational game data. SDB
does better by leveraging the heuristic.

Figure 2: Experimental Results.

formance while retaining strong theoretical guarantees, (d)
showing how queue-based methods can be used to incor-
porate arbitrary prior datasets and (e) showing how queue-
based methods can be used to evaluate algorithms offline in
an unbiased and highly data-efficient manner, without need-
ing to know the original sampling distribution.

There have been prior approaches to handling delay in
bandits prior to Joulani. Dudik et al. 2011 assumed the de-
lay was a fixed, known constant and online updating was al-
lowed. Desautels et al. 2012 analyzed the case of Gaussian
Process Bandits, and developed an algorithm which relied
on online updating with worse regret bounds than Joulani
et al. 2013. Recent work in lock-in bandits (Komiyama,
Sato, and Nakagawa 2013) bears similarity to the batch up-
date formulation but does not allow stochastic policies, and
proves worse regret bounds than Joulani et al. 2013.

Adding heuristics Although we are not aware of any
work explicitly addressing balancing a heuristic and a prin-
cipled algorithm in a bandit framework, this problem bears
similarities to expert advice problems. While the traditional
experts setting assumes full information (not bandit feed-
back) (Littlestone and Warmuth 1994), the multi-armed ban-
dits with expert advice problem is a better fit. However, as
McMahan et al. 2009 notes, the theoretical guarantees on so-
lutions to this problem do not hold if the experts learn based
on which arms we pull. McMahan explains that without
restrictive assumptions on how the experts learn, achieving
good regret in this case becomes an extremely challenging
reinforcement learning problem. Our approach is consider-
ably simpler, while retaining strong theoretical guarantees
and achieving good empirical performance.

Evaluating bandits offline The standard approach to of-
fline bandit evaluation is to build a simulator, either from
scratch (e.g. (Auer, Cesa-Bianchi, and Fischer 2002)) or
using collected data (e.g. section 4 of (Chapelle and Li
2011)). However, building a good simulator is challeng-
ing and comes without strong theoretical guarantees, spark-
ing interest in data-driven estimators. Initial investigations
((Langford, Strehl, and Wortman 2008), (Strehl et al. 2010))
focused on the problem of evaluating stationary policies,
however we are interested in nonstationary policies that

learn over time. Although there has been work in construct-
ing biased evaluators of nonstationary policies that tend to
perform well in practice ((Nicol, Mary, and Preux 2014) and
(Dudı́k et al. 2012)), the state of the art in unbiased estima-
tion (without some other good reward estimator) continues
to be the rejection-sampling based replayer proposed by Li
et al. in (Li et al. 2011) and (Dudı́k et al. 2012), which re-
quires a known sampling distribution. We compare to this
estimator and show that not only we can provide an unbi-
asedness guarantee without knowing the sampling distribu-
tion, but our evaluator is considerably more data-efficient.

Conclusion
In this paper we identified the queue method, and showed
how it can be used to solve four problems more effectively
than prior solutions. Specifically, we presented Stochastic
Delayed Bandits (SDB), an algorithm which leverages the
distributions of black-box stochastic bandit algorithms to
perform well in the face of delay. Although typically us-
ing an arbitrary heuristic worsens or eliminates theoretical
guarantees, we showed how SDB can take advantage of a
heuristic to improve performance while retaining a regret
bound close to the best-known in the face of delay. We also
showed how SDB is more robust to prior data than typical
approaches. Finally, we presented a conditionally unbiased
estimator which uses the queue method to be highly data-
efficient even without knowing the distribution from which
the data was collected. These approaches have strong theo-
retical guarantees, and have good performance when evalu-
ated both on synthetic simulations and on a real-world edu-
cational games dataset. Future work includes better methods
for incorporating very large prior datasets, exploring how the
queue method can be applied to more complex settings, and
developing stochastic algorithms that match the best-known
regret bound in the batch updating case.
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