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Abstract

Spectral clustering is a fundamental technique in the
field of data mining and information processing. Most
existing spectral clustering algorithms integrate dimen-
sionality reduction into the clustering process assisted
by manifold learning in the original space. However,
the manifold in reduced-dimensional subspace is likely
to exhibit altered properties in contrast with the orig-
inal space. Thus, applying manifold information ob-
tained from the original space to the clustering process
in a low-dimensional subspace is prone to inferior per-
formance. Aiming to address this issue, we propose a
novel convex algorithm that mines the manifold struc-
ture in the low-dimensional subspace. In addition, our
unified learning process makes the manifold learning
particularly tailored for the clustering. Compared with
other related methods, the proposed algorithm results in
more structured clustering result. To validate the effi-
cacy of the proposed algorithm, we perform extensive
experiments on several benchmark datasets in compar-
ison with some state-of-the-art clustering approaches.
The experimental results demonstrate that the proposed
algorithm has quite promising clustering performance.

Introduction
Clustering has been widely used in many real-world ap-
plications (Jain and Dubes 1988; Wang, Nie, and Huang
2014). The objective of clustering is to cluster the orig-
inal data points into various clusters, so that data points
within the same cluster are dense while those in differ-
ent clusters are far away from each other (Filippone et
al. 2008). Researchers have proposed a variety of cluster-
ing algorithms, such as K-means clustering and mixture
models (Wang et al. 2014; Nie, Wang, and Huang 2014;
Nie et al. 2011b), etc.

The existing clustering algorithms, however, mostly work
well when the samples’ dimensionality is low. When par-
titioning high-dimensional data, the performance of these
algorithms is not guaranteed. For example, K-means clus-
tering iteratively assigns each data point to the cluster with
the closest center based on specific distance/similarity mea-
surement and updates the center of each cluster. But the dis-
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tance/similarity measurements may be inaccurate on high-
dimensional data, which tends to limit the clustering per-
formance. As suggested by some researchers, many high-
dimensional data may exhibit dense grouping in a low-
dimensional subspace (Nie et al. 2009). Hence, researchers
have proposed to first project the original data into a low-
dimensional subspace via some dimensionality reduction
techniques and then cluster the computed low-dimensional
embedding for high-dimensional data clustering. For in-
stance, a popular approach is to use Principle component
analysis (PCA) to reduce the dimensionality of the origi-
nal data followed by Kmeans for clustering (PcaKm) (Xu
and Wunsch 2005). Ding et al. present a clustering algo-
rithm based on Linear discriminant analysis (LDA) method
(Ding and Li 2007). Ye et al propose discriminative K-
means (DisKmeans) clustering which unifies the iterative
procedure of dimensionality reduction and K-means clus-
tering into a trace maximization problem (Ye, Zhao, and Wu
2007).

Another genre of clustering, i.e., spectral clustering (Shi
and Malik 2000) integrates dimensionality reduction into its
clustering process. The basic idea of spectral clustering is to
find a clustering assignment of the data points by adopting
the spectrum of similarity matrix that leverages the nonlin-
ear manifold structure of original data. Spectral clustering
has been shown to be easy to implement and oftentimes it
outperforms traditional clustering methods because of its ca-
pacity of mining intrinsic geometric structures, which facili-
tates partitioning data with more complicated structures. The
benefit of utilizing manifold information has been demon-
strated in many applications, such as image segmentation
and web mining. Due to the advantage of spectral clustering,
different variants of spectral clustering algorithms have been
proposed these years (Li et al. 2015). For example, local
learning-based clustering (LLC) (Wu and Schlkopf 2006)
utilizes a kernel regression model for label prediction based
on the assumption that the class label of a data point can be
determined by its neighbors. Self-tuning SC (Zelnik-Manor
and Perona 2004) is able to tune parameters automatically in
an unsupervised scenario. Normalized cuts is capable of bal-
ancing the volume of clusters for the usage of data density
information (Shi and Malik 2000).

Spectral clustering is essentially a two-stage approach,
i.e., manifold learning based in the original high-
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dimensional space and dimensionality reduction. To achieve
proper clustering, spectral clustering assumes that two
nearby data points in the high density region of the reduced-
dimensional space have the same cluster label. However, this
assumption does not always hold. More possibly, these near-
est neighbors may be far away from each other in the original
high-dimensional space due to the curse of dimensionality.
That being said, the distance measurement of the original
data could not precisely reflect the low-dimensional mani-
fold structure, thus leading to suboptimal clustering perfor-
mance.

Intuitively, if the manifold structure in the low-
dimensional space is precisely captured, the clustering
performance could be enhanced when applied to high-
dimensional data clustering. Aiming to achieve this goal, we
propose a novel clustering algorithm that is able to mine the
inherent manifold structure of the low-dimensional space for
clustering. Moreover, compared to traditional spectral clus-
tering algorithms, the shrunk pattern learned by the proposed
algorithm does not have an orthogonal constraint, giving it
more flexibility to fit the manifold structure. It is worthwhile
to highlight the following merits of our work:

• The proposed algorithm is more capable of uncovering the
manifold structure. Particularly, the shrunk pattern does
not have the orthogonal constraint, making it more flexi-
ble to fit the manifold structure.

• The integration of manifold learning and clustering makes
the former particularly tailored for the latter. This is in-
trinsically different from most state-of-the-art clustering
algorithms.

• The proposed algorithm is convex and converges to global
optimum, which indicates that the proposed algorithm
does not rely on the initialization.

The rest of this paper is organized as follows. After re-
viewing related work on spectral clustering in section 2, we
detail the proposed algorithm in section 3. Extensive experi-
mental results are given in section 4 and section 5 concludes
this paper.

Related Work
Our work is inspired by spectral clustering. Therefore, we
review the related work on spectral clustering in this section.

Basics of Spectral Clustering
To facilitate the presentation, we first summarize the no-
tations that will be frequently used in this paper. Given a
dataset X = {x1, . . . , xn}, xi ∈ Rd(1 ≤ i ≤ n) is the i-th
datum and n is the total number of data points. The objec-
tive of clustering is to partition χ into c clusters. Denote the
cluster assignment matrix by Y = {y1, . . . , yn} ∈ Rn×c,
where yi ∈ {0, 1}c×1 (1 ≤ i ≤ n) is the cluster indicator
vector for the datum xi. The j-th element of yi is 1 if xi is
clustered to the j-th cluster, and 0 otherwise.

Existing spectral clustering algorithms adopt a weighted
graph to partition the data. Let us denote G = {X , A} as a
weighted graph with a vertex set X and an affinity matrix

A ∈ Rn×n. Aij is the affinity of a pair of vertexes of the
weighted graph. Aij is commonly defined as:

Aij =

{
exp(− ‖xi−xj‖

2

δ2
), if xi and xj are k nearest neighbors.

0, otherwise.

where δ is the parameter to control the spread of neighbors.
The Laplacian matrix L is computed according to L = D −
A, where D is a diagonal matrix with the diagonal elements
as Dii =

∑
j Aij ,∀i. Following the work in (Ye, Zhao, and

Wu 2007), we denote the scaled cluster indicator matrix F
as follows:

F = [F1, F2, . . . , Fn]
T = Y (Y TY )−

1
2 , (1)

where Fi is the scaled cluster indicator of xi. The j-th col-
umn of F is defined as follows by (Ye, Zhao, and Wu 2007):

fj =

0, . . . , 0,︸ ︷︷ ︸∑j−1
i=1 ni

1
√
nj
, . . . ,

1
√
nj
,︸ ︷︷ ︸

nj

0, . . . , 0︸ ︷︷ ︸∑c
i=j+1 nk

 , (2)

which indicates which data points are partitioned into the j-
th cluster Cj . nj is the number of data points in cluster Cj .

The objective function of spectral clustering algorithm is
generally formulated as follows:

min
F

Tr(FTLF )

s.t. F = Y (Y TY )−
1
2

(3)

where Tr(·) denotes the trace operator. By denoting I as
an identity matrix, we can define the normalized Laplacian
matrix Ln as:

Ln = I −D− 1
2AD−

1
2 . (4)

By replacing L in Eq. (3) with the normalized Laplacian
matrix, the objective function becomes the well-known SC
algorithm normalized cut (Shi and Malik 2000). In the same
manner, if we replace L in Eq. (3) by the Laplacian ma-
trix obtained by local learning (Yang et al. 2010)(Wu and
Schlkopf 2006), the objective function converts to Local
Learning Clustering (LLC).

Progress on Spectral Clustering
Being easy to implement and promising for many applica-
tions, spectral clustering has been widely studied for dif-
ferent problems. Chen et al. propose a Landmark-based
Spectral Clustering (LSC) for large scale clustering prob-
lems (Chen and Cai 2011). Specifically, a few represen-
tative data points are first selected as the landmarks and
the original data points are then represented as the linear
combinations of these landmarks. The spectral clustering
is performed on the landmark-based representation. Yang
et al. propose to utilize a nonnegative constraint to relax
the elements of cluster indicator matrix for spectral cluster-
ing (Yang et al. 2011). Liu et al. propose to compress the
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original graph used for spectral clustering into a sparse bi-
partite graph. The clustering is then performed on the bipar-
tite graph instead, which improved the efficiency for large-
scale data (Liu et al. 2013). Xia et al. propose a multi-view
spectral clustering method based on low-rank and sparse de-
composition (Xia et al. 2014). Yang et al. propose to use
Laplacian Regularized L1-Graph for clustering (Yang et al.
2014). Tian et al. recently propose to adopt deep learning in
spectral clustering (Tian et al. 2014).

In spite of the encouraging progress, few of the existing
spectral clustering methods have considered learn the mani-
fold in the low-dimensional subspace more precisely, not to
mention integrating such manifold learning and clustering
into a unified framework. This issue shall be addressed in
this paper for boosted clustering performance.

The Proposed Algorithm
In this section, we present the details of the proposed algo-
rithm. A fast iterative method is also proposed to solve the
objective function.

Problem Formulation
Our algorithms is built atop the aim of uncovering the ut-
most manifold structure in the low-dimensional subspace of
original data. Inspired by (Hou et al. 2013), we adopt the pat-
tern shrinking during the manifold learning and the shrunk
patterns are exploited for clustering simultaneously.

To begin with, we have the following notations. Denote
the shrunk patterns of n data samples as {g1, · · · , gn},
where gi ∈ Rc. We first obtain spectral embedding F of
the original samples by minimizing the traditional spectral
clustering algorithm minTr(FTLnF ), where Ln is a nor-
malized Laplacian matrix.

Next, the shrunk patterns are computed by satisfying the
following requirements. (1) The shrunk patterns should keep
consistency with the spectral embedding. To be more spe-
cific, the shrunk patterns should not be far away from the
spectral clustering. (2) Note that nearby points are more
likely to belong to the same cluster. We thus design a sim-
ilarity matrix to measure pair similarity of any two spectral
embedding, which the shrunk patters should follow.

To characterize the manifold structure of the spectral em-
bedding {f1, · · · , fn}, a k-nearest neighbor graph is con-
structed by connecting each point to its k nearest neigh-
bors. The similarity matrix, W , is computed by Wij =

exp(−‖fi−fj‖
2

δ2 ).
From this similarity matrix, we can observe that if two

spectral embeddings are nearby, they should belong to the
same cluster and the corresponding weight should be large,
which satisfies the first requirement (Nie et al. 2011a).

To keep the local similarity of spectral embedding, we
propose to optimize the following objective function.

min
G

∑
ij

Wij‖gi − gj‖2 (5)

We also aim to keep the consistency between spectral em-
bedding and shrunk patterns. Hence, we propose to mini-
mize the following loss function directly.

min
G
‖G− F‖22 (6)

To this end, we formulate the objection function as fol-
lows:

min
G
‖G− F‖22 + γ

∑
i,j

Wij‖gi − gj‖2 (7)

where γ is a balance parameter.
It can be easily proved that our formulation is convex. Due

to the space limit, we omit the proof here. Since our method
exploits shrunk patterns as the input for clustering, we name
it Spectral Shrunk Clustering (SSC).

As indicated in (Ma et al. 2012; Kong, Ding, and Huang
2011), the least square loss function is not robust to outliers.
To make our method even more effective, we follow (Ma et
al. 2012; Nie et al. 2010) and employ l2,1-norm to handle
the outliers. The objective function is rewritten as follows:

min
G
‖G− F‖2,1 + γ

∑
i,j

Wij‖gi − gj‖2 (8)

Optimization
The proposed function involves the l2,1-norm, which is dif-
ficult to solve in a closed form. We propose to solve this
problem in the following steps. Denote H = G − F and
H = [h1, · · · , hd], where d is the dimension of spectral em-
bedding. The objective function can be rewritten as follows:

min
G

Tr((G− F )TS(G− F )) + γ
∑
ij

wij‖gi − gj‖2 (9)

where

S =


1

2‖h1‖2
. . .

1
2‖hd‖2

 . (10)

Denote a Laplacian matrix L̃ = D̃ − W̃ , where W̃ is a
re-weighted weight matrix defined by

W̃ij =
Wij

2‖gi − gj‖2
(11)

D̃ is a diagonal matrix with the i-th diagonal element as∑
j W̃ij .
By simple mathematical deduction, the objective function

arrives at:

min
G

Tr((G− F )TS(G− F )) + γTr(GT L̃G). (12)

By setting the derivative of Eq. (12) to G to 0, we have:

G = (S + γL̃)−1SF. (13)
Based on the above mathematical deduction, we propose

an iterative algorithm to optimize the objective function in
Eq. (3), which is summarized in Algorithm 1. Once the
shrunk patterns G are obtained, we perform K-means clus-
tering on it to get the final clustering result.
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Algorithm 1: Optimization Algorithm for SSC

Data: Data X ∈ Rd×n, Parameter γ and the number of
clusters c

Result:
The discrete cluster assignment Y ∈ Rn×c

1 Compute the normalized Laplacian matrix Ln ;
2 Obtain the spectral embedding F by using the

traditional spectral clustering ;
3 Compute the similarity matrix W using the spectral

embedding F ;
4 Obtain the Laplacian matrix with the reweighted weight

matrix according to Eq. (11) ;
5 Set t = 0 ;
6 Initialize G0 ∈ Rn×c;
7 repeat
8 Compute Ht = Gt − F ;
9 Compute the diagonal matrix St according to (10) ;

10 Compute Gt+1 according to
Gt+1 = (St + γW̃ )−1StX ;

11 t = t + 1 ;
12 until Convergence;
13 Based on G∗, compute the discrete cluster assignment

matrix Y by using K-means clustering;
14 Return the discrete cluster assignment matrix Y .

Convergence Analysis
To prove the convergence of the Algorithm 1, we need the
following lemma (Nie et al. 2010).

Lemma 1. For any nonzero vectors g, gt ∈ Rc, the follow-
ing inequality holds:

‖g‖2 − ‖g‖22/2‖gt‖2 ≤ ‖gt‖2 − ‖gt‖22/2‖gt‖2 (14)

The following theorem guarantees that the problem in Eq.
(8)converges to the global optimum by Algorithm 1 .

Theorem 1. The Algorithm 1 monotonically decreases the
objective function value of the problem in Eq. (8) in each
iteration, thus making it converge to the global optimum.

Proof. Define f(G) = Tr((G−F )TS(G−F ). According
to Algorithm 1, we know that

Gt+1 = argmin
G

f(G) + γ
∑
i,j

(W̃ )ij‖gi − gj‖22 (15)

Note that (W̃t)ij =
Wij

2‖gti−gtj‖2
, so we have

f(Gt+1) + γ
∑
ij

Wij‖gt+1
i − gt+1

j ‖22
2‖gti − gtj‖2

≤f(Gt) + γ
∑
ij

Wij‖gti − gtj‖22
2‖gti − gtj‖2

(16)

According to Lemma 1, we have

∑
ij

Wij(‖gt+1
i − gt+1

j ‖2 −
‖gt+1
i − gt+1

j ‖22
2‖gti − gtj‖2

)

≤
∑
ij

Wij(‖gti − gtj‖2 −
‖gti − gtj‖22
2‖gti − gtj‖2

)

(17)

By summing Eq. (16) and Eq. (17), we arrive at:

f(Gt+1) + γ
∑
ij

Wij‖gt+1
i − gt+1

j ‖2

≤f(Gt) + γ
∑
ij

Wij‖gti − gtj‖2
(18)

Thus, Algorithm 1 monotonically decreases the objective
function value of the problem in Eq. (8) in each iteration t.
When converged,Gt and L̃t satisfy Eq. (13). As the problem
in Eq. (8) is convex, satisfying Eq. (13) indicates that Gt
is the global optimum solution of the problem in Eq. (8).
Therefore, using Algorithm 1 makes the problem in Eq. (8)
converge to the global optimum.

Experiment
In this section, we perform extensive experiments on a va-
riety of applications to test the performance of our method
SSC. We compare SSC to several clustering algorithms in-
cluding the classical K-means, the classical spectral clus-
tering (SC), PCA Kmeans (Xu and Wunsch 2005), PCA
spectral clustering (PCA SC), LDA Kmeans (Ding and Li
2007), LDA spectral clustering (LDA SC), Local Learning
Clustering (LLC) (Wu and Schlkopf 2006) and SPLS (Hou
et al. 2013).

Datasets
A variety of datasets are used in our experiments which are
described as follows. The AR dataset (Martinez and Be-
navente 1998) contains 840 faces of 120 different people.
We utilize the pixel value as the feature representations. The
JAFFE dataset (Lyons et al. 1997) consists of 213 images
of different facial expressions from 10 different Japanese fe-
male models. The images are resized to 26 × 26 and repre-
sented by pixel values. The ORL dataset (Samaria and Har-
ter 1994) consists of 40 different subjects with 10 images
each. We also resize each image to 32×32 and use pixel val-
ues to represent the images. The UMIST face dataset (Gra-
ham and M 1998) consists of 564 images of 20 individuals
with mixed race, gender and appearance. Each individual
is shown in a range of poses from profile to frontal views.
The pixel value is used as the feature representation. The
BinAlpha dataset contains 26 binary hand-written alphabets
and we randomly select 30 images for every alphabet. The
MSRA50 dataset contains 1799 images from 12 different
classes. We resize each image to 32 × 32 and use the pixel
values as the features. The YaleB dataset (Georghiades, Bel-
humeur, and Kriegman 2001) contains 2414 near frontal im-
ages from 38 persons under different illuminations. Each im-
age is resized to 32×32 and the pixel value is used as feature
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representation. We additionally use the USPS dataset to val-
idate the performance on handwritten digit recognition. The
dataset consists of 9298 gray-scale handwritten digit images.
We resize the images to 16× 16 and use pixel values as the
features.

Setup
The size of neighborhood, k is set to 5 for all the
spectral clustering algorithms. For parameters in all the
comparison algorithms, we tune them in the range of
{10−6, 10−3, 100, 103, 106} and report the best results. Note
that the results of all the clustering algorithms vary on differ-
ent initialization. To reduce the influence of statistical vari-
ation, we repeat each clustering 50 times with random ini-
tialization and report the results corresponding to the best
objective function values. For all the dimensionality reduc-
tion based K-means and Spectral clustering, we project the
original data into a low dimensional subspace of 10 to 150
and report the best results.

Evaluation Metrics
Following most work on clustering, we use clustering ac-
curacy (ACC) and normalized mutual information (NMI) as
our evaluation metrics in our experiments.

Let qi represent the clustering label result from a clus-
tering algorithm and pi represent the corresponding ground
truth label of an arbitrary data point xi. Then ACC is de-
fined as follows:

ACC =

∑n
i=1 δ(pi,map(qi))

n
, (19)

where δ(x, y) = 1 if x = y and δ(x, y) = 0 otherwise.
map(qi) is the best mapping function that permutes cluster-
ing labels to match the ground truth labels using the Kuhn-
Munkres algorithm. A larger ACC indicates better clustering
performance.

For any two arbitrary variables P and Q, NMI is defined
as follows (Strehl and Ghosh 2003):

NMI =
I(P,Q)√
H(P )H(Q)

, (20)

where I(P,Q) computes the mutual information between P
and Q, and H(P ) and H(Q) are the entropies of P and Q.
Let tl represent the number of data in the cluster Cl(1 ≤ l ≤
c) generated by a clustering algorithm and t̃h represent the
number of data points from the h-th ground truth class. NMI
metric is then computed as follows (Strehl and Ghosh 2003):

NMI =

∑c
l=1

∑c
h=1 tl,hlog(

n×tl,h
tl t̃h

)√
(
∑c
l=1 tl log

tl
n )(
∑c
h=1 t̃h log

t̃h
n )
, (21)

where tl,h is the number of data samples that lie in the inter-
section between Cl and h-th ground truth class. Similarly, a
larger NMI indicates better clustering performance.

Experimental Results
The experimental results on listed in Table 1 and Table 2. We
can see from the two tables that our method is consistently
the best algorithm using both evaluation metrics. We also
observe that:

1. The spectral clustering algorithm and its variants achieve
better performance than the classical k-means and its vari-
ants. This observation suggests that it is beneficial to uti-
lize the pairwise similarities between all data points from
a weighted graph adjacency matrix that contains helpful
information for clustering.

2. PCA Kmeans and LDA Kmeans are better than K-means
whereas PCA SC and LDA SC are better than SC. This
demonstrates that dimensionality reduction is helpful for
improving the cluster performance.

3. LDA Kmeans outperforms PCA Kmeans while LDA SC
outperforms PCA SC. This indicates that LDA is more
capable of keeping the structural information than PCA
when doing dimensionality reduction.

4. Among various spectral clustering variants, LLC is the
most robust algorithm. This means using a more sophisti-
cated graph Laplacian is beneficial for better exploitation
of manifold structure.

5. SPLS is the second best clustering algorithm. This is be-
cause it incorporates both the linear and nonlinear struc-
tures of original data.

6. Our proposed Spectral Shrunk Clustering (SSC) consis-
tently outperforms the other K-means based and spectral
clustering based algorithms. This advantage is attributed
to the optimal manifold learning in the low-dimensional
subspace and it being tightly coupled with the clustering
optimization.

Parameter Sensitivity
In this section, we study the sensitivity of our algorithm w.r.t.
the parameter γ in Eq. (3). Fig 1 shows the accuracy (y-axis)
of SSC for different γ values (x-axis) on all the experimen-
tal datasets. It can be seen from the figure that the perfor-
mance varies when different values of γ are used. However,
except on MSRA50 and USPS datasets, our method attains
the best/respectable performance when γ = 1. This indi-
cates that our method has a consistent preference on param-
eter setting, which makes it uncomplicated to get optimal
parameter value in practice.

Convergence Study
As mentioned before, the proposed iterative approach in Al-
gorithm 1 monotonically decreases the objective function
value in Eq. (3). In this experiment, we show the conver-
gence curves of the iterative approach on different datasets
in Figure 2. The parameter γ is fixed at 1, which is the me-
dian value of the tuned range of the parameters.

It can be observed that the objective function value con-
verges quickly. The convergence experiment demonstrates
the efficiency of our algorithm.
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Table 1: Performance comparison (ACC%±Standard Deviation) between K-means, Spectral Clustering, PCA Kmeans,
LDA Kmeans, PCA SC, LDA SC, LLC, SPLS and SSC.

AR JAFFE ORL UMIST binalpha MSRA50 YaleB USPS
K-means 36.3± 1.4 75.6± 1.8 60.5± 1.8 41.3± 1.6 41.7± 1.1 46.2± 1.7 14.4± 1.5 65.4± 1.7

SC 41.6± 2.1 76.1± 1.6 72.7± 2.3 52.2± 1.4 43.6± 1.5 52.3± 1.8 34.8± 1.4 64.3± 1.4
PCA Kmeans 39.8± 1.8 75.8± 1.5 64.5± 2.3 48.8± 1.7 42.4± 1.5 56.0± 1.9 24.9± 1.8 69.4± 1.8

PCA SC 43.2± 1.7 76.9± 1.8 67.8± 2.1 54.1± 1.9 44.3± 1.8 54.9± 1.6 36.8± 2.0 69.1± 1.5
LDA Kmeans 40.4± 1.5 76.5± 1.7 65.6± 2.6 49.7± 1.8 42.9± 1.7 56.4± 1.8 26.1± 1.8 70.1± 1.3

LDA SC 44.5± 1.3 77.4± 1.9 68.3± 2.4 54.7± 1.5 45.1± 1.4 55.1± 1.7 38.2± 1.6 70.4± 1.5
LLC 48.7± 1.6 78.6± 1.5 71.5± 2.2 63.3± 1.8 40.7± 1.8 48.1± 1.4 38.2± 1.5 63.9± 1.7
SPLS 49.2± 1.4 79.5± 2.1 74.2± 1.8 70.4± 1.6 48.5± 1.9 60.3± 1.3 47.3± 1.7 71.4± 1.6
SSC 51.3± 1.5 81.2± 1.6 76.0± 1.6 71.1± 1.8 49.4± 1.3 63.2± 1.1 49.8± 1.6 75.5± 1.9

Table 2: Performance Comparison (NMI%±Standard Deviation) between K-means, Spectral Clustering, PCA Kmeans,
LDA Kmeans, PCA SC, LDA SC, LLC, SPLS and SSC.

AR JAFFE ORL UMIST binalpha MSRA50 YaleB USPS
K-means 68.7± 3.0 79.4± 0.8 80.3± 1.8 64.4± 1.5 58.6± 1.4 56.7± 1.8 17.3± 1.5 67.3± 1.8

SC 71.3± 2.6 80.2± 0.9 85.8± 1.9 72.1± 1.7 59.7± 1.6 70.0± 1.6 55.6± 1.6 69.5± 1.6
PCA Kmeans 69.4± 2.8 79.8± 0.8 80.6± 1.6 68.2± 1.8 59.1± 1.8 60.3± 1.5 26.7± 1.8 73.1± 1.9

PCA SC 70.3± 2.4 81.5± 1.3 86.3± 1.4 72.9± 1.5 60.6± 1.9 72.4± 1.8 38.6± 1.5 74.2± 1.8
LDA Kmeans 69.9± 1.9 82.1± 1.4 81.1± 2.1 68.8± 1.5 59.8± 1.6 61.1± 1.9 29.4± 1.6 75.1± 1.6

LDA SC 70.8± 1.5 81.9± 0.9 86.8± 1.7 74.1± 2.0 61.3± 1.7 73.2± 1.6 39.9± 1.4 75.4± 1.7
LLC 71.2± 2.4 82.5± 1.7 84.9± 1.5 77.3± 1.8 61.4± 1.9 66.2± 1.6 34.1± 1.3 67.5± 1.5
SPLS 72.4± 1.7 83.1± 2.1 87.2± 1.8 82.2± 1.6 63.6± 1.8 69.6± 1.8 41.4± 1.6 76.5± 1.8
SSC 73.2± 1.4 84.3± 1.6 88.6± 1.5 84.1± 1.5 64.1± 1.4 72.2± 1.4 46.8± 1.3 79.8± 1.6

(a) AR (b) JAFFE (c) ORL (d) UMIST (e) binalpha (f) MSRA50 (g) YaleB (h) USPS

Figure 1: The clustering performance (ACC) variation of our algorithm w.r.t. different parameter settings. From the experimental
results, we observe that the proposed algorithm has a consistent preference on parameter setting, which makes it uncomplicated
to get optimal parameter value in practice.

(a) AR (b) JAFFE (c) ORL (d) UMIST (e) binalpha (f) MSRA50 (g) YaleB (h) USPS

Figure 2: The convergence curves of our algorithm on different datasets. From the figures, we can observe that the objective
function converges quickly, which demonstrates the efficiency of the proposed algorithm.

Conclusion

In this paper, we have proposed a novel convex formulation
of spectral shrunk clustering. The advantage of our method
is three-fold. First, it is able to learn the manifold structure in
the low-dimensional subspace rather than the original space.
This feature contributes to more precise structural informa-
tion for clustering based on the low-dimensional space. Sec-
ond, our method is more capable of uncovering the mani-
fold structure. Particularly, the shrunk pattern learned by the
proposed algorithm does not have the orthogonal constraint,

which makes it more flexible to fit the manifold structure.
The learned manifold knowledge is particularly helpful for
achieving better clustering result. Third, our algorithm is
convex, which makes it easy to implement and very suit-
able for real-world applications. Extensive experiments on a
variety of applications are given to show the effectiveness of
the proposed algorithm. By comparing it to several state-of-
the-art clustering approaches, we validate the advantage of
our method.
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